Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/driver/@/dev/isp/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/driver/@/dev/isp/ispvar.h |
/* $FreeBSD: release/9.1.0/sys/dev/isp/ispvar.h 237208 2012-06-17 21:28:11Z mjacob $ */ /*- * Copyright (c) 1997-2009 by Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Soft Definitions for for Qlogic ISP SCSI adapters. */ #ifndef _ISPVAR_H #define _ISPVAR_H #if defined(__NetBSD__) || defined(__OpenBSD__) #include <dev/ic/isp_stds.h> #include <dev/ic/ispmbox.h> #endif #ifdef __FreeBSD__ #include <dev/isp/isp_stds.h> #include <dev/isp/ispmbox.h> #endif #ifdef __linux__ #include "isp_stds.h" #include "ispmbox.h" #endif #ifdef __svr4__ #include "isp_stds.h" #include "ispmbox.h" #endif #define ISP_CORE_VERSION_MAJOR 7 #define ISP_CORE_VERSION_MINOR 0 /* * Vector for bus specific code to provide specific services. */ typedef struct ispsoftc ispsoftc_t; struct ispmdvec { int (*dv_rd_isr) (ispsoftc_t *, uint32_t *, uint16_t *, uint16_t *); uint32_t (*dv_rd_reg) (ispsoftc_t *, int); void (*dv_wr_reg) (ispsoftc_t *, int, uint32_t); int (*dv_mbxdma) (ispsoftc_t *); int (*dv_dmaset) (ispsoftc_t *, XS_T *, void *); void (*dv_dmaclr) (ispsoftc_t *, XS_T *, uint32_t); void (*dv_reset0) (ispsoftc_t *); void (*dv_reset1) (ispsoftc_t *); void (*dv_dregs) (ispsoftc_t *, const char *); const void * dv_ispfw; /* ptr to f/w */ uint16_t dv_conf1; uint16_t dv_clock; /* clock frequency */ }; /* * Overall parameters */ #define MAX_TARGETS 16 #ifndef MAX_FC_TARG #define MAX_FC_TARG 512 #endif #define ISP_MAX_TARGETS(isp) (IS_FC(isp)? MAX_FC_TARG : MAX_TARGETS) #define ISP_MAX_LUNS(isp) (isp)->isp_maxluns /* * Macros to access ISP registers through bus specific layers- * mostly wrappers to vector through the mdvec structure. */ #define ISP_READ_ISR(isp, isrp, semap, mbox0p) \ (*(isp)->isp_mdvec->dv_rd_isr)(isp, isrp, semap, mbox0p) #define ISP_READ(isp, reg) \ (*(isp)->isp_mdvec->dv_rd_reg)((isp), (reg)) #define ISP_WRITE(isp, reg, val) \ (*(isp)->isp_mdvec->dv_wr_reg)((isp), (reg), (val)) #define ISP_MBOXDMASETUP(isp) \ (*(isp)->isp_mdvec->dv_mbxdma)((isp)) #define ISP_DMASETUP(isp, xs, req) \ (*(isp)->isp_mdvec->dv_dmaset)((isp), (xs), (req)) #define ISP_DMAFREE(isp, xs, hndl) \ if ((isp)->isp_mdvec->dv_dmaclr) \ (*(isp)->isp_mdvec->dv_dmaclr)((isp), (xs), (hndl)) #define ISP_RESET0(isp) \ if ((isp)->isp_mdvec->dv_reset0) (*(isp)->isp_mdvec->dv_reset0)((isp)) #define ISP_RESET1(isp) \ if ((isp)->isp_mdvec->dv_reset1) (*(isp)->isp_mdvec->dv_reset1)((isp)) #define ISP_DUMPREGS(isp, m) \ if ((isp)->isp_mdvec->dv_dregs) (*(isp)->isp_mdvec->dv_dregs)((isp),(m)) #define ISP_SETBITS(isp, reg, val) \ (*(isp)->isp_mdvec->dv_wr_reg)((isp), (reg), ISP_READ((isp), (reg)) | (val)) #define ISP_CLRBITS(isp, reg, val) \ (*(isp)->isp_mdvec->dv_wr_reg)((isp), (reg), ISP_READ((isp), (reg)) & ~(val)) /* * The MEMORYBARRIER macro is defined per platform (to provide synchronization * on Request and Response Queues, Scratch DMA areas, and Registers) * * Defined Memory Barrier Synchronization Types */ #define SYNC_REQUEST 0 /* request queue synchronization */ #define SYNC_RESULT 1 /* result queue synchronization */ #define SYNC_SFORDEV 2 /* scratch, sync for ISP */ #define SYNC_SFORCPU 3 /* scratch, sync for CPU */ #define SYNC_REG 4 /* for registers */ #define SYNC_ATIOQ 5 /* atio result queue (24xx) */ /* * Request/Response Queue defines and macros. * The maximum is defined per platform (and can be based on board type). */ /* This is the size of a queue entry (request and response) */ #define QENTRY_LEN 64 /* Both request and result queue length must be a power of two */ #define RQUEST_QUEUE_LEN(x) MAXISPREQUEST(x) #ifdef ISP_TARGET_MODE #define RESULT_QUEUE_LEN(x) MAXISPREQUEST(x) #else #define RESULT_QUEUE_LEN(x) \ (((MAXISPREQUEST(x) >> 2) < 64)? 64 : MAXISPREQUEST(x) >> 2) #endif #define ISP_QUEUE_ENTRY(q, idx) (((uint8_t *)q) + ((idx) * QENTRY_LEN)) #define ISP_QUEUE_SIZE(n) ((n) * QENTRY_LEN) #define ISP_NXT_QENTRY(idx, qlen) (((idx) + 1) & ((qlen)-1)) #define ISP_QFREE(in, out, qlen) \ ((in == out)? (qlen - 1) : ((in > out)? \ ((qlen - 1) - (in - out)) : (out - in - 1))) #define ISP_QAVAIL(isp) \ ISP_QFREE(isp->isp_reqidx, isp->isp_reqodx, RQUEST_QUEUE_LEN(isp)) #define ISP_ADD_REQUEST(isp, nxti) \ MEMORYBARRIER(isp, SYNC_REQUEST, isp->isp_reqidx, QENTRY_LEN, -1); \ ISP_WRITE(isp, isp->isp_rqstinrp, nxti); \ isp->isp_reqidx = nxti #define ISP_SYNC_REQUEST(isp) \ MEMORYBARRIER(isp, SYNC_REQUEST, isp->isp_reqidx, QENTRY_LEN, -1); \ isp->isp_reqidx = ISP_NXT_QENTRY(isp->isp_reqidx, RQUEST_QUEUE_LEN(isp)); \ ISP_WRITE(isp, isp->isp_rqstinrp, isp->isp_reqidx) /* * SCSI Specific Host Adapter Parameters- per bus, per target */ typedef struct { uint32_t : 8, update : 1, sendmarker : 1, role : 2, isp_req_ack_active_neg : 1, isp_data_line_active_neg: 1, isp_cmd_dma_burst_enable: 1, isp_data_dma_burst_enabl: 1, isp_fifo_threshold : 3, isp_ptisp : 1, isp_ultramode : 1, isp_diffmode : 1, isp_lvdmode : 1, isp_fast_mttr : 1, /* fast sram */ isp_initiator_id : 4, isp_async_data_setup : 4; uint16_t isp_selection_timeout; uint16_t isp_max_queue_depth; uint8_t isp_tag_aging; uint8_t isp_bus_reset_delay; uint8_t isp_retry_count; uint8_t isp_retry_delay; struct { uint32_t exc_throttle : 8, : 1, dev_enable : 1, /* ignored */ dev_update : 1, dev_refresh : 1, actv_offset : 4, goal_offset : 4, nvrm_offset : 4; uint8_t actv_period; /* current sync period */ uint8_t goal_period; /* goal sync period */ uint8_t nvrm_period; /* nvram sync period */ uint16_t actv_flags; /* current device flags */ uint16_t goal_flags; /* goal device flags */ uint16_t nvrm_flags; /* nvram device flags */ } isp_devparam[MAX_TARGETS]; } sdparam; /* * Device Flags */ #define DPARM_DISC 0x8000 #define DPARM_PARITY 0x4000 #define DPARM_WIDE 0x2000 #define DPARM_SYNC 0x1000 #define DPARM_TQING 0x0800 #define DPARM_ARQ 0x0400 #define DPARM_QFRZ 0x0200 #define DPARM_RENEG 0x0100 #define DPARM_NARROW 0x0080 #define DPARM_ASYNC 0x0040 #define DPARM_PPR 0x0020 #define DPARM_DEFAULT (0xFF00 & ~DPARM_QFRZ) #define DPARM_SAFE_DFLT (DPARM_DEFAULT & ~(DPARM_WIDE|DPARM_SYNC|DPARM_TQING)) /* technically, not really correct, as they need to be rated based upon clock */ #define ISP_80M_SYNCPARMS 0x0c09 #define ISP_40M_SYNCPARMS 0x0c0a #define ISP_20M_SYNCPARMS 0x0c0c #define ISP_20M_SYNCPARMS_1040 0x080c #define ISP_10M_SYNCPARMS 0x0c19 #define ISP_08M_SYNCPARMS 0x0c25 #define ISP_05M_SYNCPARMS 0x0c32 #define ISP_04M_SYNCPARMS 0x0c41 /* * Fibre Channel Specifics */ /* These are for non-2K Login Firmware cards */ #define FL_ID 0x7e /* FL_Port Special ID */ #define SNS_ID 0x80 /* SNS Server Special ID */ #define NPH_MAX 0xfe /* Use this handle for the base for multi-id firmware SNS logins */ #define NPH_SNS_HDLBASE 0x400 /* These are for 2K Login Firmware cards */ #define NPH_RESERVED 0x7F0 /* begin of reserved N-port handles */ #define NPH_MGT_ID 0x7FA /* Management Server Special ID */ #define NPH_SNS_ID 0x7FC /* SNS Server Special ID */ #define NPH_FABRIC_CTLR 0x7FD /* Fabric Controller (0xFFFFFD) */ #define NPH_FL_ID 0x7FE /* F Port Special ID (0xFFFFFE) */ #define NPH_IP_BCST 0x7ff /* IP Broadcast Special ID (0xFFFFFF) */ #define NPH_MAX_2K 0x800 /* * "Unassigned" handle to be used internally */ #define NIL_HANDLE 0xffff /* * Limit for devices on an arbitrated loop. */ #define LOCAL_LOOP_LIM 126 /* * Limit for (2K login) N-port handle amounts */ #define MAX_NPORT_HANDLE 2048 /* * Special Constants */ #define INI_NONE ((uint64_t) 0) #define ISP_NOCHAN 0xff /* * Special Port IDs */ #define MANAGEMENT_PORT_ID 0xFFFFFA #define SNS_PORT_ID 0xFFFFFC #define FABRIC_PORT_ID 0xFFFFFE #define PORT_ANY 0xFFFFFF #define PORT_NONE 0 #define DOMAIN_CONTROLLER_BASE 0xFFFC00 #define DOMAIN_CONTROLLER_END 0xFFFCFF /* * Command Handles * * Most QLogic initiator or target have 32 bit handles associated with them. * We want to have a quick way to index back and forth between a local SCSI * command context and what the firmware is passing back to us. We also * want to avoid working on stale information. This structure handles both * at the expense of some local memory. * * The handle is architected thusly: * * 0 means "free handle" * bits 0..12 index commands * bits 13..15 bits index usage * bits 16..31 contain a rolling sequence * * */ typedef struct { void * cmd; /* associated command context */ uint32_t handle; /* handle associated with this command */ } isp_hdl_t; #define ISP_HANDLE_FREE 0x00000000 #define ISP_HANDLE_CMD_MASK 0x00001fff #define ISP_HANDLE_USAGE_MASK 0x0000e000 #define ISP_HANDLE_USAGE_SHIFT 13 #define ISP_H2HT(hdl) ((hdl & ISP_HANDLE_USAGE_MASK) >> ISP_HANDLE_USAGE_SHIFT) # define ISP_HANDLE_NONE 0 # define ISP_HANDLE_INITIATOR 1 # define ISP_HANDLE_TARGET 2 #define ISP_HANDLE_SEQ_MASK 0xffff0000 #define ISP_HANDLE_SEQ_SHIFT 16 #define ISP_H2SEQ(hdl) ((hdl & ISP_HANDLE_SEQ_MASK) >> ISP_HANDLE_SEQ_SHIFT) #define ISP_VALID_INI_HANDLE(c, hdl) \ (ISP_H2HT(hdl) == ISP_HANDLE_INITIATOR && (hdl & ISP_HANDLE_CMD_MASK) < (c)->isp_maxcmds && \ ISP_H2SEQ(hdl) == ISP_H2SEQ((c)->isp_xflist[hdl & ISP_HANDLE_CMD_MASK].handle)) #ifdef ISP_TARGET_MODE #define ISP_VALID_TGT_HANDLE(c, hdl) \ (ISP_H2HT(hdl) == ISP_HANDLE_TARGET && (hdl & ISP_HANDLE_CMD_MASK) < (c)->isp_maxcmds && \ ISP_H2SEQ(hdl) == ISP_H2SEQ((c)->isp_tgtlist[hdl & ISP_HANDLE_CMD_MASK].handle)) #define ISP_VALID_HANDLE(c, hdl) \ (ISP_VALID_INI_HANDLE((c), hdl) || ISP_VALID_TGT_HANDLE((c), hdl)) #else #define ISP_VALID_HANDLE ISP_VALID_INI_HANDLE #endif #define ISP_BAD_HANDLE_INDEX 0xffffffff /* * FC Port Database entry. * * It has a handle that the f/w uses to address commands to a device. * This handle's value may be assigned by the firmware (e.g., for local loop * devices) or by the driver (e.g., for fabric devices). * * It has a state. If the state if VALID, that means that we've logged into * the device. We also *may* have a initiator map index entry. This is a value * from 0..MAX_FC_TARG that is used to index into the isp_dev_map array. If * the value therein is non-zero, then that value minus one is used to index * into the Port Database to find the handle for forming commands. There is * back-index minus one value within to Port Database entry that tells us * which entry in isp_dev_map points to us (to avoid searching). * * Local loop devices the firmware automatically performs PLOGI on for us * (which is why that handle is imposed upon us). Fabric devices we assign * a handle to and perform the PLOGI on. * * When a PORT DATABASE CHANGED asynchronous event occurs, we mark all VALID * entries as PROBATIONAL. This allows us, if policy says to, just keep track * of devices whose handles change but are otherwise the same device (and * thus keep 'target' constant). * * In any case, we search all possible local loop handles. For each one that * has a port database entity returned, we search for any PROBATIONAL entry * that matches it and update as appropriate. Otherwise, as a new entry, we * find room for it in the Port Database. We *try* and use the handle as the * index to put it into the Database, but that's just an optimization. We mark * the entry VALID and make sure that the target index is updated and correct. * * When we get done searching the local loop, we then search similarily for * a list of devices we've gotten from the fabric name controller (if we're * on a fabric). VALID marking is also done similarily. * * When all of this is done, we can march through the database and clean up * any entry that is still PROBATIONAL (these represent devices which have * departed). Then we're done and can resume normal operations. * * Negative invariants that we try and test for are: * * + There can never be two non-NIL entries with the same { Port, Node } WWN * duples. * * + There can never be two non-NIL entries with the same handle. * * + There can never be two non-NIL entries which have the same dev_map_idx * value. */ typedef struct { /* * This is the handle that the firmware needs in order for us to * send commands to the device. For pre-24XX cards, this would be * the 'loopid'. */ uint16_t handle; /* * The dev_map_idx, if nonzero, is the system virtual target ID (+1) * as a cross-reference with the isp_dev_map. * * A device is 'autologin' if the firmware automatically logs into * it (re-logins as needed). Basically, local private loop devices. * * The state is the current state of this entry. * * Role is Initiator, Target, Both * * Portid is obvious, as are node && port WWNs. The new_role and * new_portid is for when we are pending a change. * * The 'target_mode' tag means that this entry arrived via a * target mode command and is immune from normal flushing rules. * You should also never see anything with an initiator role * with this set. */ uint16_t dev_map_idx : 12, autologin : 1, /* F/W does PLOGI/PLOGO */ state : 3; uint32_t reserved : 5, target_mode : 1, roles : 2, portid : 24; uint32_t dirty : 1, /* commands have been run */ new_reserved : 5, new_roles : 2, new_portid : 24; uint64_t node_wwn; uint64_t port_wwn; uint32_t gone_timer; } fcportdb_t; #define FC_PORTDB_STATE_NIL 0 #define FC_PORTDB_STATE_PROBATIONAL 1 #define FC_PORTDB_STATE_DEAD 2 #define FC_PORTDB_STATE_CHANGED 3 #define FC_PORTDB_STATE_NEW 4 #define FC_PORTDB_STATE_PENDING_VALID 5 #define FC_PORTDB_STATE_ZOMBIE 6 #define FC_PORTDB_STATE_VALID 7 /* * FC card specific information * * This structure is replicated across multiple channels for multi-id * capapble chipsets, with some entities different on a per-channel basis. */ typedef struct { uint32_t link_active : 1, npiv_fabric : 1, inorder : 1, sendmarker : 1, role : 2, isp_gbspeed : 4, isp_loopstate : 4, /* Current Loop State */ isp_fwstate : 4, /* ISP F/W state */ isp_topo : 3, /* Connection Type */ loop_seen_once : 1; uint32_t : 8, isp_portid : 24; /* S_ID */ uint16_t isp_fwoptions; uint16_t isp_xfwoptions; uint16_t isp_zfwoptions; uint16_t isp_loopid; /* hard loop id */ uint16_t isp_sns_hdl; /* N-port handle for SNS */ uint16_t isp_lasthdl; /* only valid for channel 0 */ uint16_t isp_maxalloc; uint8_t isp_retry_delay; uint8_t isp_retry_count; /* * Current active WWNN/WWPN */ uint64_t isp_wwnn; uint64_t isp_wwpn; /* * NVRAM WWNN/WWPN */ uint64_t isp_wwnn_nvram; uint64_t isp_wwpn_nvram; /* * Our Port Data Base */ fcportdb_t portdb[MAX_FC_TARG]; /* * This maps system virtual 'target' id to a portdb entry. * * The mapping function is to take any non-zero entry and * subtract one to get the portdb index. This means that * entries which are zero are unmapped (i.e., don't exist). */ uint16_t isp_dev_map[MAX_FC_TARG]; #ifdef ISP_TARGET_MODE /* * This maps N-Port Handle to portdb entry so we * don't have to search for every incoming command. * * The mapping function is to take any non-zero entry and * subtract one to get the portdb index. This means that * entries which are zero are unmapped (i.e., don't exist). */ uint16_t isp_tgt_map[MAX_NPORT_HANDLE]; #endif /* * Scratch DMA mapped in area to fetch Port Database stuff, etc. */ void * isp_scratch; XS_DMA_ADDR_T isp_scdma; } fcparam; #define FW_CONFIG_WAIT 0 #define FW_WAIT_AL_PA 1 #define FW_WAIT_LOGIN 2 #define FW_READY 3 #define FW_LOSS_OF_SYNC 4 #define FW_ERROR 5 #define FW_REINIT 6 #define FW_NON_PART 7 #define LOOP_NIL 0 #define LOOP_LIP_RCVD 1 #define LOOP_PDB_RCVD 2 #define LOOP_SCANNING_LOOP 3 #define LOOP_LSCAN_DONE 4 #define LOOP_SCANNING_FABRIC 5 #define LOOP_FSCAN_DONE 6 #define LOOP_SYNCING_PDB 7 #define LOOP_READY 8 #define TOPO_NL_PORT 0 #define TOPO_FL_PORT 1 #define TOPO_N_PORT 2 #define TOPO_F_PORT 3 #define TOPO_PTP_STUB 4 /* * Soft Structure per host adapter */ struct ispsoftc { /* * Platform (OS) specific data */ struct isposinfo isp_osinfo; /* * Pointer to bus specific functions and data */ struct ispmdvec * isp_mdvec; /* * (Mostly) nonvolatile state. Board specific parameters * may contain some volatile state (e.g., current loop state). */ void * isp_param; /* type specific */ uint16_t isp_fwrev[3]; /* Loaded F/W revision */ uint16_t isp_maxcmds; /* max possible I/O cmds */ uint8_t isp_type; /* HBA Chip Type */ uint8_t isp_revision; /* HBA Chip H/W Revision */ uint32_t isp_maxluns; /* maximum luns supported */ uint32_t isp_clock : 8, /* input clock */ : 4, isp_port : 1, /* 23XX/24XX only */ isp_open : 1, /* opened (ioctl) */ isp_bustype : 1, /* SBus or PCI */ isp_loaded_fw : 1, /* loaded firmware */ isp_dblev : 16; /* debug log mask */ uint16_t isp_fwattr; /* firmware attributes */ uint16_t isp_nchan; /* number of channels */ uint32_t isp_confopts; /* config options */ uint32_t isp_rqstinrp; /* register for REQINP */ uint32_t isp_rqstoutrp; /* register for REQOUTP */ uint32_t isp_respinrp; /* register for RESINP */ uint32_t isp_respoutrp; /* register for RESOUTP */ /* * Instrumentation */ uint64_t isp_intcnt; /* total int count */ uint64_t isp_intbogus; /* spurious int count */ uint64_t isp_intmboxc; /* mbox completions */ uint64_t isp_intoasync; /* other async */ uint64_t isp_rsltccmplt; /* CMDs on result q */ uint64_t isp_fphccmplt; /* CMDs via fastpost */ uint16_t isp_rscchiwater; uint16_t isp_fpcchiwater; NANOTIME_T isp_init_time; /* time were last initialized */ /* * Volatile state */ volatile uint32_t : 8, : 2, isp_dead : 1, : 1, isp_mboxbsy : 1, /* mailbox command active */ isp_state : 3, isp_nactive : 16; /* how many commands active */ volatile mbreg_t isp_curmbx; /* currently active mailbox command */ volatile uint32_t isp_reqodx; /* index of last ISP pickup */ volatile uint32_t isp_reqidx; /* index of next request */ volatile uint32_t isp_residx; /* index of next result */ volatile uint32_t isp_resodx; /* index of next result */ volatile uint32_t isp_obits; /* mailbox command output */ volatile uint32_t isp_serno; /* rolling serial number */ volatile uint16_t isp_mboxtmp[MAILBOX_STORAGE]; volatile uint16_t isp_lastmbxcmd; /* last mbox command sent */ volatile uint16_t isp_mbxwrk0; volatile uint16_t isp_mbxwrk1; volatile uint16_t isp_mbxwrk2; volatile uint16_t isp_mbxwrk8; volatile uint16_t isp_seqno; /* running sequence number */ void * isp_mbxworkp; /* * Active commands are stored here, indexed by handle functions. */ isp_hdl_t *isp_xflist; isp_hdl_t *isp_xffree; #ifdef ISP_TARGET_MODE /* * Active target commands are stored here, indexed by handle functions. */ isp_hdl_t *isp_tgtlist; isp_hdl_t *isp_tgtfree; #endif /* * request/result queue pointers and DMA handles for them. */ void * isp_rquest; void * isp_result; XS_DMA_ADDR_T isp_rquest_dma; XS_DMA_ADDR_T isp_result_dma; #ifdef ISP_TARGET_MODE /* for 24XX only */ void * isp_atioq; XS_DMA_ADDR_T isp_atioq_dma; #endif }; #define SDPARAM(isp, chan) (&((sdparam *)(isp)->isp_param)[(chan)]) #define FCPARAM(isp, chan) (&((fcparam *)(isp)->isp_param)[(chan)]) #define ISP_SET_SENDMARKER(isp, chan, val) \ if (IS_FC(isp)) { \ FCPARAM(isp, chan)->sendmarker = val; \ } else { \ SDPARAM(isp, chan)->sendmarker = val; \ } #define ISP_TST_SENDMARKER(isp, chan) \ (IS_FC(isp)? \ FCPARAM(isp, chan)->sendmarker != 0 : \ SDPARAM(isp, chan)->sendmarker != 0) /* * ISP Driver Run States */ #define ISP_NILSTATE 0 #define ISP_CRASHED 1 #define ISP_RESETSTATE 2 #define ISP_INITSTATE 3 #define ISP_RUNSTATE 4 /* * ISP Configuration Options */ #define ISP_CFG_NORELOAD 0x80 /* don't download f/w */ #define ISP_CFG_NONVRAM 0x40 /* ignore NVRAM */ #define ISP_CFG_TWOGB 0x20 /* force 2GB connection (23XX only) */ #define ISP_CFG_ONEGB 0x10 /* force 1GB connection (23XX only) */ #define ISP_CFG_FULL_DUPLEX 0x01 /* Full Duplex (Fibre Channel only) */ #define ISP_CFG_PORT_PREF 0x0C /* Mask for Port Prefs (2200 only) */ #define ISP_CFG_LPORT 0x00 /* prefer {N/F}L-Port connection */ #define ISP_CFG_NPORT 0x04 /* prefer {N/F}-Port connection */ #define ISP_CFG_NPORT_ONLY 0x08 /* insist on {N/F}-Port connection */ #define ISP_CFG_LPORT_ONLY 0x0C /* insist on {N/F}L-Port connection */ #define ISP_CFG_OWNFSZ 0x400 /* override NVRAM frame size */ #define ISP_CFG_OWNLOOPID 0x800 /* override NVRAM loopid */ #define ISP_CFG_OWNEXCTHROTTLE 0x1000 /* override NVRAM execution throttle */ #define ISP_CFG_FOURGB 0x2000 /* force 4GB connection (24XX only) */ /* * For each channel, the outer layers should know what role that channel * will take: ISP_ROLE_NONE, ISP_ROLE_INITIATOR, ISP_ROLE_TARGET, * ISP_ROLE_BOTH. * * If you set ISP_ROLE_NONE, the cards will be reset, new firmware loaded, * NVRAM read, and defaults set, but any further initialization (e.g. * INITIALIZE CONTROL BLOCK commands for 2X00 cards) won't be done. * * If INITIATOR MODE isn't set, attempts to run commands will be stopped * at isp_start and completed with the equivalent of SELECTION TIMEOUT. * * If TARGET MODE is set, it doesn't mean that the rest of target mode support * needs to be enabled, or will even work. What happens with the 2X00 cards * here is that if you have enabled it with TARGET MODE as part of the ICB * options, but you haven't given the f/w any ram resources for ATIOs or * Immediate Notifies, the f/w just handles what it can and you never see * anything. Basically, it sends a single byte of data (the first byte, * which you can set as part of the INITIALIZE CONTROL BLOCK command) for * INQUIRY, and sends back QUEUE FULL status for any other command. * */ #define ISP_ROLE_NONE 0x0 #define ISP_ROLE_TARGET 0x1 #define ISP_ROLE_INITIATOR 0x2 #define ISP_ROLE_BOTH (ISP_ROLE_TARGET|ISP_ROLE_INITIATOR) #define ISP_ROLE_EITHER ISP_ROLE_BOTH #ifndef ISP_DEFAULT_ROLES /* * Counterintuitively, we prefer to default to role 'none' * if we are enable target mode support. This gives us the * maximum flexibility as to which port will do what. */ #ifdef ISP_TARGET_MODE #define ISP_DEFAULT_ROLES ISP_ROLE_NONE #else #define ISP_DEFAULT_ROLES ISP_ROLE_INITIATOR #endif #endif /* * Firmware related defines */ #define ISP_CODE_ORG 0x1000 /* default f/w code start */ #define ISP_CODE_ORG_2300 0x0800 /* ..except for 2300s */ #define ISP_CODE_ORG_2400 0x100000 /* ..and 2400s */ #define ISP_FW_REV(maj, min, mic) ((maj << 24) | (min << 16) | mic) #define ISP_FW_MAJOR(code) ((code >> 24) & 0xff) #define ISP_FW_MINOR(code) ((code >> 16) & 0xff) #define ISP_FW_MICRO(code) ((code >> 8) & 0xff) #define ISP_FW_REVX(xp) ((xp[0]<<24) | (xp[1] << 16) | xp[2]) #define ISP_FW_MAJORX(xp) (xp[0]) #define ISP_FW_MINORX(xp) (xp[1]) #define ISP_FW_MICROX(xp) (xp[2]) #define ISP_FW_NEWER_THAN(i, major, minor, micro) \ (ISP_FW_REVX((i)->isp_fwrev) > ISP_FW_REV(major, minor, micro)) #define ISP_FW_OLDER_THAN(i, major, minor, micro) \ (ISP_FW_REVX((i)->isp_fwrev) < ISP_FW_REV(major, minor, micro)) /* * Bus (implementation) types */ #define ISP_BT_PCI 0 /* PCI Implementations */ #define ISP_BT_SBUS 1 /* SBus Implementations */ /* * If we have not otherwise defined SBus support away make sure * it is defined here such that the code is included as default */ #ifndef ISP_SBUS_SUPPORTED #define ISP_SBUS_SUPPORTED 1 #endif /* * Chip Types */ #define ISP_HA_SCSI 0xf #define ISP_HA_SCSI_UNKNOWN 0x1 #define ISP_HA_SCSI_1020 0x2 #define ISP_HA_SCSI_1020A 0x3 #define ISP_HA_SCSI_1040 0x4 #define ISP_HA_SCSI_1040A 0x5 #define ISP_HA_SCSI_1040B 0x6 #define ISP_HA_SCSI_1040C 0x7 #define ISP_HA_SCSI_1240 0x8 #define ISP_HA_SCSI_1080 0x9 #define ISP_HA_SCSI_1280 0xa #define ISP_HA_SCSI_10160 0xb #define ISP_HA_SCSI_12160 0xc #define ISP_HA_FC 0xf0 #define ISP_HA_FC_2100 0x10 #define ISP_HA_FC_2200 0x20 #define ISP_HA_FC_2300 0x30 #define ISP_HA_FC_2312 0x40 #define ISP_HA_FC_2322 0x50 #define ISP_HA_FC_2400 0x60 #define ISP_HA_FC_2500 0x70 #define IS_SCSI(isp) (isp->isp_type & ISP_HA_SCSI) #define IS_1020(isp) (isp->isp_type < ISP_HA_SCSI_1240) #define IS_1240(isp) (isp->isp_type == ISP_HA_SCSI_1240) #define IS_1080(isp) (isp->isp_type == ISP_HA_SCSI_1080) #define IS_1280(isp) (isp->isp_type == ISP_HA_SCSI_1280) #define IS_10160(isp) (isp->isp_type == ISP_HA_SCSI_10160) #define IS_12160(isp) (isp->isp_type == ISP_HA_SCSI_12160) #define IS_12X0(isp) (IS_1240(isp) || IS_1280(isp)) #define IS_1X160(isp) (IS_10160(isp) || IS_12160(isp)) #define IS_DUALBUS(isp) (IS_12X0(isp) || IS_12160(isp)) #define IS_ULTRA2(isp) (IS_1080(isp) || IS_1280(isp) || IS_1X160(isp)) #define IS_ULTRA3(isp) (IS_1X160(isp)) #define IS_FC(isp) ((isp)->isp_type & ISP_HA_FC) #define IS_2100(isp) ((isp)->isp_type == ISP_HA_FC_2100) #define IS_2200(isp) ((isp)->isp_type == ISP_HA_FC_2200) #define IS_23XX(isp) ((isp)->isp_type >= ISP_HA_FC_2300 && \ (isp)->isp_type < ISP_HA_FC_2400) #define IS_2300(isp) ((isp)->isp_type == ISP_HA_FC_2300) #define IS_2312(isp) ((isp)->isp_type == ISP_HA_FC_2312) #define IS_2322(isp) ((isp)->isp_type == ISP_HA_FC_2322) #define IS_24XX(isp) ((isp)->isp_type >= ISP_HA_FC_2400) #define IS_25XX(isp) ((isp)->isp_type >= ISP_HA_FC_2500) /* * DMA related macros */ #define DMA_WD3(x) (((uint16_t)(((uint64_t)x) >> 48)) & 0xffff) #define DMA_WD2(x) (((uint16_t)(((uint64_t)x) >> 32)) & 0xffff) #define DMA_WD1(x) ((uint16_t)((x) >> 16) & 0xffff) #define DMA_WD0(x) ((uint16_t)((x) & 0xffff)) #define DMA_LO32(x) ((uint32_t) (x)) #define DMA_HI32(x) ((uint32_t)(((uint64_t)x) >> 32)) /* * Core System Function Prototypes */ /* * Reset Hardware. Totally. Assumes that you'll follow this with a call to isp_init. */ void isp_reset(ispsoftc_t *, int); /* * Initialize Hardware to known state */ void isp_init(ispsoftc_t *); /* * Reset the ISP and call completion for any orphaned commands. */ void isp_reinit(ispsoftc_t *, int); /* * Internal Interrupt Service Routine * * The outer layers do the spade work to get the appropriate status register, * semaphore register and first mailbox register (if appropriate). This also * means that most spurious/bogus interrupts not for us can be filtered first. */ void isp_intr(ispsoftc_t *, uint32_t, uint16_t, uint16_t); /* * Command Entry Point- Platform Dependent layers call into this */ int isp_start(XS_T *); /* these values are what isp_start returns */ #define CMD_COMPLETE 101 /* command completed */ #define CMD_EAGAIN 102 /* busy- maybe retry later */ #define CMD_QUEUED 103 /* command has been queued for execution */ #define CMD_RQLATER 104 /* requeue this command later */ /* * Command Completion Point- Core layers call out from this with completed cmds */ void isp_done(XS_T *); /* * Platform Dependent to External to Internal Control Function * * Assumes locks are held on entry. You should note that with many of * these commands locks may be released while this function is called. * * ... ISPCTL_RESET_BUS, int channel); * Reset BUS on this channel * ... ISPCTL_RESET_DEV, int channel, int target); * Reset Device on this channel at this target. * ... ISPCTL_ABORT_CMD, XS_T *xs); * Abort active transaction described by xs. * ... IPCTL_UPDATE_PARAMS); * Update any operating parameters (speed, etc.) * ... ISPCTL_FCLINK_TEST, int channel); * Test FC link status on this channel * ... ISPCTL_SCAN_FABRIC, int channel); * Scan fabric on this channel * ... ISPCTL_SCAN_LOOP, int channel); * Scan local loop on this channel * ... ISPCTL_PDB_SYNC, int channel); * Synchronize port database on this channel * ... ISPCTL_SEND_LIP, int channel); * Send a LIP on this channel * ... ISPCTL_GET_NAMES, int channel, int np, uint64_t *wwnn, uint64_t *wwpn) * Get a WWNN/WWPN for this N-port handle on this channel * ... ISPCTL_RUN_MBOXCMD, mbreg_t *mbp) * Run this mailbox command * ... ISPCTL_GET_PDB, int channel, int nphandle, isp_pdb_t *pdb) * Get PDB on this channel for this N-port handle * ... ISPCTL_PLOGX, isp_plcmd_t *) * Performa a port login/logout * * ISPCTL_PDB_SYNC is somewhat misnamed. It actually is the final step, in * order, of ISPCTL_FCLINK_TEST, ISPCTL_SCAN_FABRIC, and ISPCTL_SCAN_LOOP. * The main purpose of ISPCTL_PDB_SYNC is to complete management of logging * and logging out of fabric devices (if one is on a fabric) and then marking * the 'loop state' as being ready to now be used for sending commands to * devices. Originally fabric name server and local loop scanning were * part of this function. It's now been separated to allow for finer control. */ typedef enum { ISPCTL_RESET_BUS, ISPCTL_RESET_DEV, ISPCTL_ABORT_CMD, ISPCTL_UPDATE_PARAMS, ISPCTL_FCLINK_TEST, ISPCTL_SCAN_FABRIC, ISPCTL_SCAN_LOOP, ISPCTL_PDB_SYNC, ISPCTL_SEND_LIP, ISPCTL_GET_NAMES, ISPCTL_RUN_MBOXCMD, ISPCTL_GET_PDB, ISPCTL_PLOGX } ispctl_t; int isp_control(ispsoftc_t *, ispctl_t, ...); /* * Platform Dependent to Internal to External Control Function */ typedef enum { ISPASYNC_NEW_TGT_PARAMS, /* SPI New Target Parameters */ ISPASYNC_BUS_RESET, /* All Bus Was Reset */ ISPASYNC_LOOP_DOWN, /* FC Loop Down */ ISPASYNC_LOOP_UP, /* FC Loop Up */ ISPASYNC_LIP, /* FC LIP Received */ ISPASYNC_LOOP_RESET, /* FC Loop Reset Received */ ISPASYNC_CHANGE_NOTIFY, /* FC Change Notification */ ISPASYNC_DEV_ARRIVED, /* FC Device Arrived */ ISPASYNC_DEV_CHANGED, /* FC Device Changed */ ISPASYNC_DEV_STAYED, /* FC Device Stayed */ ISPASYNC_DEV_GONE, /* FC Device Departure */ ISPASYNC_TARGET_NOTIFY, /* All target async notification */ ISPASYNC_TARGET_ACTION, /* All target action requested */ ISPASYNC_FW_CRASH, /* All Firmware has crashed */ ISPASYNC_FW_RESTARTED /* All Firmware has been restarted */ } ispasync_t; void isp_async(ispsoftc_t *, ispasync_t, ...); #define ISPASYNC_CHANGE_PDB 0 #define ISPASYNC_CHANGE_SNS 1 #define ISPASYNC_CHANGE_OTHER 2 /* * Platform Independent Error Prinout */ void isp_prt_endcmd(ispsoftc_t *, XS_T *); /* * Platform Dependent Error and Debug Printout * * Two required functions for each platform must be provided: * * void isp_prt(ispsoftc_t *, int level, const char *, ...) * void isp_xs_prt(ispsoftc_t *, XS_T *, int level, const char *, ...) * * but due to compiler differences on different platforms this won't be * formally defined here. Instead, they go in each platform definition file. */ #define ISP_LOGALL 0x0 /* log always */ #define ISP_LOGCONFIG 0x1 /* log configuration messages */ #define ISP_LOGINFO 0x2 /* log informational messages */ #define ISP_LOGWARN 0x4 /* log warning messages */ #define ISP_LOGERR 0x8 /* log error messages */ #define ISP_LOGDEBUG0 0x10 /* log simple debug messages */ #define ISP_LOGDEBUG1 0x20 /* log intermediate debug messages */ #define ISP_LOGDEBUG2 0x40 /* log most debug messages */ #define ISP_LOGDEBUG3 0x80 /* log high frequency debug messages */ #define ISP_LOGSANCFG 0x100 /* log SAN configuration */ #define ISP_LOG_CWARN 0x200 /* log SCSI command "warnings" (e.g., check conditions) */ #define ISP_LOGTINFO 0x1000 /* log informational messages (target mode) */ #define ISP_LOGTDEBUG0 0x2000 /* log simple debug messages (target mode) */ #define ISP_LOGTDEBUG1 0x4000 /* log intermediate debug messages (target) */ #define ISP_LOGTDEBUG2 0x8000 /* log all debug messages (target) */ /* * Each Platform provides it's own isposinfo substructure of the ispsoftc * defined above. * * Each platform must also provide the following macros/defines: * * * ISP_FC_SCRLEN FC scratch area DMA length * * ISP_MEMZERO(dst, src) platform zeroing function * ISP_MEMCPY(dst, src, count) platform copying function * ISP_SNPRINTF(buf, bufsize, fmt, ...) snprintf * ISP_DELAY(usecs) microsecond spindelay function * ISP_SLEEP(isp, usecs) microsecond sleep function * * ISP_INLINE ___inline or not- depending on how * good your debugger is * ISP_MIN shorthand for ((a) < (b))? (a) : (b) * * NANOTIME_T nanosecond time type * * GET_NANOTIME(NANOTIME_T *) get current nanotime. * * GET_NANOSEC(NANOTIME_T *) get uint64_t from NANOTIME_T * * NANOTIME_SUB(NANOTIME_T *, NANOTIME_T *) * subtract two NANOTIME_T values * * MAXISPREQUEST(ispsoftc_t *) maximum request queue size * for this particular board type * * MEMORYBARRIER(ispsoftc_t *, barrier_type, offset, size, chan) * * Function/Macro the provides memory synchronization on * various objects so that the ISP's and the system's view * of the same object is consistent. * * MBOX_ACQUIRE(ispsoftc_t *) acquire lock on mailbox regs * MBOX_WAIT_COMPLETE(ispsoftc_t *, mbreg_t *) wait for cmd to be done * MBOX_NOTIFY_COMPLETE(ispsoftc_t *) notification of mbox cmd donee * MBOX_RELEASE(ispsoftc_t *) release lock on mailbox regs * * FC_SCRATCH_ACQUIRE(ispsoftc_t *, chan) acquire lock on FC scratch area * return -1 if you cannot * FC_SCRATCH_RELEASE(ispsoftc_t *, chan) acquire lock on FC scratch area * * SCSI_GOOD SCSI 'Good' Status * SCSI_CHECK SCSI 'Check Condition' Status * SCSI_BUSY SCSI 'Busy' Status * SCSI_QFULL SCSI 'Queue Full' Status * * XS_T Platform SCSI transaction type (i.e., command for HBA) * XS_DMA_ADDR_T Platform PCI DMA Address Type * XS_GET_DMA_SEG(..) Get 32 bit dma segment list value * XS_GET_DMA64_SEG(..) Get 64 bit dma segment list value * XS_ISP(xs) gets an instance out of an XS_T * XS_CHANNEL(xs) gets the channel (bus # for DUALBUS cards) "" * XS_TGT(xs) gets the target "" * XS_LUN(xs) gets the lun "" * XS_CDBP(xs) gets a pointer to the scsi CDB "" * XS_CDBLEN(xs) gets the CDB's length "" * XS_XFRLEN(xs) gets the associated data transfer length "" * XS_TIME(xs) gets the time (in milliseconds) for this command * XS_GET_RESID(xs) gets the current residual count * XS_GET_RESID(xs, resid) sets the current residual count * XS_STSP(xs) gets a pointer to the SCSI status byte "" * XS_SNSP(xs) gets a pointer to the associate sense data * XS_SNSLEN(xs) gets the length of sense data storage * XS_SNSKEY(xs) dereferences XS_SNSP to get the current stored Sense Key * XS_SNSASC(xs) dereferences XS_SNSP to get the current stored Additional Sense Code * XS_SNSASCQ(xs) dereferences XS_SNSP to get the current stored Additional Sense Code Qualifier * XS_TAG_P(xs) predicate of whether this command should be tagged * XS_TAG_TYPE(xs) which type of tag to use * XS_SETERR(xs) set error state * * HBA_NOERROR command has no erros * HBA_BOTCH hba botched something * HBA_CMDTIMEOUT command timed out * HBA_SELTIMEOUT selection timed out (also port logouts for FC) * HBA_TGTBSY target returned a BUSY status * HBA_BUSRESET bus reset destroyed command * HBA_ABORTED command was aborted (by request) * HBA_DATAOVR a data overrun was detected * HBA_ARQFAIL Automatic Request Sense failed * * XS_ERR(xs) return current error state * XS_NOERR(xs) there is no error currently set * XS_INITERR(xs) initialize error state * * XS_SAVE_SENSE(xs, sp, len) save sense data * * XS_SENSE_VALID(xs) indicates whether sense is valid * * DEFAULT_FRAMESIZE(ispsoftc_t *) Default Frame Size * DEFAULT_EXEC_THROTTLE(ispsoftc_t *) Default Execution Throttle * * GET_DEFAULT_ROLE(ispsoftc_t *, int) Get Default Role for a channel * SET_DEFAULT_ROLE(ispsoftc_t *, int, int) Set Default Role for a channel * DEFAULT_IID(ispsoftc_t *, int) Default SCSI initiator ID * DEFAULT_LOOPID(ispsoftc_t *, int) Default FC Loop ID * * These establish reasonable defaults for each platform. * These must be available independent of card NVRAM and are * to be used should NVRAM not be readable. * * DEFAULT_NODEWWN(ispsoftc_t *, chan) Default FC Node WWN to use * DEFAULT_PORTWWN(ispsoftc_t *, chan) Default FC Port WWN to use * * These defines are hooks to allow the setting of node and * port WWNs when NVRAM cannot be read or is to be overriden. * * ACTIVE_NODEWWN(ispsoftc_t *, chan) FC Node WWN to use * ACTIVE_PORTWWN(ispsoftc_t *, chan) FC Port WWN to use * * After NVRAM is read, these will be invoked to get the * node and port WWNs that will actually be used for this * channel. * * * ISP_IOXPUT_8(ispsoftc_t *, uint8_t srcval, uint8_t *dstptr) * ISP_IOXPUT_16(ispsoftc_t *, uint16_t srcval, uint16_t *dstptr) * ISP_IOXPUT_32(ispsoftc_t *, uint32_t srcval, uint32_t *dstptr) * * ISP_IOXGET_8(ispsoftc_t *, uint8_t *srcptr, uint8_t dstrval) * ISP_IOXGET_16(ispsoftc_t *, uint16_t *srcptr, uint16_t dstrval) * ISP_IOXGET_32(ispsoftc_t *, uint32_t *srcptr, uint32_t dstrval) * * ISP_SWIZZLE_NVRAM_WORD(ispsoftc_t *, uint16_t *) * ISP_SWIZZLE_NVRAM_LONG(ispsoftc_t *, uint32_t *) * ISP_SWAP16(ispsoftc_t *, uint16_t srcval) * ISP_SWAP32(ispsoftc_t *, uint32_t srcval) */ #ifdef ISP_TARGET_MODE /* * The functions below are for the publicly available * target mode functions that are internal to the Qlogic driver. */ /* * This function handles new response queue entry appropriate for target mode. */ int isp_target_notify(ispsoftc_t *, void *, uint32_t *); /* * This function externalizes the ability to acknowledge an Immediate Notify request. */ int isp_notify_ack(ispsoftc_t *, void *); /* * This function externalized acknowledging (success/fail) an ABTS frame */ int isp_acknak_abts(ispsoftc_t *, void *, int); /* * Enable/Disable/Modify a logical unit. * (softc, cmd, bus, tgt, lun, cmd_cnt, inotify_cnt) */ #define DFLT_CMND_CNT 0xfe /* unmonitored */ #define DFLT_INOT_CNT 0xfe /* unmonitored */ int isp_lun_cmd(ispsoftc_t *, int, int, int, int, int); /* * General request queue 'put' routine for target mode entries. */ int isp_target_put_entry(ispsoftc_t *isp, void *); /* * General routine to put back an ATIO entry- * used for replenishing f/w resource counts. * The argument is a pointer to a source ATIO * or ATIO2. */ int isp_target_put_atio(ispsoftc_t *, void *); /* * General routine to send a final CTIO for a command- used mostly for * local responses. */ int isp_endcmd(ispsoftc_t *, ...); #define ECMD_SVALID 0x100 #define ECMD_TERMINATE 0x200 /* * Handle an asynchronous event * * Return nonzero if the interrupt that generated this event has been dismissed. */ int isp_target_async(ispsoftc_t *, int, int); #endif #endif /* _ISPVAR_H */