Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ste/@/contrib/dev/acpica/executer/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ste/@/contrib/dev/acpica/executer/exmisc.c |
/****************************************************************************** * * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes * *****************************************************************************/ /* * Copyright (C) 2000 - 2011, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define __EXMISC_C__ #include <contrib/dev/acpica/include/acpi.h> #include <contrib/dev/acpica/include/accommon.h> #include <contrib/dev/acpica/include/acinterp.h> #include <contrib/dev/acpica/include/amlcode.h> #include <contrib/dev/acpica/include/amlresrc.h> #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exmisc") /******************************************************************************* * * FUNCTION: AcpiExGetObjectReference * * PARAMETERS: ObjDesc - Create a reference to this object * ReturnDesc - Where to store the reference * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Obtain and return a "reference" to the target object * Common code for the RefOfOp and the CondRefOfOp. * ******************************************************************************/ ACPI_STATUS AcpiExGetObjectReference ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *ReferenceObj; ACPI_OPERAND_OBJECT *ReferencedObj; ACPI_FUNCTION_TRACE_PTR (ExGetObjectReference, ObjDesc); *ReturnDesc = NULL; switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)) { case ACPI_DESC_TYPE_OPERAND: if (ObjDesc->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * Must be a reference to a Local or Arg */ switch (ObjDesc->Reference.Class) { case ACPI_REFCLASS_LOCAL: case ACPI_REFCLASS_ARG: case ACPI_REFCLASS_DEBUG: /* The referenced object is the pseudo-node for the local/arg */ ReferencedObj = ObjDesc->Reference.Object; break; default: ACPI_ERROR ((AE_INFO, "Unknown Reference Class 0x%2.2X", ObjDesc->Reference.Class)); return_ACPI_STATUS (AE_AML_INTERNAL); } break; case ACPI_DESC_TYPE_NAMED: /* * A named reference that has already been resolved to a Node */ ReferencedObj = ObjDesc; break; default: ACPI_ERROR ((AE_INFO, "Invalid descriptor type 0x%X", ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))); return_ACPI_STATUS (AE_TYPE); } /* Create a new reference object */ ReferenceObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE); if (!ReferenceObj) { return_ACPI_STATUS (AE_NO_MEMORY); } ReferenceObj->Reference.Class = ACPI_REFCLASS_REFOF; ReferenceObj->Reference.Object = ReferencedObj; *ReturnDesc = ReferenceObj; ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Object %p Type [%s], returning Reference %p\n", ObjDesc, AcpiUtGetObjectTypeName (ObjDesc), *ReturnDesc)); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConcatTemplate * * PARAMETERS: Operand0 - First source object * Operand1 - Second source object * ActualReturnDesc - Where to place the return object * WalkState - Current walk state * * RETURN: Status * * DESCRIPTION: Concatenate two resource templates * ******************************************************************************/ ACPI_STATUS AcpiExConcatTemplate ( ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, ACPI_OPERAND_OBJECT **ActualReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *NewBuf; UINT8 *EndTag; ACPI_SIZE Length0; ACPI_SIZE Length1; ACPI_SIZE NewLength; ACPI_FUNCTION_TRACE (ExConcatTemplate); /* * Find the EndTag descriptor in each resource template. * Note1: returned pointers point TO the EndTag, not past it. * Note2: zero-length buffers are allowed; treated like one EndTag */ /* Get the length of the first resource template */ Status = AcpiUtGetResourceEndTag (Operand0, &EndTag); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Length0 = ACPI_PTR_DIFF (EndTag, Operand0->Buffer.Pointer); /* Get the length of the second resource template */ Status = AcpiUtGetResourceEndTag (Operand1, &EndTag); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Length1 = ACPI_PTR_DIFF (EndTag, Operand1->Buffer.Pointer); /* Combine both lengths, minimum size will be 2 for EndTag */ NewLength = Length0 + Length1 + sizeof (AML_RESOURCE_END_TAG); /* Create a new buffer object for the result (with one EndTag) */ ReturnDesc = AcpiUtCreateBufferObject (NewLength); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* * Copy the templates to the new buffer, 0 first, then 1 follows. One * EndTag descriptor is copied from Operand1. */ NewBuf = ReturnDesc->Buffer.Pointer; ACPI_MEMCPY (NewBuf, Operand0->Buffer.Pointer, Length0); ACPI_MEMCPY (NewBuf + Length0, Operand1->Buffer.Pointer, Length1); /* Insert EndTag and set the checksum to zero, means "ignore checksum" */ NewBuf[NewLength - 1] = 0; NewBuf[NewLength - 2] = ACPI_RESOURCE_NAME_END_TAG | 1; /* Return the completed resource template */ *ActualReturnDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExDoConcatenate * * PARAMETERS: Operand0 - First source object * Operand1 - Second source object * ActualReturnDesc - Where to place the return object * WalkState - Current walk state * * RETURN: Status * * DESCRIPTION: Concatenate two objects OF THE SAME TYPE. * ******************************************************************************/ ACPI_STATUS AcpiExDoConcatenate ( ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, ACPI_OPERAND_OBJECT **ActualReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1; ACPI_OPERAND_OBJECT *ReturnDesc; char *NewBuf; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExDoConcatenate); /* * Convert the second operand if necessary. The first operand * determines the type of the second operand, (See the Data Types * section of the ACPI specification.) Both object types are * guaranteed to be either Integer/String/Buffer by the operand * resolution mechanism. */ switch (Operand0->Common.Type) { case ACPI_TYPE_INTEGER: Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16); break; case ACPI_TYPE_STRING: Status = AcpiExConvertToString (Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERT_HEX); break; case ACPI_TYPE_BUFFER: Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1); break; default: ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X", Operand0->Common.Type)); Status = AE_AML_INTERNAL; } if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Both operands are now known to be the same object type * (Both are Integer, String, or Buffer), and we can now perform the * concatenation. */ /* * There are three cases to handle: * * 1) Two Integers concatenated to produce a new Buffer * 2) Two Strings concatenated to produce a new String * 3) Two Buffers concatenated to produce a new Buffer */ switch (Operand0->Common.Type) { case ACPI_TYPE_INTEGER: /* Result of two Integers is a Buffer */ /* Need enough buffer space for two integers */ ReturnDesc = AcpiUtCreateBufferObject ((ACPI_SIZE) ACPI_MUL_2 (AcpiGbl_IntegerByteWidth)); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } NewBuf = (char *) ReturnDesc->Buffer.Pointer; /* Copy the first integer, LSB first */ ACPI_MEMCPY (NewBuf, &Operand0->Integer.Value, AcpiGbl_IntegerByteWidth); /* Copy the second integer (LSB first) after the first */ ACPI_MEMCPY (NewBuf + AcpiGbl_IntegerByteWidth, &LocalOperand1->Integer.Value, AcpiGbl_IntegerByteWidth); break; case ACPI_TYPE_STRING: /* Result of two Strings is a String */ ReturnDesc = AcpiUtCreateStringObject ( ((ACPI_SIZE) Operand0->String.Length + LocalOperand1->String.Length)); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } NewBuf = ReturnDesc->String.Pointer; /* Concatenate the strings */ ACPI_STRCPY (NewBuf, Operand0->String.Pointer); ACPI_STRCPY (NewBuf + Operand0->String.Length, LocalOperand1->String.Pointer); break; case ACPI_TYPE_BUFFER: /* Result of two Buffers is a Buffer */ ReturnDesc = AcpiUtCreateBufferObject ( ((ACPI_SIZE) Operand0->Buffer.Length + LocalOperand1->Buffer.Length)); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } NewBuf = (char *) ReturnDesc->Buffer.Pointer; /* Concatenate the buffers */ ACPI_MEMCPY (NewBuf, Operand0->Buffer.Pointer, Operand0->Buffer.Length); ACPI_MEMCPY (NewBuf + Operand0->Buffer.Length, LocalOperand1->Buffer.Pointer, LocalOperand1->Buffer.Length); break; default: /* Invalid object type, should not happen here */ ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X", Operand0->Common.Type)); Status =AE_AML_INTERNAL; goto Cleanup; } *ActualReturnDesc = ReturnDesc; Cleanup: if (LocalOperand1 != Operand1) { AcpiUtRemoveReference (LocalOperand1); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExDoMathOp * * PARAMETERS: Opcode - AML opcode * Integer0 - Integer operand #0 * Integer1 - Integer operand #1 * * RETURN: Integer result of the operation * * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the * math functions here is to prevent a lot of pointer dereferencing * to obtain the operands. * ******************************************************************************/ UINT64 AcpiExDoMathOp ( UINT16 Opcode, UINT64 Integer0, UINT64 Integer1) { ACPI_FUNCTION_ENTRY (); switch (Opcode) { case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */ return (Integer0 + Integer1); case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */ return (Integer0 & Integer1); case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */ return (~(Integer0 & Integer1)); case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */ return (Integer0 | Integer1); case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */ return (~(Integer0 | Integer1)); case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */ return (Integer0 ^ Integer1); case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */ return (Integer0 * Integer1); case AML_SHIFT_LEFT_OP: /* ShiftLeft (Operand, ShiftCount, Result)*/ /* * We need to check if the shiftcount is larger than the integer bit * width since the behavior of this is not well-defined in the C language. */ if (Integer1 >= AcpiGbl_IntegerBitWidth) { return (0); } return (Integer0 << Integer1); case AML_SHIFT_RIGHT_OP: /* ShiftRight (Operand, ShiftCount, Result) */ /* * We need to check if the shiftcount is larger than the integer bit * width since the behavior of this is not well-defined in the C language. */ if (Integer1 >= AcpiGbl_IntegerBitWidth) { return (0); } return (Integer0 >> Integer1); case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */ return (Integer0 - Integer1); default: return (0); } } /******************************************************************************* * * FUNCTION: AcpiExDoLogicalNumericOp * * PARAMETERS: Opcode - AML opcode * Integer0 - Integer operand #0 * Integer1 - Integer operand #1 * LogicalResult - TRUE/FALSE result of the operation * * RETURN: Status * * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric * operators (LAnd and LOr), both operands must be integers. * * Note: cleanest machine code seems to be produced by the code * below, rather than using statements of the form: * Result = (Integer0 && Integer1); * ******************************************************************************/ ACPI_STATUS AcpiExDoLogicalNumericOp ( UINT16 Opcode, UINT64 Integer0, UINT64 Integer1, BOOLEAN *LogicalResult) { ACPI_STATUS Status = AE_OK; BOOLEAN LocalResult = FALSE; ACPI_FUNCTION_TRACE (ExDoLogicalNumericOp); switch (Opcode) { case AML_LAND_OP: /* LAnd (Integer0, Integer1) */ if (Integer0 && Integer1) { LocalResult = TRUE; } break; case AML_LOR_OP: /* LOr (Integer0, Integer1) */ if (Integer0 || Integer1) { LocalResult = TRUE; } break; default: Status = AE_AML_INTERNAL; break; } /* Return the logical result and status */ *LogicalResult = LocalResult; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExDoLogicalOp * * PARAMETERS: Opcode - AML opcode * Operand0 - operand #0 * Operand1 - operand #1 * LogicalResult - TRUE/FALSE result of the operation * * RETURN: Status * * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the * functions here is to prevent a lot of pointer dereferencing * to obtain the operands and to simplify the generation of the * logical value. For the Numeric operators (LAnd and LOr), both * operands must be integers. For the other logical operators, * operands can be any combination of Integer/String/Buffer. The * first operand determines the type to which the second operand * will be converted. * * Note: cleanest machine code seems to be produced by the code * below, rather than using statements of the form: * Result = (Operand0 == Operand1); * ******************************************************************************/ ACPI_STATUS AcpiExDoLogicalOp ( UINT16 Opcode, ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, BOOLEAN *LogicalResult) { ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1; UINT64 Integer0; UINT64 Integer1; UINT32 Length0; UINT32 Length1; ACPI_STATUS Status = AE_OK; BOOLEAN LocalResult = FALSE; int Compare; ACPI_FUNCTION_TRACE (ExDoLogicalOp); /* * Convert the second operand if necessary. The first operand * determines the type of the second operand, (See the Data Types * section of the ACPI 3.0+ specification.) Both object types are * guaranteed to be either Integer/String/Buffer by the operand * resolution mechanism. */ switch (Operand0->Common.Type) { case ACPI_TYPE_INTEGER: Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16); break; case ACPI_TYPE_STRING: Status = AcpiExConvertToString (Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERT_HEX); break; case ACPI_TYPE_BUFFER: Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1); break; default: Status = AE_AML_INTERNAL; break; } if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Two cases: 1) Both Integers, 2) Both Strings or Buffers */ if (Operand0->Common.Type == ACPI_TYPE_INTEGER) { /* * 1) Both operands are of type integer * Note: LocalOperand1 may have changed above */ Integer0 = Operand0->Integer.Value; Integer1 = LocalOperand1->Integer.Value; switch (Opcode) { case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */ if (Integer0 == Integer1) { LocalResult = TRUE; } break; case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */ if (Integer0 > Integer1) { LocalResult = TRUE; } break; case AML_LLESS_OP: /* LLess (Operand0, Operand1) */ if (Integer0 < Integer1) { LocalResult = TRUE; } break; default: Status = AE_AML_INTERNAL; break; } } else { /* * 2) Both operands are Strings or both are Buffers * Note: Code below takes advantage of common Buffer/String * object fields. LocalOperand1 may have changed above. Use * memcmp to handle nulls in buffers. */ Length0 = Operand0->Buffer.Length; Length1 = LocalOperand1->Buffer.Length; /* Lexicographic compare: compare the data bytes */ Compare = ACPI_MEMCMP (Operand0->Buffer.Pointer, LocalOperand1->Buffer.Pointer, (Length0 > Length1) ? Length1 : Length0); switch (Opcode) { case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */ /* Length and all bytes must be equal */ if ((Length0 == Length1) && (Compare == 0)) { /* Length and all bytes match ==> TRUE */ LocalResult = TRUE; } break; case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */ if (Compare > 0) { LocalResult = TRUE; goto Cleanup; /* TRUE */ } if (Compare < 0) { goto Cleanup; /* FALSE */ } /* Bytes match (to shortest length), compare lengths */ if (Length0 > Length1) { LocalResult = TRUE; } break; case AML_LLESS_OP: /* LLess (Operand0, Operand1) */ if (Compare > 0) { goto Cleanup; /* FALSE */ } if (Compare < 0) { LocalResult = TRUE; goto Cleanup; /* TRUE */ } /* Bytes match (to shortest length), compare lengths */ if (Length0 < Length1) { LocalResult = TRUE; } break; default: Status = AE_AML_INTERNAL; break; } } Cleanup: /* New object was created if implicit conversion performed - delete */ if (LocalOperand1 != Operand1) { AcpiUtRemoveReference (LocalOperand1); } /* Return the logical result and status */ *LogicalResult = LocalResult; return_ACPI_STATUS (Status); }