Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/aue/@/amd64/compile/hs32/modules/usr/src/sys/modules/msdosfs/@/dev/malo/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/aue/@/amd64/compile/hs32/modules/usr/src/sys/modules/msdosfs/@/dev/malo/if_malohal.c |
/*- * Copyright (c) 2007 Marvell Semiconductor, Inc. * Copyright (c) 2007 Sam Leffler, Errno Consulting * Copyright (c) 2008 Weongyo Jeong <weongyo@freebsd.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include <sys/cdefs.h> #ifdef __FreeBSD__ __FBSDID("$FreeBSD: release/9.1.0/sys/dev/malo/if_malohal.c 190550 2009-03-30 11:23:14Z weongyo $"); #endif #include <sys/param.h> #include <sys/systm.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/firmware.h> #include <sys/socket.h> #include <machine/bus.h> #include <sys/bus.h> #include <net/if.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net80211/ieee80211_var.h> #include <dev/malo/if_malo.h> #define MALO_WAITOK 1 #define MALO_NOWAIT 0 #define _CMD_SETUP(pCmd, _type, _cmd) do { \ pCmd = (_type *)&mh->mh_cmdbuf[0]; \ memset(pCmd, 0, sizeof(_type)); \ pCmd->cmdhdr.cmd = htole16(_cmd); \ pCmd->cmdhdr.length = htole16(sizeof(_type)); \ } while (0) static __inline uint32_t malo_hal_read4(struct malo_hal *mh, bus_size_t off) { return bus_space_read_4(mh->mh_iot, mh->mh_ioh, off); } static __inline void malo_hal_write4(struct malo_hal *mh, bus_size_t off, uint32_t val) { bus_space_write_4(mh->mh_iot, mh->mh_ioh, off, val); } static void malo_hal_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; KASSERT(error == 0, ("error %u on bus_dma callback", error)); *paddr = segs->ds_addr; } /* * Setup for communication with the device. We allocate * a command buffer and map it for bus dma use. The pci * device id is used to identify whether the device has * SRAM on it (in which case f/w download must include a * memory controller reset). All bus i/o operations happen * in BAR 1; the driver passes in the tag and handle we need. */ struct malo_hal * malo_hal_attach(device_t dev, uint16_t devid, bus_space_handle_t ioh, bus_space_tag_t iot, bus_dma_tag_t tag) { int error; struct malo_hal *mh; mh = malloc(sizeof(struct malo_hal), M_DEVBUF, M_NOWAIT | M_ZERO); if (mh == NULL) return NULL; mh->mh_dev = dev; mh->mh_ioh = ioh; mh->mh_iot = iot; snprintf(mh->mh_mtxname, sizeof(mh->mh_mtxname), "%s_hal", device_get_nameunit(dev)); mtx_init(&mh->mh_mtx, mh->mh_mtxname, NULL, MTX_DEF); /* * Allocate the command buffer and map into the address * space of the h/w. We request "coherent" memory which * will be uncached on some architectures. */ error = bus_dma_tag_create(tag, /* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MALO_CMDBUF_SIZE, /* maxsize */ 1, /* nsegments */ MALO_CMDBUF_SIZE, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &mh->mh_dmat); if (error != 0) { device_printf(dev, "unable to allocate memory for cmd tag, " "error %u\n", error); goto fail; } /* allocate descriptors */ error = bus_dmamap_create(mh->mh_dmat, BUS_DMA_NOWAIT, &mh->mh_dmamap); if (error != 0) { device_printf(dev, "unable to create dmamap for cmd buffers, " "error %u\n", error); goto fail; } error = bus_dmamem_alloc(mh->mh_dmat, (void**) &mh->mh_cmdbuf, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mh->mh_dmamap); if (error != 0) { device_printf(dev, "unable to allocate memory for cmd buffer, " "error %u\n", error); goto fail; } error = bus_dmamap_load(mh->mh_dmat, mh->mh_dmamap, mh->mh_cmdbuf, MALO_CMDBUF_SIZE, malo_hal_load_cb, &mh->mh_cmdaddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(dev, "unable to load cmd buffer, error %u\n", error); goto fail; } return (mh); fail: if (mh->mh_dmamap != NULL) { bus_dmamap_unload(mh->mh_dmat, mh->mh_dmamap); if (mh->mh_cmdbuf != NULL) bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap); bus_dmamap_destroy(mh->mh_dmat, mh->mh_dmamap); } if (mh->mh_dmat) bus_dma_tag_destroy(mh->mh_dmat); free(mh, M_DEVBUF); return (NULL); } /* * Low level firmware cmd block handshake support. */ static void malo_hal_send_cmd(struct malo_hal *mh) { uint32_t dummy; bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); malo_hal_write4(mh, MALO_REG_GEN_PTR, mh->mh_cmdaddr); dummy = malo_hal_read4(mh, MALO_REG_INT_CODE); malo_hal_write4(mh, MALO_REG_H2A_INTERRUPT_EVENTS, MALO_H2ARIC_BIT_DOOR_BELL); } static int malo_hal_waitforcmd(struct malo_hal *mh, uint16_t cmd) { #define MAX_WAIT_FW_COMPLETE_ITERATIONS 10000 int i; for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) { if (mh->mh_cmdbuf[0] == le16toh(cmd)) return 1; DELAY(1 * 1000); } return 0; #undef MAX_WAIT_FW_COMPLETE_ITERATIONS } static int malo_hal_execute_cmd(struct malo_hal *mh, unsigned short cmd) { MALO_HAL_LOCK_ASSERT(mh); if ((mh->mh_flags & MHF_FWHANG) && (mh->mh_debug & MALO_HAL_DEBUG_IGNHANG) == 0) { device_printf(mh->mh_dev, "firmware hung, skipping cmd 0x%x\n", cmd); return ENXIO; } if (malo_hal_read4(mh, MALO_REG_INT_CODE) == 0xffffffff) { device_printf(mh->mh_dev, "%s: device not present!\n", __func__); return EIO; } malo_hal_send_cmd(mh); if (!malo_hal_waitforcmd(mh, cmd | 0x8000)) { device_printf(mh->mh_dev, "timeout waiting for f/w cmd 0x%x\n", cmd); mh->mh_flags |= MHF_FWHANG; return ETIMEDOUT; } bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); return 0; } static int malo_hal_get_cal_table(struct malo_hal *mh, uint8_t annex, uint8_t index) { struct malo_cmd_caltable *cmd; int ret; MALO_HAL_LOCK_ASSERT(mh); _CMD_SETUP(cmd, struct malo_cmd_caltable, MALO_HOSTCMD_GET_CALTABLE); cmd->annex = annex; cmd->index = index; ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_GET_CALTABLE); if (ret == 0 && cmd->caltbl[0] != annex && annex != 0 && annex != 255) ret = EIO; return ret; } static int malo_hal_get_pwrcal_table(struct malo_hal *mh, struct malo_hal_caldata *cal) { const uint8_t *data; int len; MALO_HAL_LOCK(mh); /* NB: we hold the lock so it's ok to use cmdbuf */ data = ((const struct malo_cmd_caltable *) mh->mh_cmdbuf)->caltbl; if (malo_hal_get_cal_table(mh, 33, 0) == 0) { len = (data[2] | (data[3] << 8)) - 12; /* XXX validate len */ memcpy(cal->pt_ratetable_20m, &data[12], len); } mh->mh_flags |= MHF_CALDATA; MALO_HAL_UNLOCK(mh); return 0; } /* * Reset internal state after a firmware download. */ static int malo_hal_resetstate(struct malo_hal *mh) { /* * Fetch cal data for later use. * XXX may want to fetch other stuff too. */ if ((mh->mh_flags & MHF_CALDATA) == 0) malo_hal_get_pwrcal_table(mh, &mh->mh_caldata); return 0; } static void malo_hal_fw_reset(struct malo_hal *mh) { if (malo_hal_read4(mh, MALO_REG_INT_CODE) == 0xffffffff) { device_printf(mh->mh_dev, "%s: device not present!\n", __func__); return; } malo_hal_write4(mh, MALO_REG_H2A_INTERRUPT_EVENTS, MALO_ISR_RESET); mh->mh_flags &= ~MHF_FWHANG; } static void malo_hal_trigger_pcicmd(struct malo_hal *mh) { uint32_t dummy; bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_PREWRITE); malo_hal_write4(mh, MALO_REG_GEN_PTR, mh->mh_cmdaddr); dummy = malo_hal_read4(mh, MALO_REG_INT_CODE); malo_hal_write4(mh, MALO_REG_INT_CODE, 0x00); dummy = malo_hal_read4(mh, MALO_REG_INT_CODE); malo_hal_write4(mh, MALO_REG_H2A_INTERRUPT_EVENTS, MALO_H2ARIC_BIT_DOOR_BELL); dummy = malo_hal_read4(mh, MALO_REG_INT_CODE); } static int malo_hal_waitfor(struct malo_hal *mh, uint32_t val) { int i; for (i = 0; i < MALO_FW_MAX_NUM_CHECKS; i++) { DELAY(MALO_FW_CHECK_USECS); if (malo_hal_read4(mh, MALO_REG_INT_CODE) == val) return 0; } return -1; } /* * Firmware block xmit when talking to the boot-rom. */ static int malo_hal_send_helper(struct malo_hal *mh, int bsize, const void *data, size_t dsize, int waitfor) { mh->mh_cmdbuf[0] = htole16(MALO_HOSTCMD_CODE_DNLD); mh->mh_cmdbuf[1] = htole16(bsize); memcpy(&mh->mh_cmdbuf[4], data , dsize); malo_hal_trigger_pcicmd(mh); if (waitfor == MALO_NOWAIT) goto pass; /* XXX 2000 vs 200 */ if (malo_hal_waitfor(mh, MALO_INT_CODE_CMD_FINISHED) != 0) { device_printf(mh->mh_dev, "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n", __func__, malo_hal_read4(mh, MALO_REG_INT_CODE)); return ETIMEDOUT; } pass: malo_hal_write4(mh, MALO_REG_INT_CODE, 0); return (0); } static int malo_hal_fwload_helper(struct malo_hal *mh, char *helper) { const struct firmware *fw; int error; fw = firmware_get(helper); if (fw == NULL) { device_printf(mh->mh_dev, "could not read microcode %s!\n", helper); return (EIO); } device_printf(mh->mh_dev, "load %s firmware image (%zu bytes)\n", helper, fw->datasize); error = malo_hal_send_helper(mh, fw->datasize, fw->data, fw->datasize, MALO_WAITOK); if (error != 0) goto fail; /* tell the card we're done and... */ error = malo_hal_send_helper(mh, 0, NULL, 0, MALO_NOWAIT); fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } /* * Firmware block xmit when talking to the 1st-stage loader. */ static int malo_hal_send_main(struct malo_hal *mh, const void *data, size_t dsize, uint16_t seqnum, int waitfor) { mh->mh_cmdbuf[0] = htole16(MALO_HOSTCMD_CODE_DNLD); mh->mh_cmdbuf[1] = htole16(dsize); mh->mh_cmdbuf[2] = htole16(seqnum); mh->mh_cmdbuf[3] = 0; memcpy(&mh->mh_cmdbuf[4], data, dsize); malo_hal_trigger_pcicmd(mh); if (waitfor == MALO_NOWAIT) goto pass; if (malo_hal_waitfor(mh, MALO_INT_CODE_CMD_FINISHED) != 0) { device_printf(mh->mh_dev, "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n", __func__, malo_hal_read4(mh, MALO_REG_INT_CODE)); return ETIMEDOUT; } pass: malo_hal_write4(mh, MALO_REG_INT_CODE, 0); return 0; } static int malo_hal_fwload_main(struct malo_hal *mh, char *firmware) { const struct firmware *fw; const uint8_t *fp; int error; size_t count; uint16_t seqnum; uint32_t blocksize; error = 0; fw = firmware_get(firmware); if (fw == NULL) { device_printf(mh->mh_dev, "could not read firmware %s!\n", firmware); return (EIO); } device_printf(mh->mh_dev, "load %s firmware image (%zu bytes)\n", firmware, fw->datasize); seqnum = 1; for (count = 0; count < fw->datasize; count += blocksize) { blocksize = MIN(256, fw->datasize - count); fp = (const uint8_t *)fw->data + count; error = malo_hal_send_main(mh, fp, blocksize, seqnum++, MALO_NOWAIT); if (error != 0) goto fail; DELAY(500); } /* * send a command with size 0 to tell that the firmware has been * uploaded */ error = malo_hal_send_main(mh, NULL, 0, seqnum++, MALO_NOWAIT); DELAY(100); fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } int malo_hal_fwload(struct malo_hal *mh, char *helper, char *firmware) { int error, i; uint32_t fwreadysig, opmode; /* * NB: now malo(4) supports only STA mode. It will be better if it * supports AP mode. */ fwreadysig = MALO_HOSTCMD_STA_FWRDY_SIGNATURE; opmode = MALO_HOSTCMD_STA_MODE; malo_hal_fw_reset(mh); malo_hal_write4(mh, MALO_REG_A2H_INTERRUPT_CLEAR_SEL, MALO_A2HRIC_BIT_MASK); malo_hal_write4(mh, MALO_REG_A2H_INTERRUPT_CAUSE, 0x00); malo_hal_write4(mh, MALO_REG_A2H_INTERRUPT_MASK, 0x00); malo_hal_write4(mh, MALO_REG_A2H_INTERRUPT_STATUS_MASK, MALO_A2HRIC_BIT_MASK); error = malo_hal_fwload_helper(mh, helper); if (error != 0) { device_printf(mh->mh_dev, "failed to load bootrom loader.\n"); goto fail; } DELAY(200 * MALO_FW_CHECK_USECS); error = malo_hal_fwload_main(mh, firmware); if (error != 0) { device_printf(mh->mh_dev, "failed to load firmware.\n"); goto fail; } /* * Wait for firmware to startup; we monitor the INT_CODE register * waiting for a signature to written back indicating it's ready to go. */ mh->mh_cmdbuf[1] = 0; if (opmode != MALO_HOSTCMD_STA_MODE) malo_hal_trigger_pcicmd(mh); for (i = 0; i < MALO_FW_MAX_NUM_CHECKS; i++) { malo_hal_write4(mh, MALO_REG_GEN_PTR, opmode); DELAY(MALO_FW_CHECK_USECS); if (malo_hal_read4(mh, MALO_REG_INT_CODE) == fwreadysig) { malo_hal_write4(mh, MALO_REG_INT_CODE, 0x00); return malo_hal_resetstate(mh); } } return ETIMEDOUT; fail: malo_hal_fw_reset(mh); return (error); } /* * Return "hw specs". Note this must be the first cmd MUST be done after * a firmware download or the f/w will lockup. */ int malo_hal_gethwspecs(struct malo_hal *mh, struct malo_hal_hwspec *hw) { struct malo_cmd_get_hwspec *cmd; int ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_get_hwspec, MALO_HOSTCMD_GET_HW_SPEC); memset(&cmd->permaddr[0], 0xff, IEEE80211_ADDR_LEN); cmd->ul_fw_awakecookie = htole32((unsigned int)mh->mh_cmdaddr + 2048); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_GET_HW_SPEC); if (ret == 0) { IEEE80211_ADDR_COPY(hw->macaddr, cmd->permaddr); hw->wcbbase[0] = le32toh(cmd->wcbbase0) & 0x0000ffff; hw->wcbbase[1] = le32toh(cmd->wcbbase1) & 0x0000ffff; hw->wcbbase[2] = le32toh(cmd->wcbbase2) & 0x0000ffff; hw->wcbbase[3] = le32toh(cmd->wcbbase3) & 0x0000ffff; hw->rxdesc_read = le32toh(cmd->rxpdrd_ptr)& 0x0000ffff; hw->rxdesc_write = le32toh(cmd->rxpdwr_ptr)& 0x0000ffff; hw->regioncode = le16toh(cmd->regioncode) & 0x00ff; hw->fw_releasenum = le32toh(cmd->fw_releasenum); hw->maxnum_wcb = le16toh(cmd->num_wcb); hw->maxnum_mcaddr = le16toh(cmd->num_mcastaddr); hw->num_antenna = le16toh(cmd->num_antenna); hw->hwversion = cmd->version; hw->hostinterface = cmd->hostif; } MALO_HAL_UNLOCK(mh); return ret; } void malo_hal_detach(struct malo_hal *mh) { bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap); bus_dmamap_destroy(mh->mh_dmat, mh->mh_dmamap); bus_dma_tag_destroy(mh->mh_dmat); mtx_destroy(&mh->mh_mtx); free(mh, M_DEVBUF); } /* * Configure antenna use. Takes effect immediately. * * XXX tx antenna setting ignored * XXX rx antenna setting should always be 3 (for now) */ int malo_hal_setantenna(struct malo_hal *mh, enum malo_hal_antenna dirset, int ant) { struct malo_cmd_rf_antenna *cmd; int ret; if (!(dirset == MHA_ANTENNATYPE_RX || dirset == MHA_ANTENNATYPE_TX)) return EINVAL; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_rf_antenna, MALO_HOSTCMD_802_11_RF_ANTENNA); cmd->action = htole16(dirset); if (ant == 0) { /* default to all/both antennae */ /* XXX never reach now. */ ant = 3; } cmd->mode = htole16(ant); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_802_11_RF_ANTENNA); MALO_HAL_UNLOCK(mh); return ret; } /* * Configure radio. Takes effect immediately. * * XXX preamble installed after set fixed rate cmd */ int malo_hal_setradio(struct malo_hal *mh, int onoff, enum malo_hal_preamble preamble) { struct malo_cmd_radio_control *cmd; int ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_radio_control, MALO_HOSTCMD_802_11_RADIO_CONTROL); cmd->action = htole16(MALO_HOSTCMD_ACT_GEN_SET); if (onoff == 0) cmd->control = 0; else cmd->control = htole16(preamble); cmd->radio_on = htole16(onoff); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_802_11_RADIO_CONTROL); MALO_HAL_UNLOCK(mh); return ret; } /* * Set the interrupt mask. */ void malo_hal_intrset(struct malo_hal *mh, uint32_t mask) { malo_hal_write4(mh, MALO_REG_A2H_INTERRUPT_MASK, 0); (void)malo_hal_read4(mh, MALO_REG_INT_CODE); mh->mh_imask = mask; malo_hal_write4(mh, MALO_REG_A2H_INTERRUPT_MASK, mask); (void)malo_hal_read4(mh, MALO_REG_INT_CODE); } int malo_hal_setchannel(struct malo_hal *mh, const struct malo_hal_channel *chan) { struct malo_cmd_fw_set_rf_channel *cmd; int ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_fw_set_rf_channel, MALO_HOSTCMD_SET_RF_CHANNEL); cmd->action = htole16(MALO_HOSTCMD_ACT_GEN_SET); cmd->cur_channel = chan->channel; ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_SET_RF_CHANNEL); MALO_HAL_UNLOCK(mh); return ret; } int malo_hal_settxpower(struct malo_hal *mh, const struct malo_hal_channel *c) { struct malo_cmd_rf_tx_power *cmd; const struct malo_hal_caldata *cal = &mh->mh_caldata; uint8_t chan = c->channel; uint16_t pow; int i, idx, ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_rf_tx_power, MALO_HOSTCMD_802_11_RF_TX_POWER); cmd->action = htole16(MALO_HOSTCMD_ACT_GEN_SET_LIST); for (i = 0; i < 4; i++) { idx = (chan - 1) * 4 + i; pow = cal->pt_ratetable_20m[idx]; cmd->power_levellist[i] = htole16(pow); } ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_802_11_RF_TX_POWER); MALO_HAL_UNLOCK(mh); return ret; } int malo_hal_setpromisc(struct malo_hal *mh, int enable) { /* XXX need host cmd */ return 0; } int malo_hal_setassocid(struct malo_hal *mh, const uint8_t bssid[IEEE80211_ADDR_LEN], uint16_t associd) { struct malo_cmd_fw_set_aid *cmd; int ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_fw_set_aid, MALO_HOSTCMD_SET_AID); cmd->cmdhdr.seqnum = 1; cmd->associd = htole16(associd); IEEE80211_ADDR_COPY(&cmd->macaddr[0], bssid); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_SET_AID); MALO_HAL_UNLOCK(mh); return ret; } /* * Kick the firmware to tell it there are new tx descriptors * for processing. The driver says what h/w q has work in * case the f/w ever gets smarter. */ void malo_hal_txstart(struct malo_hal *mh, int qnum) { bus_space_write_4(mh->mh_iot, mh->mh_ioh, MALO_REG_H2A_INTERRUPT_EVENTS, MALO_H2ARIC_BIT_PPA_READY); (void) bus_space_read_4(mh->mh_iot, mh->mh_ioh, MALO_REG_INT_CODE); } /* * Return the current ISR setting and clear the cause. */ void malo_hal_getisr(struct malo_hal *mh, uint32_t *status) { uint32_t cause; cause = bus_space_read_4(mh->mh_iot, mh->mh_ioh, MALO_REG_A2H_INTERRUPT_CAUSE); if (cause == 0xffffffff) { /* card removed */ cause = 0; } else if (cause != 0) { /* clear cause bits */ bus_space_write_4(mh->mh_iot, mh->mh_ioh, MALO_REG_A2H_INTERRUPT_CAUSE, cause &~ mh->mh_imask); (void) bus_space_read_4(mh->mh_iot, mh->mh_ioh, MALO_REG_INT_CODE); cause &= mh->mh_imask; } *status = cause; } /* * Callback from the driver on a cmd done interrupt. Nothing to do right * now as we spin waiting for cmd completion. */ void malo_hal_cmddone(struct malo_hal *mh) { /* NB : do nothing. */ } int malo_hal_prescan(struct malo_hal *mh) { struct malo_cmd_prescan *cmd; int ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_prescan, MALO_HOSTCMD_SET_PRE_SCAN); cmd->cmdhdr.seqnum = 1; ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_SET_PRE_SCAN); MALO_HAL_UNLOCK(mh); return ret; } int malo_hal_postscan(struct malo_hal *mh, uint8_t *macaddr, uint8_t ibsson) { struct malo_cmd_postscan *cmd; int ret; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_postscan, MALO_HOSTCMD_SET_POST_SCAN); cmd->cmdhdr.seqnum = 1; cmd->isibss = htole32(ibsson); IEEE80211_ADDR_COPY(&cmd->bssid[0], macaddr); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_SET_POST_SCAN); MALO_HAL_UNLOCK(mh); return ret; } int malo_hal_set_slot(struct malo_hal *mh, int is_short) { int ret; struct malo_cmd_fw_setslot *cmd; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_fw_setslot, MALO_HOSTCMD_SET_SLOT); cmd->action = htole16(MALO_HOSTCMD_ACT_GEN_SET); cmd->slot = (is_short == 1 ? 1 : 0); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_SET_SLOT); MALO_HAL_UNLOCK(mh); return ret; } int malo_hal_set_rate(struct malo_hal *mh, uint16_t curmode, uint8_t rate) { int i, ret; struct malo_cmd_set_rate *cmd; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_set_rate, MALO_HOSTCMD_SET_RATE); cmd->aprates[0] = 2; cmd->aprates[1] = 4; cmd->aprates[2] = 11; cmd->aprates[3] = 22; if (curmode == IEEE80211_MODE_11G) { cmd->aprates[4] = 0; /* XXX reserved? */ cmd->aprates[5] = 12; cmd->aprates[6] = 18; cmd->aprates[7] = 24; cmd->aprates[8] = 36; cmd->aprates[9] = 48; cmd->aprates[10] = 72; cmd->aprates[11] = 96; cmd->aprates[12] = 108; } if (rate != 0) { /* fixed rate */ for (i = 0; i < 13; i++) { if (cmd->aprates[i] == rate) { cmd->rateindex = i; cmd->dataratetype = 1; break; } } } ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_SET_RATE); MALO_HAL_UNLOCK(mh); return ret; } int malo_hal_setmcast(struct malo_hal *mh, int nmc, const uint8_t macs[]) { struct malo_cmd_mcast *cmd; int ret; if (nmc > MALO_HAL_MCAST_MAX) return EINVAL; MALO_HAL_LOCK(mh); _CMD_SETUP(cmd, struct malo_cmd_mcast, MALO_HOSTCMD_MAC_MULTICAST_ADR); memcpy(cmd->maclist, macs, nmc * IEEE80211_ADDR_LEN); cmd->numaddr = htole16(nmc); cmd->action = htole16(0xffff); ret = malo_hal_execute_cmd(mh, MALO_HOSTCMD_MAC_MULTICAST_ADR); MALO_HAL_UNLOCK(mh); return ret; }