Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/driver/@/x86/x86/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/driver/@/x86/x86/tsc.c |
/*- * Copyright (c) 1998-2003 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/x86/x86/tsc.c 238910 2012-07-30 15:30:42Z jimharris $"); #include "opt_clock.h" #include <sys/param.h> #include <sys/bus.h> #include <sys/cpu.h> #include <sys/limits.h> #include <sys/malloc.h> #include <sys/systm.h> #include <sys/sysctl.h> #include <sys/time.h> #include <sys/timetc.h> #include <sys/kernel.h> #include <sys/power.h> #include <sys/smp.h> #include <machine/clock.h> #include <machine/cputypes.h> #include <machine/md_var.h> #include <machine/specialreg.h> #include "cpufreq_if.h" uint64_t tsc_freq; int tsc_is_invariant; int tsc_perf_stat; static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag; SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN, &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant"); TUNABLE_INT("kern.timecounter.invariant_tsc", &tsc_is_invariant); #ifdef SMP static int smp_tsc; SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0, "Indicates whether the TSC is safe to use in SMP mode"); TUNABLE_INT("kern.timecounter.smp_tsc", &smp_tsc); #endif static int tsc_disabled; SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0, "Disable x86 Time Stamp Counter"); TUNABLE_INT("machdep.disable_tsc", &tsc_disabled); static int tsc_skip_calibration; SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN, &tsc_skip_calibration, 0, "Disable TSC frequency calibration"); TUNABLE_INT("machdep.disable_tsc_calibration", &tsc_skip_calibration); static void tsc_freq_changed(void *arg, const struct cf_level *level, int status); static void tsc_freq_changing(void *arg, const struct cf_level *level, int *status); static unsigned tsc_get_timecount(struct timecounter *tc); static unsigned tsc_get_timecount_low(struct timecounter *tc); static void tsc_levels_changed(void *arg, int unit); static struct timecounter tsc_timecounter = { tsc_get_timecount, /* get_timecount */ 0, /* no poll_pps */ ~0u, /* counter_mask */ 0, /* frequency */ "TSC", /* name */ 800, /* quality (adjusted in code) */ }; #define VMW_HVMAGIC 0x564d5868 #define VMW_HVPORT 0x5658 #define VMW_HVCMD_GETVERSION 10 #define VMW_HVCMD_GETHZ 45 static __inline void vmware_hvcall(u_int cmd, u_int *p) { __asm __volatile("inl %w3, %0" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (VMW_HVMAGIC), "1" (UINT_MAX), "2" (cmd), "3" (VMW_HVPORT) : "memory"); } static int tsc_freq_vmware(void) { char hv_sig[13]; u_int regs[4]; char *p; u_int hv_high; int i; /* * [RFC] CPUID usage for interaction between Hypervisors and Linux. * http://lkml.org/lkml/2008/10/1/246 * * KB1009458: Mechanisms to determine if software is running in * a VMware virtual machine * http://kb.vmware.com/kb/1009458 */ hv_high = 0; if ((cpu_feature2 & CPUID2_HV) != 0) { do_cpuid(0x40000000, regs); hv_high = regs[0]; for (i = 1, p = hv_sig; i < 4; i++, p += sizeof(regs) / 4) memcpy(p, ®s[i], sizeof(regs[i])); *p = '\0'; if (bootverbose) { /* * HV vendor ID string * ------------+-------------- * KVM "KVMKVMKVM" * Microsoft "Microsoft Hv" * VMware "VMwareVMware" * Xen "XenVMMXenVMM" */ printf("Hypervisor: Origin = \"%s\"\n", hv_sig); } if (strncmp(hv_sig, "VMwareVMware", 12) != 0) return (0); } else { p = getenv("smbios.system.serial"); if (p == NULL) return (0); if (strncmp(p, "VMware-", 7) != 0 && strncmp(p, "VMW", 3) != 0) { freeenv(p); return (0); } freeenv(p); vmware_hvcall(VMW_HVCMD_GETVERSION, regs); if (regs[1] != VMW_HVMAGIC) return (0); } if (hv_high >= 0x40000010) { do_cpuid(0x40000010, regs); tsc_freq = regs[0] * 1000; } else { vmware_hvcall(VMW_HVCMD_GETHZ, regs); if (regs[1] != UINT_MAX) tsc_freq = regs[0] | ((uint64_t)regs[1] << 32); } tsc_is_invariant = 1; return (1); } static void tsc_freq_intel(void) { char brand[48]; u_int regs[4]; uint64_t freq; char *p; u_int i; /* * Intel Processor Identification and the CPUID Instruction * Application Note 485. * http://www.intel.com/assets/pdf/appnote/241618.pdf */ if (cpu_exthigh >= 0x80000004) { p = brand; for (i = 0x80000002; i < 0x80000005; i++) { do_cpuid(i, regs); memcpy(p, regs, sizeof(regs)); p += sizeof(regs); } p = NULL; for (i = 0; i < sizeof(brand) - 1; i++) if (brand[i] == 'H' && brand[i + 1] == 'z') p = brand + i; if (p != NULL) { p -= 5; switch (p[4]) { case 'M': i = 1; break; case 'G': i = 1000; break; case 'T': i = 1000000; break; default: return; } #define C2D(c) ((c) - '0') if (p[1] == '.') { freq = C2D(p[0]) * 1000; freq += C2D(p[2]) * 100; freq += C2D(p[3]) * 10; freq *= i * 1000; } else { freq = C2D(p[0]) * 1000; freq += C2D(p[1]) * 100; freq += C2D(p[2]) * 10; freq += C2D(p[3]); freq *= i * 1000000; } #undef C2D tsc_freq = freq; } } } static void probe_tsc_freq(void) { u_int regs[4]; uint64_t tsc1, tsc2; if (cpu_high >= 6) { do_cpuid(6, regs); if ((regs[2] & CPUID_PERF_STAT) != 0) { /* * XXX Some emulators expose host CPUID without actual * support for these MSRs. We must test whether they * really work. */ wrmsr(MSR_MPERF, 0); wrmsr(MSR_APERF, 0); DELAY(10); if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0) tsc_perf_stat = 1; } } if (tsc_freq_vmware()) return; switch (cpu_vendor_id) { case CPU_VENDOR_AMD: if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 || (vm_guest == VM_GUEST_NO && CPUID_TO_FAMILY(cpu_id) >= 0x10)) tsc_is_invariant = 1; break; case CPU_VENDOR_INTEL: if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 || (vm_guest == VM_GUEST_NO && ((CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) >= 0xe) || (CPUID_TO_FAMILY(cpu_id) == 0xf && CPUID_TO_MODEL(cpu_id) >= 0x3)))) tsc_is_invariant = 1; break; case CPU_VENDOR_CENTAUR: if (vm_guest == VM_GUEST_NO && CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) >= 0xf && (rdmsr(0x1203) & 0x100000000ULL) == 0) tsc_is_invariant = 1; break; } if (tsc_skip_calibration) { if (cpu_vendor_id == CPU_VENDOR_INTEL) tsc_freq_intel(); return; } if (bootverbose) printf("Calibrating TSC clock ... "); tsc1 = rdtsc(); DELAY(1000000); tsc2 = rdtsc(); tsc_freq = tsc2 - tsc1; if (bootverbose) printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq); } void init_TSC(void) { if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled) return; probe_tsc_freq(); /* * Inform CPU accounting about our boot-time clock rate. This will * be updated if someone loads a cpufreq driver after boot that * discovers a new max frequency. */ if (tsc_freq != 0) set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant); if (tsc_is_invariant) return; /* Register to find out about changes in CPU frequency. */ tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change, tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST); tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change, tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST); tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed, tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY); } #ifdef SMP /* rmb is required here because rdtsc is not a serializing instruction. */ #define TSC_READ(x) \ static void \ tsc_read_##x(void *arg) \ { \ uint32_t *tsc = arg; \ u_int cpu = PCPU_GET(cpuid); \ \ rmb(); \ tsc[cpu * 3 + x] = rdtsc32(); \ } TSC_READ(0) TSC_READ(1) TSC_READ(2) #undef TSC_READ #define N 1000 static void comp_smp_tsc(void *arg) { uint32_t *tsc; int32_t d1, d2; u_int cpu = PCPU_GET(cpuid); u_int i, j, size; size = (mp_maxid + 1) * 3; for (i = 0, tsc = arg; i < N; i++, tsc += size) CPU_FOREACH(j) { if (j == cpu) continue; d1 = tsc[cpu * 3 + 1] - tsc[j * 3]; d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1]; if (d1 <= 0 || d2 <= 0) { smp_tsc = 0; return; } } } static int test_smp_tsc(void) { uint32_t *data, *tsc; u_int i, size; if (!smp_tsc && !tsc_is_invariant) return (-100); size = (mp_maxid + 1) * 3; data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK); for (i = 0, tsc = data; i < N; i++, tsc += size) smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc); smp_tsc = 1; /* XXX */ smp_rendezvous(smp_no_rendevous_barrier, comp_smp_tsc, smp_no_rendevous_barrier, data); free(data, M_TEMP); if (bootverbose) printf("SMP: %sed TSC synchronization test\n", smp_tsc ? "pass" : "fail"); if (smp_tsc && tsc_is_invariant) { switch (cpu_vendor_id) { case CPU_VENDOR_AMD: /* * Starting with Family 15h processors, TSC clock * source is in the north bridge. Check whether * we have a single-socket/multi-core platform. * XXX Need more work for complex cases. */ if (CPUID_TO_FAMILY(cpu_id) < 0x15 || (amd_feature2 & AMDID2_CMP) == 0 || smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1) break; return (1000); case CPU_VENDOR_INTEL: /* * XXX Assume Intel platforms have synchronized TSCs. */ return (1000); } return (800); } return (-100); } #undef N #endif /* SMP */ static void init_TSC_tc(void) { uint64_t max_freq; int shift; if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled) return; /* * Limit timecounter frequency to fit in an int and prevent it from * overflowing too fast. */ max_freq = UINT_MAX; /* * We can not use the TSC if we support APM. Precise timekeeping * on an APM'ed machine is at best a fools pursuit, since * any and all of the time spent in various SMM code can't * be reliably accounted for. Reading the RTC is your only * source of reliable time info. The i8254 loses too, of course, * but we need to have some kind of time... * We don't know at this point whether APM is going to be used * or not, nor when it might be activated. Play it safe. */ if (power_pm_get_type() == POWER_PM_TYPE_APM) { tsc_timecounter.tc_quality = -1000; if (bootverbose) printf("TSC timecounter disabled: APM enabled.\n"); goto init; } /* * We cannot use the TSC if it stops incrementing in deep sleep. * Currently only Intel CPUs are known for this problem unless * the invariant TSC bit is set. */ if (cpu_can_deep_sleep && cpu_vendor_id == CPU_VENDOR_INTEL && (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) { tsc_timecounter.tc_quality = -1000; tsc_timecounter.tc_flags |= TC_FLAGS_C3STOP; if (bootverbose) printf("TSC timecounter disabled: C3 enabled.\n"); goto init; } #ifdef SMP /* * We can not use the TSC in SMP mode unless the TSCs on all CPUs are * synchronized. If the user is sure that the system has synchronized * TSCs, set kern.timecounter.smp_tsc tunable to a non-zero value. * We also limit the frequency even lower to avoid "temporal anomalies" * as much as possible. The TSC seems unreliable in virtualized SMP * environments, so it is set to a negative quality in those cases. */ if (smp_cpus > 1) { if (vm_guest != 0) { tsc_timecounter.tc_quality = -100; } else { tsc_timecounter.tc_quality = test_smp_tsc(); max_freq >>= 8; } } else #endif if (tsc_is_invariant) tsc_timecounter.tc_quality = 1000; init: for (shift = 0; shift < 31 && (tsc_freq >> shift) > max_freq; shift++) ; if (shift > 0) { tsc_timecounter.tc_get_timecount = tsc_get_timecount_low; tsc_timecounter.tc_name = "TSC-low"; if (bootverbose) printf("TSC timecounter discards lower %d bit(s)\n", shift); } if (tsc_freq != 0) { tsc_timecounter.tc_frequency = tsc_freq >> shift; tsc_timecounter.tc_priv = (void *)(intptr_t)shift; tc_init(&tsc_timecounter); } } SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL); /* * When cpufreq levels change, find out about the (new) max frequency. We * use this to update CPU accounting in case it got a lower estimate at boot. */ static void tsc_levels_changed(void *arg, int unit) { device_t cf_dev; struct cf_level *levels; int count, error; uint64_t max_freq; /* Only use values from the first CPU, assuming all are equal. */ if (unit != 0) return; /* Find the appropriate cpufreq device instance. */ cf_dev = devclass_get_device(devclass_find("cpufreq"), unit); if (cf_dev == NULL) { printf("tsc_levels_changed() called but no cpufreq device?\n"); return; } /* Get settings from the device and find the max frequency. */ count = 64; levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT); if (levels == NULL) return; error = CPUFREQ_LEVELS(cf_dev, levels, &count); if (error == 0 && count != 0) { max_freq = (uint64_t)levels[0].total_set.freq * 1000000; set_cputicker(rdtsc, max_freq, 1); } else printf("tsc_levels_changed: no max freq found\n"); free(levels, M_TEMP); } /* * If the TSC timecounter is in use, veto the pending change. It may be * possible in the future to handle a dynamically-changing timecounter rate. */ static void tsc_freq_changing(void *arg, const struct cf_level *level, int *status) { if (*status != 0 || timecounter != &tsc_timecounter) return; printf("timecounter TSC must not be in use when " "changing frequencies; change denied\n"); *status = EBUSY; } /* Update TSC freq with the value indicated by the caller. */ static void tsc_freq_changed(void *arg, const struct cf_level *level, int status) { uint64_t freq; /* If there was an error during the transition, don't do anything. */ if (tsc_disabled || status != 0) return; /* Total setting for this level gives the new frequency in MHz. */ freq = (uint64_t)level->total_set.freq * 1000000; atomic_store_rel_64(&tsc_freq, freq); tsc_timecounter.tc_frequency = freq >> (int)(intptr_t)tsc_timecounter.tc_priv; } static int sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS) { int error; uint64_t freq; freq = atomic_load_acq_64(&tsc_freq); if (freq == 0) return (EOPNOTSUPP); error = sysctl_handle_64(oidp, &freq, 0, req); if (error == 0 && req->newptr != NULL) { atomic_store_rel_64(&tsc_freq, freq); atomic_store_rel_64(&tsc_timecounter.tc_frequency, freq >> (int)(intptr_t)tsc_timecounter.tc_priv); } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW, 0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency"); static u_int tsc_get_timecount(struct timecounter *tc __unused) { return (rdtsc32()); } static u_int tsc_get_timecount_low(struct timecounter *tc) { uint32_t rv; __asm __volatile("rdtsc; shrd %%cl, %%edx, %0" : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx"); return (rv); }