Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/envy24/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/envy24/@/contrib/octeon-sdk/cvmx-llm.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * * Configuration functions for low latency memory. * * <hr>$Revision: 52372 $<hr> */ #include "cvmx-config.h" #include "cvmx.h" #include "cvmx-llm.h" #include "cvmx-sysinfo.h" #include "cvmx-csr-db.h" #define MIN(a,b) (((a)<(b))?(a):(b)) typedef struct { uint32_t dfa_memcfg0_base; uint32_t dfa_memcfg1_base; uint32_t mrs_dat_p0bunk0; uint32_t mrs_dat_p0bunk1; uint32_t mrs_dat_p1bunk0; uint32_t mrs_dat_p1bunk1; uint8_t p0_ena; uint8_t p1_ena; uint8_t bunkport; } rldram_csr_config_t; int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr); void print_rld_cfg(rldram_csr_config_t *cfg_ptr); void write_rld_cfg(rldram_csr_config_t *cfg_ptr); static void cn31xx_dfa_memory_init(void); static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str); #ifndef CVMX_LLM_NUM_PORTS #warning WARNING: default CVMX_LLM_NUM_PORTS used. Defaults deprecated, please set in executive-config.h #define CVMX_LLM_NUM_PORTS 1 #endif #if (CVMX_LLM_NUM_PORTS != 1) && (CVMX_LLM_NUM_PORTS != 2) #error "Invalid CVMX_LLM_NUM_PORTS value: must be 1 or 2\n" #endif int cvmx_llm_initialize() { if (cvmx_llm_initialize_desc(NULL) < 0) return -1; return 0; } int cvmx_llm_get_default_descriptor(llm_descriptor_t *llm_desc_ptr) { cvmx_sysinfo_t *sys_ptr; sys_ptr = cvmx_sysinfo_get(); if (!llm_desc_ptr) return -1; memset(llm_desc_ptr, 0, sizeof(llm_descriptor_t)); llm_desc_ptr->cpu_hz = cvmx_clock_get_rate(CVMX_CLOCK_CORE); if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT3000) { // N3K->RLD0 Address Swizzle strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10"); // N3K->RLD1 Address Swizzle strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); /* NOTE: The ebt3000 has a strange RLDRAM configuration for validation purposes. It is not recommended to have ** different amounts of memory on different ports as that renders some memory unusable */ llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 128; // RLD0: 4x 32Mx9 llm_desc_ptr->rld1_mbytes = 64; // RLD1: 2x 16Mx18 } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT5800) { strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 128; llm_desc_ptr->rld1_mbytes = 128; llm_desc_ptr->max_rld_clock_mhz = 400; /* CN58XX needs a max clock speed for selecting optimal divisor */ } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3000) { strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10"); llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 128; llm_desc_ptr->rld1_mbytes = 128; } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NAC38) { if (sys_ptr->board_rev_major == 1 && sys_ptr->board_rev_minor == 0) { strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19"); llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 128; llm_desc_ptr->rld1_mbytes = 128; } else { /* Asus new recommendation */ strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 09 11 04 06 05 08 15 20 16 18 12 13 00 01 07 02 19 17 10 14 03"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 09 00 01 07 02 19 17 10 14 03 13 04 06 05 08 15 20 16 18 12"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 08 13 14 00 04 12 16 11 19 10 07 02 01 05 03 06 17 18 20 09 15"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 13 08 01 05 03 06 17 18 20 09 15 02 14 00 04 12 16 11 19 10 07"); llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 128; llm_desc_ptr->rld1_mbytes = 128; } } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_THUNDER) { if (sys_ptr->board_rev_major >= 4) { strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 13 11 01 02 07 19 03 18 10 12 20 06 04 08 17 05 14 16 00 09 15"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 13 04 08 17 05 14 16 00 09 15 06 01 02 07 19 03 18 10 12 20"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 02 19 18 17 16 09 14 13 20 11 10 01 08 03 06 15 04 07 05 12 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 02 08 03 06 15 04 07 05 12 00 01 18 17 16 09 14 13 20 11 10"); } else { strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); } llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 128; llm_desc_ptr->rld1_mbytes = 128; } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NICPRO2) { strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10"); strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10"); llm_desc_ptr->rld0_bunks = 2; llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld0_mbytes = 256; llm_desc_ptr->rld1_mbytes = 256; llm_desc_ptr->max_rld_clock_mhz = 400; /* CN58XX needs a max clock speed for selecting optimal divisor */ } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100) { /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory */ llm_desc_ptr->rld0_bunks = 1; llm_desc_ptr->rld0_mbytes = 256; } else if (sys_ptr->board_type == CVMX_BOARD_TYPE_KBP) { strcpy(llm_desc_ptr->addr_rld0_fb_str, ""); strcpy(llm_desc_ptr->addr_rld0_bb_str, ""); llm_desc_ptr->rld0_bunks = 0; llm_desc_ptr->rld0_mbytes = 0; strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00"); llm_desc_ptr->rld1_bunks = 2; llm_desc_ptr->rld1_mbytes = 64; } else { cvmx_dprintf("No default LLM configuration available for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type), sys_ptr->board_type); return -1; } return(0); } int cvmx_llm_initialize_desc(llm_descriptor_t *llm_desc_ptr) { cvmx_sysinfo_t *sys_ptr; sys_ptr = cvmx_sysinfo_get(); llm_descriptor_t default_llm_desc; memset(&default_llm_desc, 0, sizeof(default_llm_desc)); if (sys_ptr->board_type == CVMX_BOARD_TYPE_SIM) { cvmx_dprintf("Skipping llm configuration for simulator.\n"); return 0; } if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100) { /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory ** config descriptors are not supported yet.*/ cvmx_dprintf("Warning: preliminary DFA memory configuration\n"); cn31xx_dfa_memory_init(); return(256*1024*1024); } /* If no descriptor passed, generate default descriptor based on board type. ** Fail if no default available for given board type */ if (!llm_desc_ptr) { /* Get default descriptor */ if (0 > cvmx_llm_get_default_descriptor(&default_llm_desc)) return -1; /* Disable second port depending on CVMX config */ if (CVMX_LLM_NUM_PORTS == 1) default_llm_desc.rld0_bunks = 0; // For single port: Force RLD0(P1) to appear EMPTY cvmx_dprintf("Using default LLM configuration for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type), sys_ptr->board_type); llm_desc_ptr = &default_llm_desc; } rldram_csr_config_t ebt3000_rld_cfg; if (!rld_csr_config_generate(llm_desc_ptr, &ebt3000_rld_cfg)) { cvmx_dprintf("Configuring %d llm port(s).\n", !!llm_desc_ptr->rld0_bunks + !!llm_desc_ptr->rld1_bunks); write_rld_cfg(&ebt3000_rld_cfg); } else { cvmx_dprintf("Error creating rldram configuration\n"); return(-1); } /* Compute how much memory is configured ** Memory is interleaved, so if one port has more than the other some memory is not usable */ /* If both ports are enabled, handle the case where one port has more than the other. ** This is an unusual and not recommended configuration that exists on the ebt3000 board */ if (!!llm_desc_ptr->rld0_bunks && !!llm_desc_ptr->rld1_bunks) llm_desc_ptr->rld0_mbytes = llm_desc_ptr->rld1_mbytes = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes); return(((!!llm_desc_ptr->rld0_bunks) * llm_desc_ptr->rld0_mbytes + (!!llm_desc_ptr->rld1_bunks) * llm_desc_ptr->rld1_mbytes) * 1024*1024); } //====================== // SUPPORT FUNCTIONS: //====================== //====================================================================== // Extracts srcvec[srcbitpos] and places it in return int (bit[0]) int bit_extract ( int srcvec, // source word (to extract) int srcbitpos // source bit position ) { return(((1 << srcbitpos) & srcvec) >> srcbitpos); } //====================================================================== // Inserts srcvec[0] into dstvec[dstbitpos] (without affecting other bits) int bit_insert ( int srcvec, // srcvec[0] = bit to be inserted int dstbitpos, // Bit position to insert into returned int int dstvec // dstvec (destination vector) ) { return((srcvec << dstbitpos) | dstvec); // Shift bit to insert into bit position/OR with accumulated number } //====================================================================== int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr) { char *addr_rld0_fb_str; char *addr_rld0_bb_str; char *addr_rld1_fb_str; char *addr_rld1_bb_str; int eclk_ps; int mtype = 0; // MTYPE (0: RLDRAM/1: FCRAM int trcmin = 20; // tRC(min) - from RLDRAM data sheet int trc_cyc; // TRC(cyc) int trc_mod; int trl_cyc; // TRL(cyc) int twl_cyc; // TWL(cyc) int tmrsc_cyc = 6; // tMRSC(cyc) [2-7] int mclk_ps; // DFA Memory Clock(in ps) = 2x eclk int rldcfg = 99; // RLDRAM-II CFG (1,2,3) int mrs_odt = 0; // RLDRAM MRS A[9]=ODT (default) int mrs_impmatch = 0; // RLDRAM MRS A[8]=Impedance Matching (default) int mrs_dllrst = 1; // RLDRAM MRS A[7]=DLL Reset (default) uint32_t mrs_dat; int mrs_dat_p0bunk0 = 0; // MRS Register Data After Address Map (for Port0 Bunk0) int mrs_dat_p0bunk1 = 0; // MRS Register Data After Address Map (for Port0 Bunk1) int mrs_dat_p1bunk0 = 0; // MRS Register Data After Address Map (for Port1 Bunk0) int mrs_dat_p1bunk1 = 0; // MRS Register Data After Address Map (for Port1 Bunk1) int p0_ena = 0; // DFA Port#0 Enabled int p1_ena = 0; // DFA Port#1 Enabled int memport = 0; // Memory(MB) per Port [MAX=512] int membunk; // Memory(MB) per Bunk int bunkport = 0; // Bunks/Port [1/2] int pbunk = 0; // Physical Bunk(or Rank) encoding for address bit int tref_ms = 32; // tREF(ms) (RLDRAM-II overall device refresh interval int trefi_ns; // tREFI(ns) = tREF(ns)/#rows/bank int rows = 8; // #rows/bank (K) typically 8K int ref512int; int ref512mod; int tskw_cyc = 0; int fprch = 1; int bprch = 0; int dfa_memcfg0_base = 0; int dfa_memcfg1_base = 0; int tbl = 1; // tBL (1: 2-burst /2: 4-burst) int rw_dly; int wr_dly; int r2r = 1; int sil_lat = 1; int clkdiv = 2; /* CN38XX is fixed at 2, CN58XX supports 2,3,4 */ int clkdiv_enc = 0x0; /* Encoded clock divisor, only used for CN58XX */ if (!llm_desc_ptr) return -1; /* Setup variables from descriptor */ addr_rld0_fb_str = llm_desc_ptr->addr_rld0_fb_str; addr_rld0_bb_str = llm_desc_ptr->addr_rld0_bb_str; addr_rld1_fb_str = llm_desc_ptr->addr_rld1_fb_str; addr_rld1_bb_str = llm_desc_ptr->addr_rld1_bb_str; p0_ena = !!llm_desc_ptr->rld1_bunks; // NOTE: P0 == RLD1 p1_ena = !!llm_desc_ptr->rld0_bunks; // NOTE: P1 == RLD0 // Massage the code, so that if the user had imbalanced memory per-port (or imbalanced bunks/port), we // at least try to configure 'workable' memory. if (p0_ena && p1_ena) // IF BOTH PORTS Enabled (imbalanced memory), select smaller of BOTH { memport = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes); bunkport = MIN(llm_desc_ptr->rld0_bunks, llm_desc_ptr->rld1_bunks); } else if (p0_ena) // P0=RLD1 Enabled { memport = llm_desc_ptr->rld1_mbytes; bunkport = llm_desc_ptr->rld1_bunks; } else if (p1_ena) // P1=RLD0 Enabled { memport = llm_desc_ptr->rld0_mbytes; bunkport = llm_desc_ptr->rld0_bunks; } else return -1; uint32_t eclk_mhz = llm_desc_ptr->cpu_hz/1000000; /* Tweak skew based on cpu clock */ if (eclk_mhz <= 367) { tskw_cyc = 0; } else { tskw_cyc = 1; } /* Determine clock divider ratio (only required for CN58XX) */ if (OCTEON_IS_MODEL(OCTEON_CN58XX)) { uint32_t max_llm_clock_mhz = llm_desc_ptr->max_rld_clock_mhz; if (!max_llm_clock_mhz) { max_llm_clock_mhz = 400; /* Default to 400 MHz */ cvmx_dprintf("Warning, using default max_rld_clock_mhz of: %lu MHz\n", (unsigned long)max_llm_clock_mhz); } /* Compute the divisor, and round up */ clkdiv = eclk_mhz/max_llm_clock_mhz; if (clkdiv * max_llm_clock_mhz < eclk_mhz) clkdiv++; if (clkdiv > 4) { cvmx_dprintf("ERROR: CN58XX LLM clock divisor out of range\n"); goto TERMINATE; } if (clkdiv < 2) clkdiv = 2; cvmx_dprintf("Using llm clock divisor: %d, llm clock is: %lu MHz\n", clkdiv, (unsigned long)eclk_mhz/clkdiv); /* Translate divisor into bit encoding for register */ /* 0 -> div 2 ** 1 -> reserved ** 2 -> div 3 ** 3 -> div 4 */ if (clkdiv == 2) clkdiv_enc = 0; else clkdiv_enc = clkdiv - 1; /* Odd divisor needs sil_lat to be 2 */ if (clkdiv == 0x3) sil_lat = 2; /* Increment tskw for high clock speeds */ if ((unsigned long)eclk_mhz/clkdiv >= 375) tskw_cyc += 1; } eclk_ps = (1000000+(eclk_mhz-1)) / eclk_mhz; // round up if nonzero remainder //======================================================================= //======================================================================= // Now, Query User for DFA Memory Type if (mtype != 0) { goto TERMINATE; // Complete this code for FCRAM usage on N3K-P2 } //======================================================================= // Query what the tRC(min) value is from the data sheets //======================================================================= // Now determine the Best CFG based on Memory clock(ps) and tRCmin(ns) mclk_ps = eclk_ps * clkdiv; trc_cyc = ((trcmin * 1000)/mclk_ps); trc_mod = ((trcmin * 1000) % mclk_ps); // If remainder exists, bump up to the next integer multiple if (trc_mod != 0) { trc_cyc = trc_cyc + 1; } // If tRC is now ODD, then bump it to the next EVEN integer (RLDRAM-II does not support odd tRC values at this time). if (trc_cyc & 1) { trc_cyc = trc_cyc + 1; // Bump it to an even # } // RLDRAM CFG Range Check: If the computed trc_cyc is less than 4, then set it to min CFG1 [tRC=4] if (trc_cyc < 4) { trc_cyc = 4; // If computed trc_cyc < 4 then clamp to 4 } else if (trc_cyc > 8) { // If the computed trc_cyc > 8, then report an error (because RLDRAM cannot support a tRC>8 goto TERMINATE; } // Assuming all is ok(up to here) // At this point the tRC_cyc has been clamped between 4 and 8 (and is even), So it can only be 4,6,8 which are // the RLDRAM valid CFG range values. trl_cyc = trc_cyc; // tRL = tRC (for RLDRAM=II) twl_cyc = trl_cyc + 1; // tWL = tRL + 1 (for RLDRAM-II) // NOTE: RLDRAM-II (as of 4/25/05) only have 3 supported CFG encodings: if (trc_cyc == 4) { rldcfg = 1; // CFG #1 (tRL=4/tRC=4/tWL=5) } else if (trc_cyc == 6) { rldcfg = 2; // CFG #2 (tRL=6/tRC=6/tWL=7) } else if (trc_cyc == 8) { rldcfg = 3; // CFG #3 (tRL=8/tRC=8/tWL=9) } else { goto TERMINATE; } //======================================================================= mrs_dat = ( (mrs_odt << 9) | (mrs_impmatch << 8) | (mrs_dllrst << 7) | rldcfg ); //======================================================================= // If there is only a single bunk, then skip over address mapping queries (which are not required) if (bunkport == 1) { goto CALC_PBUNK; } /* Process the address mappings */ /* Note that that RLD0 pins corresponds to Port#1, and ** RLD1 pins corresponds to Port#0. */ mrs_dat_p1bunk0 = process_address_map_str(mrs_dat, addr_rld0_fb_str); mrs_dat_p1bunk1 = process_address_map_str(mrs_dat, addr_rld0_bb_str); mrs_dat_p0bunk0 = process_address_map_str(mrs_dat, addr_rld1_fb_str); mrs_dat_p0bunk1 = process_address_map_str(mrs_dat, addr_rld1_bb_str); //======================================================================= CALC_PBUNK: // Determine the PBUNK field (based on Memory/Bunk) // This determines the addr bit used to distinguish when crossing a bunk. // NOTE: For RLDRAM, the bunk bit is extracted from 'a' programmably selected high // order addr bit. [linear address per-bunk] if (bunkport == 2) { membunk = (memport / 2); } else { membunk = memport; } if (membunk == 16) { // 16MB/bunk MA[19] pbunk = 0; } else if (membunk == 32) { // 32MB/bunk MA[20] pbunk = 1; } else if (membunk == 64) { // 64MB/bunk MA[21] pbunk = 2; } else if (membunk == 128) { // 128MB/bunk MA[22] pbunk = 3; } else if (membunk == 256) { // 256MB/bunk MA[23] pbunk = 4; } else if (membunk == 512) { // 512MB/bunk } //======================================================================= //======================================================================= //======================================================================= // Now determine N3K REFINT trefi_ns = (tref_ms * 1000 * 1000) / (rows * 1024); ref512int = ((trefi_ns * 1000) / (eclk_ps * 512)); ref512mod = ((trefi_ns * 1000) % (eclk_ps * 512)); //======================================================================= // Ask about tSKW #if 0 if (tskw_ps == 0) { tskw_cyc = 0; } else { // CEILING function tskw_cyc = (tskw_ps / eclk_ps); tskw_mod = (tskw_ps % eclk_ps); if (tskw_mod != 0) { // If there's a remainder - then bump to next (+1) tskw_cyc = tskw_cyc + 1; } } #endif if (tskw_cyc > 3) { goto TERMINATE; } tbl = 1; // BLEN=2 (ALWAYs for RLDRAM) //======================================================================= // RW_DLY = (ROUND_UP{[[(TRL+TBL)*2 + tSKW + BPRCH] + 1] / 2}) - tWL rw_dly = ((((trl_cyc + tbl) * 2 + tskw_cyc + bprch) + 1) / 2); if (rw_dly & 1) { // If it's ODD then round up rw_dly = rw_dly + 1; } rw_dly = rw_dly - twl_cyc +1 ; if (rw_dly < 0) { // range check - is it positive goto TERMINATE; } //======================================================================= // WR_DLY = (ROUND_UP[[(tWL + tBL)*2 - tSKW + FPRCH] / 2]) - tRL wr_dly = (((twl_cyc + tbl) * 2 - tskw_cyc + fprch) / 2); if (wr_dly & 1) { // If it's ODD then round up wr_dly = wr_dly + 1; } wr_dly = wr_dly - trl_cyc + 1; if (wr_dly < 0) { // range check - is it positive goto TERMINATE; } dfa_memcfg0_base = 0; dfa_memcfg0_base = ( p0_ena | (p1_ena << 1) | (mtype << 3) | (sil_lat << 4) | (rw_dly << 6) | (wr_dly << 10) | (fprch << 14) | (bprch << 16) | (0 << 18) | // BLEN=0(2-burst for RLDRAM) (pbunk << 19) | (r2r << 22) | // R2R=1 (clkdiv_enc << 28 ) ); dfa_memcfg1_base = 0; dfa_memcfg1_base = ( ref512int | (tskw_cyc << 4) | (trl_cyc << 8) | (twl_cyc << 12) | (trc_cyc << 16) | (tmrsc_cyc << 20) ); cfg_ptr->dfa_memcfg0_base = dfa_memcfg0_base; cfg_ptr->dfa_memcfg1_base = dfa_memcfg1_base; cfg_ptr->mrs_dat_p0bunk0 = mrs_dat_p0bunk0; cfg_ptr->mrs_dat_p1bunk0 = mrs_dat_p1bunk0; cfg_ptr->mrs_dat_p0bunk1 = mrs_dat_p0bunk1; cfg_ptr->mrs_dat_p1bunk1 = mrs_dat_p1bunk1; cfg_ptr->p0_ena = p0_ena; cfg_ptr->p1_ena = p1_ena; cfg_ptr->bunkport = bunkport; //======================================================================= return(0); TERMINATE: return(-1); } static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str) { int count = 0; int amap [23]; uint32_t new_mrs_dat = 0; // cvmx_dprintf("mrs_dat: 0x%x, str: %x\n", mrs_dat, addr_str); char *charptr = strtok(addr_str," "); while ((charptr != NULL) & (count <= 22)) { amap[22-count] = atoi(charptr); // Assign the AMAP Array charptr = strtok(NULL," "); // Get Next char string (which represents next addr bit mapping) count++; } // Now do the bit swap of MRSDAT (based on address mapping) uint32_t mrsdat_bit; for (count=0;count<=22;count++) { mrsdat_bit = bit_extract(mrs_dat, count); new_mrs_dat = bit_insert(mrsdat_bit, amap[count], new_mrs_dat); } return new_mrs_dat; } //#define PRINT_LLM_CONFIG #ifdef PRINT_LLM_CONFIG #define ll_printf printf #else #define ll_printf(...) #define cvmx_csr_db_decode(...) #endif static void cn31xx_dfa_memory_init(void) { if (OCTEON_IS_MODEL(OCTEON_CN31XX)) { cvmx_dfa_ddr2_cfg_t dfaCfg; cvmx_dfa_eclkcfg_t dfaEcklCfg; cvmx_dfa_ddr2_addr_t dfaAddr; cvmx_dfa_ddr2_tmg_t dfaTmg; cvmx_dfa_ddr2_pll_t dfaPll; int mem_freq_hz = 533*1000000; int ref_freq_hz = cvmx_sysinfo_get()->dfa_ref_clock_hz; if (!ref_freq_hz) ref_freq_hz = 33*1000000; cvmx_dprintf ("Configuring DFA memory for %d MHz operation.\n",mem_freq_hz/1000000); /* Turn on the DFA memory port. */ dfaCfg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_CFG); dfaCfg.s.prtena = 1; cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64); /* Start the PLL alignment sequence */ dfaPll.u64 = 0; dfaPll.s.pll_ratio = mem_freq_hz/ref_freq_hz /*400Mhz / 33MHz*/; dfaPll.s.pll_div2 = 1 /*400 - 1 */; dfaPll.s.pll_bypass = 0; cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64); dfaPll.s.pll_init = 1; cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64); cvmx_wait (RLD_INIT_DELAY); //want 150uS dfaPll.s.qdll_ena = 1; cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64); cvmx_wait (RLD_INIT_DELAY); //want 10us dfaEcklCfg.u64 = 0; dfaEcklCfg.s.dfa_frstn = 1; cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64); /* Configure the DFA Memory */ dfaCfg.s.silo_hc = 1 /*400 - 1 */; dfaCfg.s.silo_qc = 0 /*400 - 0 */; dfaCfg.s.tskw = 1 /*400 - 1 */; dfaCfg.s.ref_int = 0x820 /*533 - 0x820 400 - 0x618*/; dfaCfg.s.trfc = 0x1A /*533 - 0x23 400 - 0x1A*/; dfaCfg.s.fprch = 0; /* 1 more conservative*/ dfaCfg.s.bprch = 0; /* 1 */ cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64); dfaEcklCfg.u64 = cvmx_read_csr (CVMX_DFA_ECLKCFG); dfaEcklCfg.s.maxbnk = 1; cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64); dfaAddr.u64 = cvmx_read_csr (CVMX_DFA_DDR2_ADDR); dfaAddr.s.num_cols = 0x1; dfaAddr.s.num_colrows = 0x2; dfaAddr.s.num_rnks = 0x1; cvmx_write_csr (CVMX_DFA_DDR2_ADDR, dfaAddr.u64); dfaTmg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_TMG); dfaTmg.s.ddr2t = 0; dfaTmg.s.tmrd = 0x2; dfaTmg.s.caslat = 0x4 /*400 - 0x3, 500 - 0x4*/; dfaTmg.s.pocas = 0; dfaTmg.s.addlat = 0; dfaTmg.s.trcd = 4 /*400 - 3, 500 - 4*/; dfaTmg.s.trrd = 2; dfaTmg.s.tras = 0xB /*400 - 8, 500 - 0xB*/; dfaTmg.s.trp = 4 /*400 - 3, 500 - 4*/; dfaTmg.s.twr = 4 /*400 - 3, 500 - 4*/; dfaTmg.s.twtr = 2 /*400 - 2 */; dfaTmg.s.tfaw = 0xE /*400 - 0xA, 500 - 0xE*/; dfaTmg.s.r2r_slot = 0; dfaTmg.s.dic = 0; /*400 - 0 */ dfaTmg.s.dqsn_ena = 0; dfaTmg.s.odt_rtt = 0; cvmx_write_csr (CVMX_DFA_DDR2_TMG, dfaTmg.u64); /* Turn on the DDR2 interface and wait a bit for the hardware to setup. */ dfaCfg.s.init = 1; cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64); cvmx_wait(RLD_INIT_DELAY); // want at least 64K cycles } } void write_rld_cfg(rldram_csr_config_t *cfg_ptr) { cvmx_dfa_memcfg0_t memcfg0; cvmx_dfa_memcfg2_t memcfg2; memcfg0.u64 = cfg_ptr->dfa_memcfg0_base; if ((OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) { uint32_t dfa_memcfg0; if (OCTEON_IS_MODEL (OCTEON_CN58XX)) { // Set RLDQK90_RST and RDLCK_RST to reset all three DLLs. memcfg0.s.rldck_rst = 1; memcfg0.s.rldqck90_rst = 1; cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x clk/qk90 reset\n", (uint32_t) memcfg0.u64); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64); // Clear RDLCK_RST while asserting RLDQK90_RST to bring RLDCK DLL out of reset. memcfg0.s.rldck_rst = 0; memcfg0.s.rldqck90_rst = 1; cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64); cvmx_wait(4000000); /* Wait */ ll_printf("CVMX_DFA_MEMCFG0: 0x%08x qk90 reset\n", (uint32_t) memcfg0.u64); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64); // Clear both RDLCK90_RST and RLDQK90_RST to bring the RLDQK90 DLL out of reset. memcfg0.s.rldck_rst = 0; memcfg0.s.rldqck90_rst = 0; cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64); cvmx_wait(4000000); /* Wait */ ll_printf("CVMX_DFA_MEMCFG0: 0x%08x DLL out of reset\n", (uint32_t) memcfg0.u64); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64); } //======================================================================= // Now print out the sequence of events: cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x port enables\n", cfg_ptr->dfa_memcfg0_base); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base); cvmx_wait(4000000); /* Wait */ cvmx_write_csr(CVMX_DFA_MEMCFG1, cfg_ptr->dfa_memcfg1_base); ll_printf("CVMX_DFA_MEMCFG1: 0x%08x\n", cfg_ptr->dfa_memcfg1_base); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG1 & ~(1ull<<63), cfg_ptr->dfa_memcfg1_base); if (cfg_ptr->p0_ena ==1) { cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p0bunk0); ll_printf("CVMX_DFA_MEMRLD : 0x%08x p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk0); dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base | (1 << 23) | // P0_INIT (1 << 25) // BUNK_INIT[1:0]=Bunk#0 ); cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p0_init/bunk_init\n", dfa_memcfg0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0); cvmx_wait(RLD_INIT_DELAY); ll_printf("Delay.....\n"); cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x back to base\n", cfg_ptr->dfa_memcfg0_base); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base); } if (cfg_ptr->p1_ena ==1) { cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p1bunk0); ll_printf("CVMX_DFA_MEMRLD : 0x%08x p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk0); dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base | (1 << 24) | // P1_INIT (1 << 25) // BUNK_INIT[1:0]=Bunk#0 ); cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p1_init/bunk_init\n", dfa_memcfg0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0); cvmx_wait(RLD_INIT_DELAY); ll_printf("Delay.....\n"); cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x back to base\n", cfg_ptr->dfa_memcfg0_base); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base); } // P0 Bunk#1 if ((cfg_ptr->p0_ena ==1) && (cfg_ptr->bunkport == 2)) { cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p0bunk1); ll_printf("CVMX_DFA_MEMRLD : 0x%08x p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk1); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk1); dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base | (1 << 23) | // P0_INIT (2 << 25) // BUNK_INIT[1:0]=Bunk#1 ); cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p0_init/bunk_init\n", dfa_memcfg0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0); cvmx_wait(RLD_INIT_DELAY); ll_printf("Delay.....\n"); if (cfg_ptr->p1_ena == 1) { // Re-arm Px_INIT if P1-B1 init is required cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x px_init rearm\n", cfg_ptr->dfa_memcfg0_base); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base); } } if ((cfg_ptr->p1_ena == 1) && (cfg_ptr->bunkport == 2)) { cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p1bunk1); ll_printf("CVMX_DFA_MEMRLD : 0x%08x p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk1); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk1); dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base | (1 << 24) | // P1_INIT (2 << 25) // BUNK_INIT[1:0]=10 ); cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p1_init/bunk_init\n", dfa_memcfg0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0); } cvmx_wait(4000000); // 1/100S, 0.01S, 10mS ll_printf("Delay.....\n"); /* Enable bunks */ dfa_memcfg0 = cfg_ptr->dfa_memcfg0_base |((cfg_ptr->bunkport >= 1) << 25) | ((cfg_ptr->bunkport == 2) << 26); cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0); ll_printf("CVMX_DFA_MEMCFG0: 0x%08x enable bunks\n", dfa_memcfg0); cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0); cvmx_wait(RLD_INIT_DELAY); ll_printf("Delay.....\n"); /* Issue a Silo reset by toggling SILRST in memcfg2. */ memcfg2.u64 = cvmx_read_csr (CVMX_DFA_MEMCFG2); memcfg2.s.silrst = 1; cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64); ll_printf("CVMX_DFA_MEMCFG2: 0x%08x silo reset start\n", (uint32_t) memcfg2.u64); memcfg2.s.silrst = 0; cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64); ll_printf("CVMX_DFA_MEMCFG2: 0x%08x silo reset done\n", (uint32_t) memcfg2.u64); } }