Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/aue/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfscl/@/netinet/ipfw/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/aue/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfscl/@/netinet/ipfw/dn_sched_qfq.c |
/* * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente * All rights reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * $FreeBSD: release/9.1.0/sys/netinet/ipfw/dn_sched_qfq.c 213253 2010-09-28 22:46:13Z luigi $ */ #ifdef _KERNEL #include <sys/malloc.h> #include <sys/socket.h> #include <sys/socketvar.h> #include <sys/kernel.h> #include <sys/mbuf.h> #include <sys/module.h> #include <net/if.h> /* IFNAMSIZ */ #include <netinet/in.h> #include <netinet/ip_var.h> /* ipfw_rule_ref */ #include <netinet/ip_fw.h> /* flow_id */ #include <netinet/ip_dummynet.h> #include <netinet/ipfw/dn_heap.h> #include <netinet/ipfw/ip_dn_private.h> #include <netinet/ipfw/dn_sched.h> #else #include <dn_test.h> #endif #ifdef QFQ_DEBUG struct qfq_sched; static void dump_sched(struct qfq_sched *q, const char *msg); #define NO(x) x #else #define NO(x) #endif #define DN_SCHED_QFQ 4 // XXX Where? typedef unsigned long bitmap; /* * bitmaps ops are critical. Some linux versions have __fls * and the bitmap ops. Some machines have ffs */ #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) int fls(unsigned int n) { int i = 0; for (i = 0; n > 0; n >>= 1, i++) ; return i; } #endif #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) static inline unsigned long __fls(unsigned long word) { return fls(word) - 1; } #endif #if !defined(_KERNEL) || !defined(__linux__) #ifdef QFQ_DEBUG int test_bit(int ix, bitmap *p) { if (ix < 0 || ix > 31) D("bad index %d", ix); return *p & (1<<ix); } void __set_bit(int ix, bitmap *p) { if (ix < 0 || ix > 31) D("bad index %d", ix); *p |= (1<<ix); } void __clear_bit(int ix, bitmap *p) { if (ix < 0 || ix > 31) D("bad index %d", ix); *p &= ~(1<<ix); } #else /* !QFQ_DEBUG */ /* XXX do we have fast version, or leave it to the compiler ? */ #define test_bit(ix, pData) ((*pData) & (1<<(ix))) #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) #endif /* !QFQ_DEBUG */ #endif /* !__linux__ */ #ifdef __MIPSEL__ #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) #endif /*-------------------------------------------*/ /* Virtual time computations. S, F and V are all computed in fixed point arithmetic with FRAC_BITS decimal bits. QFQ_MAX_INDEX is the maximum index allowed for a group. We need one bit per index. QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. The layout of the bits is as below: [ MTU_SHIFT ][ FRAC_BITS ] [ MAX_INDEX ][ MIN_SLOT_SHIFT ] ^.__grp->index = 0 *.__grp->slot_shift where MIN_SLOT_SHIFT is derived by difference from the others. The max group index corresponds to Lmax/w_min, where Lmax=1<<MTU_SHIFT, w_min = 1 . From this, and knowing how many groups (MAX_INDEX) we want, we can derive the shift corresponding to each group. Because we often need to compute F = S + len/w_i and V = V + len/wsum instead of storing w_i store the value inv_w = (1<<FRAC_BITS)/w_i so we can do F = S + len * inv_w * wsum. We use W_TOT in the formulas so we can easily move between static and adaptive weight sum. The per-scheduler-instance data contain all the data structures for the scheduler: bitmaps and bucket lists. */ /* * Maximum number of consecutive slots occupied by backlogged classes * inside a group. This is approx lmax/lmin + 5. * XXX check because it poses constraints on MAX_INDEX */ #define QFQ_MAX_SLOTS 32 /* * Shifts used for class<->group mapping. Class weights are * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the * group with the smallest index that can support the L_i / r_i * configured for the class. * * grp->index is the index of the group; and grp->slot_shift * is the shift for the corresponding (scaled) sigma_i. * * When computing the group index, we do (len<<FP_SHIFT)/weight, * then compute an FLS (which is like a log2()), and if the result * is below the MAX_INDEX region we use 0 (which is the same as * using a larger len). */ #define QFQ_MAX_INDEX 19 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) //#define IWSUM (q->i_wsum) #define IWSUM ((1<<FRAC_BITS)/QFQ_MAX_WSUM) #define FRAC_BITS 30 /* fixed point arithmetic */ #define ONE_FP (1UL << FRAC_BITS) #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) /* * Possible group states, also indexes for the bitmaps array in * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 */ enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; struct qfq_group; /* * additional queue info. Some of this info should come from * the flowset, we copy them here for faster processing. * This is an overlay of the struct dn_queue */ struct qfq_class { struct dn_queue _q; uint64_t S, F; /* flow timestamps (exact) */ struct qfq_class *next; /* Link for the slot list. */ /* group we belong to. In principle we would need the index, * which is log_2(lmax/weight), but we never reference it * directly, only the group. */ struct qfq_group *grp; /* these are copied from the flowset. */ uint32_t inv_w; /* ONE_FP/weight */ uint32_t lmax; /* Max packet size for this flow. */ }; /* Group descriptor, see the paper for details. * Basically this contains the bucket lists */ struct qfq_group { uint64_t S, F; /* group timestamps (approx). */ unsigned int slot_shift; /* Slot shift. */ unsigned int index; /* Group index. */ unsigned int front; /* Index of the front slot. */ bitmap full_slots; /* non-empty slots */ /* Array of lists of active classes. */ struct qfq_class *slots[QFQ_MAX_SLOTS]; }; /* scheduler instance descriptor. */ struct qfq_sched { uint64_t V; /* Precise virtual time. */ uint32_t wsum; /* weight sum */ NO(uint32_t i_wsum; /* ONE_FP/w_sum */ uint32_t _queued; /* debugging */ uint32_t loops; /* debugging */) bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ }; /*---- support functions ----------------------------*/ /* Generic comparison function, handling wraparound. */ static inline int qfq_gt(uint64_t a, uint64_t b) { return (int64_t)(a - b) > 0; } /* Round a precise timestamp to its slotted value. */ static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) { return ts & ~((1ULL << shift) - 1); } /* return the pointer to the group with lowest index in the bitmap */ static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, unsigned long bitmap) { int index = ffs(bitmap) - 1; // zero-based return &q->groups[index]; } /* * Calculate a flow index, given its weight and maximum packet length. * index = log_2(maxlen/weight) but we need to apply the scaling. * This is used only once at flow creation. */ static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) { uint64_t slot_size = (uint64_t)maxlen *inv_w; unsigned long size_map; int index = 0; size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); if (!size_map) goto out; index = __fls(size_map) + 1; // basically a log_2() index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); if (index < 0) index = 0; out: ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); return index; } /*---- end support functions ----*/ /*-------- API calls --------------------------------*/ /* * Validate and copy parameters from flowset. */ static int qfq_new_queue(struct dn_queue *_q) { struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); struct qfq_class *cl = (struct qfq_class *)_q; int i; uint32_t w; /* approximated weight */ /* import parameters from the flowset. They should be correct * already. */ w = _q->fs->fs.par[0]; cl->lmax = _q->fs->fs.par[1]; if (!w || w > QFQ_MAX_WEIGHT) { w = 1; D("rounding weight to 1"); } cl->inv_w = ONE_FP/w; w = ONE_FP/cl->inv_w; if (q->wsum + w > QFQ_MAX_WSUM) return EINVAL; i = qfq_calc_index(cl->inv_w, cl->lmax); cl->grp = &q->groups[i]; q->wsum += w; // XXX cl->S = q->V; ? // XXX compute q->i_wsum return 0; } /* remove an empty queue */ static int qfq_free_queue(struct dn_queue *_q) { struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); struct qfq_class *cl = (struct qfq_class *)_q; if (cl->inv_w) { q->wsum -= ONE_FP/cl->inv_w; cl->inv_w = 0; /* reset weight to avoid run twice */ } return 0; } /* Calculate a mask to mimic what would be ffs_from(). */ static inline unsigned long mask_from(unsigned long bitmap, int from) { return bitmap & ~((1UL << from) - 1); } /* * The state computation relies on ER=0, IR=1, EB=2, IB=3 * First compute eligibility comparing grp->S, q->V, * then check if someone is blocking us and possibly add EB */ static inline unsigned int qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) { /* if S > V we are not eligible */ unsigned int state = qfq_gt(grp->S, q->V); unsigned long mask = mask_from(q->bitmaps[ER], grp->index); struct qfq_group *next; if (mask) { next = qfq_ffs(q, mask); if (qfq_gt(grp->F, next->F)) state |= EB; } return state; } /* * In principle * q->bitmaps[dst] |= q->bitmaps[src] & mask; * q->bitmaps[src] &= ~mask; * but we should make sure that src != dst */ static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) { q->bitmaps[dst] |= q->bitmaps[src] & mask; q->bitmaps[src] &= ~mask; } static inline void qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) { unsigned long mask = mask_from(q->bitmaps[ER], index + 1); struct qfq_group *next; if (mask) { next = qfq_ffs(q, mask); if (!qfq_gt(next->F, old_finish)) return; } mask = (1UL << index) - 1; qfq_move_groups(q, mask, EB, ER); qfq_move_groups(q, mask, IB, IR); } /* * perhaps * old_V ^= q->V; old_V >>= QFQ_MIN_SLOT_SHIFT; if (old_V) { ... } * */ static inline void qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) { unsigned long mask, vslot, old_vslot; vslot = q->V >> QFQ_MIN_SLOT_SHIFT; old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; if (vslot != old_vslot) { mask = (2UL << (__fls(vslot ^ old_vslot))) - 1; qfq_move_groups(q, mask, IR, ER); qfq_move_groups(q, mask, IB, EB); } } /* * XXX we should make sure that slot becomes less than 32. * This is guaranteed by the input values. * roundedS is always cl->S rounded on grp->slot_shift bits. */ static inline void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) { uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; cl->next = grp->slots[i]; grp->slots[i] = cl; __set_bit(slot, &grp->full_slots); } /* * remove the entry from the slot */ static inline void qfq_front_slot_remove(struct qfq_group *grp) { struct qfq_class **h = &grp->slots[grp->front]; *h = (*h)->next; if (!*h) __clear_bit(0, &grp->full_slots); } /* * Returns the first full queue in a group. As a side effect, * adjust the bucket list so the first non-empty bucket is at * position 0 in full_slots. */ static inline struct qfq_class * qfq_slot_scan(struct qfq_group *grp) { int i; ND("grp %d full %x", grp->index, grp->full_slots); if (!grp->full_slots) return NULL; i = ffs(grp->full_slots) - 1; // zero-based if (i > 0) { grp->front = (grp->front + i) % QFQ_MAX_SLOTS; grp->full_slots >>= i; } return grp->slots[grp->front]; } /* * adjust the bucket list. When the start time of a group decreases, * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to * move the objects. The mask of occupied slots must be shifted * because we use ffs() to find the first non-empty slot. * This covers decreases in the group's start time, but what about * increases of the start time ? * Here too we should make sure that i is less than 32 */ static inline void qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) { unsigned int i = (grp->S - roundedS) >> grp->slot_shift; grp->full_slots <<= i; grp->front = (grp->front - i) % QFQ_MAX_SLOTS; } static inline void qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) { bitmap ineligible; ineligible = q->bitmaps[IR] | q->bitmaps[IB]; if (ineligible) { if (!q->bitmaps[ER]) { struct qfq_group *grp; grp = qfq_ffs(q, ineligible); if (qfq_gt(grp->S, q->V)) q->V = grp->S; } qfq_make_eligible(q, old_V); } } /* * Updates the class, returns true if also the group needs to be updated. */ static inline int qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, struct qfq_class *cl) { cl->S = cl->F; if (cl->_q.mq.head == NULL) { qfq_front_slot_remove(grp); } else { unsigned int len; uint64_t roundedS; len = cl->_q.mq.head->m_pkthdr.len; cl->F = cl->S + (uint64_t)len * cl->inv_w; roundedS = qfq_round_down(cl->S, grp->slot_shift); if (roundedS == grp->S) return 0; qfq_front_slot_remove(grp); qfq_slot_insert(grp, cl, roundedS); } return 1; } static struct mbuf * qfq_dequeue(struct dn_sch_inst *si) { struct qfq_sched *q = (struct qfq_sched *)(si + 1); struct qfq_group *grp; struct qfq_class *cl; struct mbuf *m; uint64_t old_V; NO(q->loops++;) if (!q->bitmaps[ER]) { NO(if (q->queued) dump_sched(q, "start dequeue");) return NULL; } grp = qfq_ffs(q, q->bitmaps[ER]); cl = grp->slots[grp->front]; /* extract from the first bucket in the bucket list */ m = dn_dequeue(&cl->_q); if (!m) { D("BUG/* non-workconserving leaf */"); return NULL; } NO(q->queued--;) old_V = q->V; q->V += (uint64_t)m->m_pkthdr.len * IWSUM; ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); if (qfq_update_class(q, grp, cl)) { uint64_t old_F = grp->F; cl = qfq_slot_scan(grp); if (!cl) { /* group gone, remove from ER */ __clear_bit(grp->index, &q->bitmaps[ER]); // grp->S = grp->F + 1; // XXX debugging only } else { uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); unsigned int s; if (grp->S == roundedS) goto skip_unblock; grp->S = roundedS; grp->F = roundedS + (2ULL << grp->slot_shift); /* remove from ER and put in the new set */ __clear_bit(grp->index, &q->bitmaps[ER]); s = qfq_calc_state(q, grp); __set_bit(grp->index, &q->bitmaps[s]); } /* we need to unblock even if the group has gone away */ qfq_unblock_groups(q, grp->index, old_F); } skip_unblock: qfq_update_eligible(q, old_V); NO(if (!q->bitmaps[ER] && q->queued) dump_sched(q, "end dequeue");) return m; } /* * Assign a reasonable start time for a new flow k in group i. * Admissible values for \hat(F) are multiples of \sigma_i * no greater than V+\sigma_i . Larger values mean that * we had a wraparound so we consider the timestamp to be stale. * * If F is not stale and F >= V then we set S = F. * Otherwise we should assign S = V, but this may violate * the ordering in ER. So, if we have groups in ER, set S to * the F_j of the first group j which would be blocking us. * We are guaranteed not to move S backward because * otherwise our group i would still be blocked. */ static inline void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) { unsigned long mask; uint32_t limit, roundedF; int slot_shift = cl->grp->slot_shift; roundedF = qfq_round_down(cl->F, slot_shift); limit = qfq_round_down(q->V, slot_shift) + (1UL << slot_shift); if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { /* timestamp was stale */ mask = mask_from(q->bitmaps[ER], cl->grp->index); if (mask) { struct qfq_group *next = qfq_ffs(q, mask); if (qfq_gt(roundedF, next->F)) { cl->S = next->F; return; } } cl->S = q->V; } else { /* timestamp is not stale */ cl->S = cl->F; } } static int qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) { struct qfq_sched *q = (struct qfq_sched *)(si + 1); struct qfq_group *grp; struct qfq_class *cl = (struct qfq_class *)_q; uint64_t roundedS; int s; NO(q->loops++;) DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, _q, cl->inv_w, cl->grp->index); /* XXX verify that the packet obeys the parameters */ if (m != _q->mq.head) { if (dn_enqueue(_q, m, 0)) /* packet was dropped */ return 1; NO(q->queued++;) if (m != _q->mq.head) return 0; } /* If reach this point, queue q was idle */ grp = cl->grp; qfq_update_start(q, cl); /* adjust start time */ /* compute new finish time and rounded start. */ cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; roundedS = qfq_round_down(cl->S, grp->slot_shift); /* * insert cl in the correct bucket. * If cl->S >= grp->S we don't need to adjust the * bucket list and simply go to the insertion phase. * Otherwise grp->S is decreasing, we must make room * in the bucket list, and also recompute the group state. * Finally, if there were no flows in this group and nobody * was in ER make sure to adjust V. */ if (grp->full_slots) { if (!qfq_gt(grp->S, cl->S)) goto skip_update; /* create a slot for this cl->S */ qfq_slot_rotate(q, grp, roundedS); /* group was surely ineligible, remove */ __clear_bit(grp->index, &q->bitmaps[IR]); __clear_bit(grp->index, &q->bitmaps[IB]); } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) q->V = roundedS; grp->S = roundedS; grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i s = qfq_calc_state(q, grp); __set_bit(grp->index, &q->bitmaps[s]); ND("new state %d 0x%x", s, q->bitmaps[s]); ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); skip_update: qfq_slot_insert(grp, cl, roundedS); return 0; } #if 0 static inline void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, struct qfq_class *cl, struct qfq_class **pprev) { unsigned int i, offset; uint64_t roundedS; roundedS = qfq_round_down(cl->S, grp->slot_shift); offset = (roundedS - grp->S) >> grp->slot_shift; i = (grp->front + offset) % QFQ_MAX_SLOTS; #ifdef notyet if (!pprev) { pprev = &grp->slots[i]; while (*pprev && *pprev != cl) pprev = &(*pprev)->next; } #endif *pprev = cl->next; if (!grp->slots[i]) __clear_bit(offset, &grp->full_slots); } /* * called to forcibly destroy a queue. * If the queue is not in the front bucket, or if it has * other queues in the front bucket, we can simply remove * the queue with no other side effects. * Otherwise we must propagate the event up. * XXX description to be completed. */ static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, struct qfq_class **pprev) { struct qfq_group *grp = &q->groups[cl->index]; unsigned long mask; uint64_t roundedS; int s; cl->F = cl->S; // not needed if the class goes away. qfq_slot_remove(q, grp, cl, pprev); if (!grp->full_slots) { /* nothing left in the group, remove from all sets. * Do ER last because if we were blocking other groups * we must unblock them. */ __clear_bit(grp->index, &q->bitmaps[IR]); __clear_bit(grp->index, &q->bitmaps[EB]); __clear_bit(grp->index, &q->bitmaps[IB]); if (test_bit(grp->index, &q->bitmaps[ER]) && !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); if (mask) mask = ~((1UL << __fls(mask)) - 1); else mask = ~0UL; qfq_move_groups(q, mask, EB, ER); qfq_move_groups(q, mask, IB, IR); } __clear_bit(grp->index, &q->bitmaps[ER]); } else if (!grp->slots[grp->front]) { cl = qfq_slot_scan(grp); roundedS = qfq_round_down(cl->S, grp->slot_shift); if (grp->S != roundedS) { __clear_bit(grp->index, &q->bitmaps[ER]); __clear_bit(grp->index, &q->bitmaps[IR]); __clear_bit(grp->index, &q->bitmaps[EB]); __clear_bit(grp->index, &q->bitmaps[IB]); grp->S = roundedS; grp->F = roundedS + (2ULL << grp->slot_shift); s = qfq_calc_state(q, grp); __set_bit(grp->index, &q->bitmaps[s]); } } qfq_update_eligible(q, q->V); } #endif static int qfq_new_fsk(struct dn_fsk *f) { ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); return 0; } /* * initialize a new scheduler instance */ static int qfq_new_sched(struct dn_sch_inst *si) { struct qfq_sched *q = (struct qfq_sched *)(si + 1); struct qfq_group *grp; int i; for (i = 0; i <= QFQ_MAX_INDEX; i++) { grp = &q->groups[i]; grp->index = i; grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - (QFQ_MAX_INDEX - i); } return 0; } /* * QFQ scheduler descriptor */ static struct dn_alg qfq_desc = { _SI( .type = ) DN_SCHED_QFQ, _SI( .name = ) "QFQ", _SI( .flags = ) DN_MULTIQUEUE, _SI( .schk_datalen = ) 0, _SI( .si_datalen = ) sizeof(struct qfq_sched), _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), _SI( .enqueue = ) qfq_enqueue, _SI( .dequeue = ) qfq_dequeue, _SI( .config = ) NULL, _SI( .destroy = ) NULL, _SI( .new_sched = ) qfq_new_sched, _SI( .free_sched = ) NULL, _SI( .new_fsk = ) qfq_new_fsk, _SI( .free_fsk = ) NULL, _SI( .new_queue = ) qfq_new_queue, _SI( .free_queue = ) qfq_free_queue, }; DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); #ifdef QFQ_DEBUG static void dump_groups(struct qfq_sched *q, uint32_t mask) { int i, j; for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { struct qfq_group *g = &q->groups[i]; if (0 == (mask & (1<<i))) continue; for (j = 0; j < QFQ_MAX_SLOTS; j++) { if (g->slots[j]) D(" bucket %d %p", j, g->slots[j]); } D("full_slots 0x%x", g->full_slots); D(" %2d S 0x%20llx F 0x%llx %c", i, g->S, g->F, mask & (1<<i) ? '1' : '0'); } } static void dump_sched(struct qfq_sched *q, const char *msg) { D("--- in %s: ---", msg); ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V); D(" ER 0x%08x", q->bitmaps[ER]); D(" EB 0x%08x", q->bitmaps[EB]); D(" IR 0x%08x", q->bitmaps[IR]); D(" IB 0x%08x", q->bitmaps[IB]); dump_groups(q, 0xffffffff); }; #endif /* QFQ_DEBUG */