Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ste/@/arm/mv/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ste/@/arm/mv/mv_machdep.c |
/*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45 */ #include "opt_ddb.h" #include "opt_platform.h" #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/arm/mv/mv_machdep.c 224051 2011-07-15 02:29:10Z marcel $"); #define _ARM32_BUS_DMA_PRIVATE #include <sys/param.h> #include <sys/systm.h> #include <sys/sysproto.h> #include <sys/signalvar.h> #include <sys/imgact.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/linker.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/pcpu.h> #include <sys/proc.h> #include <sys/ptrace.h> #include <sys/cons.h> #include <sys/bio.h> #include <sys/bus.h> #include <sys/buf.h> #include <sys/exec.h> #include <sys/kdb.h> #include <sys/msgbuf.h> #include <machine/reg.h> #include <machine/cpu.h> #include <machine/fdt.h> #include <dev/fdt/fdt_common.h> #include <dev/ofw/openfirm.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_object.h> #include <vm/vm_page.h> #include <vm/vm_pager.h> #include <vm/vm_map.h> #include <machine/pte.h> #include <machine/pmap.h> #include <machine/vmparam.h> #include <machine/pcb.h> #include <machine/undefined.h> #include <machine/machdep.h> #include <machine/metadata.h> #include <machine/armreg.h> #include <machine/bus.h> #include <sys/reboot.h> #include <arm/mv/mvreg.h> /* XXX */ #include <arm/mv/mvvar.h> /* XXX eventually this should be eliminated */ #include <arm/mv/mvwin.h> #define DEBUG #undef DEBUG #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif /* * This is the number of L2 page tables required for covering max * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf, * stacks etc.), uprounded to be divisible by 4. */ #define KERNEL_PT_MAX 78 /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #define UND_STACK_SIZE 1 extern unsigned char kernbase[]; extern unsigned char _etext[]; extern unsigned char _edata[]; extern unsigned char __bss_start[]; extern unsigned char _end[]; #ifdef DDB extern vm_offset_t ksym_start, ksym_end; #endif extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; extern vm_offset_t pmap_bootstrap_lastaddr; extern int *end; struct pv_addr kernel_pt_table[KERNEL_PT_MAX]; struct pcpu __pcpu; struct pcpu *pcpup = &__pcpu; /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[10]; vm_paddr_t dump_avail[4]; vm_offset_t physical_pages; vm_offset_t pmap_bootstrap_lastaddr; const struct pmap_devmap *pmap_devmap_bootstrap_table; struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; static struct trapframe proc0_tf; static struct mem_region availmem_regions[FDT_MEM_REGIONS]; static int availmem_regions_sz; static void print_kenv(void); static void print_kernel_section_addr(void); static void physmap_init(void); static int platform_devmap_init(void); static int platform_mpp_init(void); static char * kenv_next(char *cp) { if (cp != NULL) { while (*cp != 0) cp++; cp++; if (*cp == 0) cp = NULL; } return (cp); } static void print_kenv(void) { int len; char *cp; debugf("loader passed (static) kenv:\n"); if (kern_envp == NULL) { debugf(" no env, null ptr\n"); return; } debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp); len = 0; for (cp = kern_envp; cp != NULL; cp = kenv_next(cp)) debugf(" %x %s\n", (uint32_t)cp, cp); } static void print_kernel_section_addr(void) { debugf("kernel image addresses:\n"); debugf(" kernbase = 0x%08x\n", (uint32_t)kernbase); debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext); debugf(" _edata = 0x%08x\n", (uint32_t)_edata); debugf(" __bss_start = 0x%08x\n", (uint32_t)__bss_start); debugf(" _end = 0x%08x\n", (uint32_t)_end); } static void physmap_init(void) { int i, j, cnt; vm_offset_t phys_kernelend, kernload; uint32_t s, e, sz; struct mem_region *mp, *mp1; phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR); kernload = KERNPHYSADDR; /* * Remove kernel physical address range from avail * regions list. Page align all regions. * Non-page aligned memory isn't very interesting to us. * Also, sort the entries for ascending addresses. */ sz = 0; cnt = availmem_regions_sz; debugf("processing avail regions:\n"); for (mp = availmem_regions; mp->mr_size; mp++) { s = mp->mr_start; e = mp->mr_start + mp->mr_size; debugf(" %08x-%08x -> ", s, e); /* Check whether this region holds all of the kernel. */ if (s < kernload && e > phys_kernelend) { availmem_regions[cnt].mr_start = phys_kernelend; availmem_regions[cnt++].mr_size = e - phys_kernelend; e = kernload; } /* Look whether this regions starts within the kernel. */ if (s >= kernload && s < phys_kernelend) { if (e <= phys_kernelend) goto empty; s = phys_kernelend; } /* Now look whether this region ends within the kernel. */ if (e > kernload && e <= phys_kernelend) { if (s >= kernload) { goto empty; } e = kernload; } /* Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; debugf("%08x-%08x = %x\n", s, e, sz); /* Check whether some memory is left here. */ if (sz == 0) { empty: printf("skipping\n"); bcopy(mp + 1, mp, (cnt - (mp - availmem_regions)) * sizeof(*mp)); cnt--; mp--; continue; } /* Do an insertion sort. */ for (mp1 = availmem_regions; mp1 < mp; mp1++) if (s < mp1->mr_start) break; if (mp1 < mp) { bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1); mp1->mr_start = s; mp1->mr_size = sz; } else { mp->mr_start = s; mp->mr_size = sz; } } availmem_regions_sz = cnt; /* Fill in phys_avail table, based on availmem_regions */ debugf("fill in phys_avail:\n"); for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", availmem_regions[i].mr_start, availmem_regions[i].mr_start + availmem_regions[i].mr_size, availmem_regions[i].mr_size); phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + availmem_regions[i].mr_size; } phys_avail[j] = 0; phys_avail[j + 1] = 0; } void * initarm(void *mdp, void *unused __unused) { struct pv_addr kernel_l1pt; struct pv_addr dpcpu; vm_offset_t dtbp, freemempos, l2_start, lastaddr; uint32_t memsize, l2size; void *kmdp; u_int l1pagetable; int i = 0, j = 0; kmdp = NULL; lastaddr = 0; memsize = 0; dtbp = (vm_offset_t)NULL; set_cpufuncs(); /* * Mask metadata pointer: it is supposed to be on page boundary. If * the first argument (mdp) doesn't point to a valid address the * bootloader must have passed us something else than the metadata * ptr... In this case we want to fall back to some built-in settings. */ mdp = (void *)((uint32_t)mdp & ~PAGE_MASK); /* Parse metadata and fetch parameters */ if (mdp != NULL) { preload_metadata = mdp; kmdp = preload_search_by_type("elf kernel"); if (kmdp != NULL) { boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t); lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t); #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); #endif } preload_addr_relocate = KERNVIRTADDR - KERNPHYSADDR; } else { /* Fall back to hardcoded metadata. */ lastaddr = fake_preload_metadata(); } #if defined(FDT_DTB_STATIC) /* * In case the device tree blob was not retrieved (from metadata) try * to use the statically embedded one. */ if (dtbp == (vm_offset_t)NULL) dtbp = (vm_offset_t)&fdt_static_dtb; #endif if (OF_install(OFW_FDT, 0) == FALSE) while (1); if (OF_init((void *)dtbp) != 0) while (1); /* Grab physical memory regions information from device tree. */ if (fdt_get_mem_regions(availmem_regions, &availmem_regions_sz, &memsize) != 0) while(1); if (fdt_immr_addr(MV_BASE) != 0) while (1); /* Platform-specific initialisation */ pmap_bootstrap_lastaddr = fdt_immr_va - ARM_NOCACHE_KVA_SIZE; pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Calculate number of L2 tables needed for mapping vm_page_array */ l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page); l2size = (l2size >> L1_S_SHIFT) + 1; /* * Add one table for end of kernel map, one for stacks, msgbuf and * L1 and L2 tables map and one for vectors map. */ l2size += 3; /* Make it divisible by 4 */ l2size = (l2size + 3) & ~3; #define KERNEL_TEXT_BASE (KERNBASE) freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (i = 0; i < l2size; ++i) { if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[i], L2_TABLE_SIZE / PAGE_SIZE); j = i; } else { kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va + L2_TABLE_SIZE_REAL * (i - j); kernel_pt_table[i].pv_pa = kernel_pt_table[i].pv_va - KERNVIRTADDR + KERNPHYSADDR; } } /* * Allocate a page for the system page mapped to 0x00000000 * or 0xffff0000. This page will just contain the system vectors * and can be shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); init_param1(); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* * Try to map as much as possible of kernel text and data using * 1MB section mapping and for the rest of initial kernel address * space use L2 coarse tables. * * Link L2 tables for mapping remainder of kernel (modulo 1MB) * and kernel structures */ l2_start = lastaddr & ~(L1_S_OFFSET); for (i = 0 ; i < l2size - 1; i++) pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE, &kernel_pt_table[i]); pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE; /* Map kernel code and data */ pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR, (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map L1 directory and allocated L2 page tables */ pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va, kernel_pt_table[0].pv_pa, L2_TABLE_SIZE_REAL * l2size, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map allocated DPCPU, stacks and msgbuf */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, freemempos - dpcpu.pv_va, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Link and map the vector page */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[l2size - 1]); pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map pmap_devmap[] entries */ if (platform_devmap_init() != 0) while (1); pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)); /* * Only after the SOC registers block is mapped we can perform device * tree fixups, as they may attempt to read parameters from hardware. */ OF_interpret("perform-fixup", 0); /* * Re-initialise MPP. It is important to call this prior to using * console as the physical connection can be routed via MPP. */ if (platform_mpp_init() != 0) while (1); cninit(); physmem = memsize / PAGE_SIZE; debugf("initarm: console initialized\n"); debugf(" arg1 mdp = 0x%08x\n", (uint32_t)mdp); debugf(" boothowto = 0x%08x\n", boothowto); printf(" dtbp = 0x%08x\n", (uint32_t)dtbp); print_kernel_section_addr(); print_kenv(); /* * Re-initialise decode windows */ if (soc_decode_win() != 0) printf("WARNING: could not re-initialise decode windows! " "Running with existing settings...\n"); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); proc_linkup0(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_kstack_pages = KSTACK_PAGES; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); dump_avail[0] = 0; dump_avail[1] = memsize; dump_avail[2] = 0; dump_avail[3] = 0; pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt); msgbufp = (void *)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); /* * Prepare map of physical memory regions available to vm subsystem. */ physmap_init(); /* Do basic tuning, hz etc */ init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); } #define MPP_PIN_MAX 50 #define MPP_PIN_CELLS 2 #define MPP_PINS_PER_REG 8 #define MPP_SEL(pin,func) (((func) & 0xf) << \ (((pin) % MPP_PINS_PER_REG) * 4)) static int platform_mpp_init(void) { pcell_t pinmap[MPP_PIN_MAX * MPP_PIN_CELLS]; int mpp[MPP_PIN_MAX]; uint32_t ctrl_val, ctrl_offset; pcell_t reg[4]; u_long start, size; phandle_t node; pcell_t pin_cells, *pinmap_ptr, pin_count; ssize_t len; int par_addr_cells, par_size_cells; int tuple_size, tuples, rv, pins, i, j; int mpp_pin, mpp_function; /* * Try to access the MPP node directly i.e. through /aliases/mpp. */ if ((node = OF_finddevice("mpp")) != 0) if (fdt_is_compatible(node, "mrvl,mpp")) goto moveon; /* * Find the node the long way. */ if ((node = OF_finddevice("/")) == 0) return (ENXIO); if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0) return (ENXIO); if ((node = fdt_find_compatible(node, "mrvl,mpp", 0)) == 0) return (ENXIO); moveon: /* * Process 'reg' prop. */ if ((rv = fdt_addrsize_cells(OF_parent(node), &par_addr_cells, &par_size_cells)) != 0) return(ENXIO); tuple_size = sizeof(pcell_t) * (par_addr_cells + par_size_cells); len = OF_getprop(node, "reg", reg, sizeof(reg)); tuples = len / tuple_size; if (tuple_size <= 0) return (EINVAL); /* * Get address/size. XXX we assume only the first 'reg' tuple is used. */ rv = fdt_data_to_res(reg, par_addr_cells, par_size_cells, &start, &size); if (rv != 0) return (rv); start += fdt_immr_va; /* * Process 'pin-count' and 'pin-map' props. */ if (OF_getprop(node, "pin-count", &pin_count, sizeof(pin_count)) <= 0) return (ENXIO); pin_count = fdt32_to_cpu(pin_count); if (pin_count > MPP_PIN_MAX) return (ERANGE); if (OF_getprop(node, "#pin-cells", &pin_cells, sizeof(pin_cells)) <= 0) pin_cells = MPP_PIN_CELLS; pin_cells = fdt32_to_cpu(pin_cells); if (pin_cells > MPP_PIN_CELLS) return (ERANGE); tuple_size = sizeof(pcell_t) * pin_cells; bzero(pinmap, sizeof(pinmap)); len = OF_getprop(node, "pin-map", pinmap, sizeof(pinmap)); if (len <= 0) return (ERANGE); if (len % tuple_size) return (ERANGE); pins = len / tuple_size; if (pins > pin_count) return (ERANGE); /* * Fill out a "mpp[pin] => function" table. All pins unspecified in * the 'pin-map' property are defaulted to 0 function i.e. GPIO. */ bzero(mpp, sizeof(mpp)); pinmap_ptr = pinmap; for (i = 0; i < pins; i++) { mpp_pin = fdt32_to_cpu(*pinmap_ptr); mpp_function = fdt32_to_cpu(*(pinmap_ptr + 1)); mpp[mpp_pin] = mpp_function; pinmap_ptr += pin_cells; } /* * Prepare and program MPP control register values. */ ctrl_offset = 0; for (i = 0; i < pin_count;) { ctrl_val = 0; for (j = 0; j < MPP_PINS_PER_REG; j++) { if (i + j == pin_count - 1) break; ctrl_val |= MPP_SEL(i + j, mpp[i + j]); } i += MPP_PINS_PER_REG; bus_space_write_4(fdtbus_bs_tag, start, ctrl_offset, ctrl_val); #if defined(SOC_MV_ORION) /* * Third MPP reg on Orion SoC is placed * non-linearly (with different offset). */ if (i == (2 * MPP_PINS_PER_REG)) ctrl_offset = 0x50; else #endif ctrl_offset += 4; } return (0); } #define FDT_DEVMAP_MAX (1 + 2 + 1 + 1) static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = { { 0, 0, 0, 0, 0, } }; /* * Construct pmap_devmap[] with DT-derived config data. */ static int platform_devmap_init(void) { phandle_t root, child; u_long base, size; int i; /* * IMMR range. */ i = 0; fdt_devmap[i].pd_va = fdt_immr_va; fdt_devmap[i].pd_pa = fdt_immr_pa; fdt_devmap[i].pd_size = fdt_immr_size; fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE; fdt_devmap[i].pd_cache = PTE_NOCACHE; i++; /* * PCI range(s). */ if ((root = OF_finddevice("/")) == 0) return (ENXIO); for (child = OF_child(root); child != 0; child = OF_peer(child)) if (fdt_is_type(child, "pci")) { /* * Check space: each PCI node will consume 2 devmap * entries. */ if (i + 1 >= FDT_DEVMAP_MAX) { return (ENOMEM); break; } /* * XXX this should account for PCI and multiple ranges * of a given kind. */ if (fdt_pci_devmap(child, &fdt_devmap[i], MV_PCIE_IO_BASE, MV_PCIE_MEM_BASE) != 0) return (ENXIO); i += 2; } /* * CESA SRAM range. */ if ((child = OF_finddevice("sram")) != 0) if (fdt_is_compatible(child, "mrvl,cesa-sram")) goto moveon; if ((child = fdt_find_compatible(root, "mrvl,cesa-sram", 0)) == 0) /* No CESA SRAM node. */ goto out; moveon: if (i >= FDT_DEVMAP_MAX) return (ENOMEM); if (fdt_regsize(child, &base, &size) != 0) return (EINVAL); fdt_devmap[i].pd_va = MV_CESA_SRAM_BASE; /* XXX */ fdt_devmap[i].pd_pa = base; fdt_devmap[i].pd_size = size; fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE; fdt_devmap[i].pd_cache = PTE_NOCACHE; out: pmap_devmap_bootstrap_table = &fdt_devmap[0]; return (0); } struct arm32_dma_range * bus_dma_get_range(void) { return (NULL); } int bus_dma_get_range_nb(void) { return (0); }