Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/stge/@/arm/arm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/stge/@/arm/arm/busdma_machdep.c |
/*- * Copyright (c) 2004 Olivier Houchard * Copyright (c) 2002 Peter Grehan * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From i386/busdma_machdep.c,v 1.26 2002/04/19 22:58:09 alfred */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/arm/arm/busdma_machdep.c 236085 2012-05-26 09:13:24Z marius $"); /* * ARM bus dma support routines */ #define _ARM32_BUS_DMA_PRIVATE #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/bus.h> #include <sys/interrupt.h> #include <sys/lock.h> #include <sys/proc.h> #include <sys/mutex.h> #include <sys/mbuf.h> #include <sys/uio.h> #include <sys/ktr.h> #include <sys/kernel.h> #include <sys/sysctl.h> #include <vm/vm.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <machine/atomic.h> #include <machine/bus.h> #include <machine/cpufunc.h> #include <machine/md_var.h> #define MAX_BPAGES 64 #define BUS_DMA_COULD_BOUNCE BUS_DMA_BUS3 #define BUS_DMA_MIN_ALLOC_COMP BUS_DMA_BUS4 struct bounce_zone; struct bus_dma_tag { bus_dma_tag_t parent; bus_size_t alignment; bus_size_t boundary; bus_addr_t lowaddr; bus_addr_t highaddr; bus_dma_filter_t *filter; void *filterarg; bus_size_t maxsize; u_int nsegments; bus_size_t maxsegsz; int flags; int ref_count; int map_count; bus_dma_lock_t *lockfunc; void *lockfuncarg; /* * DMA range for this tag. If the page doesn't fall within * one of these ranges, an error is returned. The caller * may then decide what to do with the transfer. If the * range pointer is NULL, it is ignored. */ struct arm32_dma_range *ranges; int _nranges; struct bounce_zone *bounce_zone; }; struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ vm_offset_t vaddr_nocache; /* kva of bounce buffer uncached */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; int busdma_swi_pending; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; static int total_bpages; static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list; SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); #define DMAMAP_LINEAR 0x1 #define DMAMAP_MBUF 0x2 #define DMAMAP_UIO 0x4 #define DMAMAP_ALLOCATED 0x10 #define DMAMAP_TYPE_MASK (DMAMAP_LINEAR|DMAMAP_MBUF|DMAMAP_UIO) #define DMAMAP_COHERENT 0x8 struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; int flags; void *buffer; void *origbuffer; void *allocbuffer; TAILQ_ENTRY(bus_dmamap) freelist; int len; STAILQ_ENTRY(bus_dmamap) links; bus_dmamap_callback_t *callback; void *callback_arg; }; static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist; static TAILQ_HEAD(,bus_dmamap) dmamap_freelist = TAILQ_HEAD_INITIALIZER(dmamap_freelist); #define BUSDMA_STATIC_MAPS 500 static struct bus_dmamap map_pool[BUSDMA_STATIC_MAPS]; static struct mtx busdma_mtx; MTX_SYSINIT(busdma_mtx, &busdma_mtx, "busdma lock", MTX_DEF); static void init_bounce_pages(void *dummy); static int alloc_bounce_zone(bus_dma_tag_t dmat); static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_size_t size); static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage); /* Default tag, as most drivers provide no parent tag. */ bus_dma_tag_t arm_root_dma_tag; /* * Return true if a match is made. * * To find a match walk the chain of bus_dma_tag_t's looking for 'paddr'. * * If paddr is within the bounds of the dma tag then call the filter callback * to check for a match, if there is no filter callback then assume a match. */ static int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr) { int retval; retval = 0; do { if (((paddr > dmat->lowaddr && paddr <= dmat->highaddr) || ((paddr & (dmat->alignment - 1)) != 0)) && (dmat->filter == NULL || (*dmat->filter)(dmat->filterarg, paddr) != 0)) retval = 1; dmat = dmat->parent; } while (retval == 0 && dmat != NULL); return (retval); } static void arm_dmamap_freelist_init(void *dummy) { int i; for (i = 0; i < BUSDMA_STATIC_MAPS; i++) TAILQ_INSERT_HEAD(&dmamap_freelist, &map_pool[i], freelist); } SYSINIT(busdma, SI_SUB_VM, SI_ORDER_ANY, arm_dmamap_freelist_init, NULL); /* * Check to see if the specified page is in an allowed DMA range. */ static __inline int bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dma_segment_t *segs, bus_dmamap_t map, void *buf, bus_size_t buflen, struct pmap *pmap, int flags, vm_offset_t *lastaddrp, int *segp); static __inline int _bus_dma_can_bounce(vm_offset_t lowaddr, vm_offset_t highaddr) { int i; for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) { if ((lowaddr >= phys_avail[i] && lowaddr <= phys_avail[i + 1]) || (lowaddr < phys_avail[i] && highaddr > phys_avail[i])) return (1); } return (0); } static __inline struct arm32_dma_range * _bus_dma_inrange(struct arm32_dma_range *ranges, int nranges, bus_addr_t curaddr) { struct arm32_dma_range *dr; int i; for (i = 0, dr = ranges; i < nranges; i++, dr++) { if (curaddr >= dr->dr_sysbase && round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len)) return (dr); } return (NULL); } /* * Convenience function for manipulating driver locks from busdma (during * busdma_swi, for example). Drivers that don't provide their own locks * should specify &Giant to dmat->lockfuncarg. Drivers that use their own * non-mutex locking scheme don't have to use this at all. */ void busdma_lock_mutex(void *arg, bus_dma_lock_op_t op) { struct mtx *dmtx; dmtx = (struct mtx *)arg; switch (op) { case BUS_DMA_LOCK: mtx_lock(dmtx); break; case BUS_DMA_UNLOCK: mtx_unlock(dmtx); break; default: panic("Unknown operation 0x%x for busdma_lock_mutex!", op); } } /* * dflt_lock should never get called. It gets put into the dma tag when * lockfunc == NULL, which is only valid if the maps that are associated * with the tag are meant to never be defered. * XXX Should have a way to identify which driver is responsible here. */ static void dflt_lock(void *arg, bus_dma_lock_op_t op) { #ifdef INVARIANTS panic("driver error: busdma dflt_lock called"); #else printf("DRIVER_ERROR: busdma dflt_lock called\n"); #endif } static __inline bus_dmamap_t _busdma_alloc_dmamap(void) { bus_dmamap_t map; mtx_lock(&busdma_mtx); map = TAILQ_FIRST(&dmamap_freelist); if (map) TAILQ_REMOVE(&dmamap_freelist, map, freelist); mtx_unlock(&busdma_mtx); if (!map) { map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT | M_ZERO); if (map) map->flags = DMAMAP_ALLOCATED; } else map->flags = 0; STAILQ_INIT(&map->bpages); return (map); } static __inline void _busdma_free_dmamap(bus_dmamap_t map) { if (map->flags & DMAMAP_ALLOCATED) free(map, M_DEVBUF); else { mtx_lock(&busdma_mtx); TAILQ_INSERT_HEAD(&dmamap_freelist, map, freelist); mtx_unlock(&busdma_mtx); } } /* * Allocate a device specific dma_tag. */ #define SEG_NB 1024 int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error = 0; /* Return a NULL tag on failure */ *dmat = NULL; if (!parent) parent = arm_root_dma_tag; newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF, M_NOWAIT); if (newtag == NULL) { CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, 0, error); return (ENOMEM); } newtag->parent = parent; newtag->alignment = alignment; newtag->boundary = boundary; newtag->lowaddr = trunc_page((vm_offset_t)lowaddr) + (PAGE_SIZE - 1); newtag->highaddr = trunc_page((vm_offset_t)highaddr) + (PAGE_SIZE - 1); newtag->filter = filter; newtag->filterarg = filterarg; newtag->maxsize = maxsize; newtag->nsegments = nsegments; newtag->maxsegsz = maxsegsz; newtag->flags = flags; newtag->ref_count = 1; /* Count ourself */ newtag->map_count = 0; newtag->ranges = bus_dma_get_range(); newtag->_nranges = bus_dma_get_range_nb(); if (lockfunc != NULL) { newtag->lockfunc = lockfunc; newtag->lockfuncarg = lockfuncarg; } else { newtag->lockfunc = dflt_lock; newtag->lockfuncarg = NULL; } /* * Take into account any restrictions imposed by our parent tag */ if (parent != NULL) { newtag->lowaddr = min(parent->lowaddr, newtag->lowaddr); newtag->highaddr = max(parent->highaddr, newtag->highaddr); if (newtag->boundary == 0) newtag->boundary = parent->boundary; else if (parent->boundary != 0) newtag->boundary = min(parent->boundary, newtag->boundary); if ((newtag->filter != NULL) || ((parent->flags & BUS_DMA_COULD_BOUNCE) != 0)) newtag->flags |= BUS_DMA_COULD_BOUNCE; if (newtag->filter == NULL) { /* * Short circuit looking at our parent directly * since we have encapsulated all of its information */ newtag->filter = parent->filter; newtag->filterarg = parent->filterarg; newtag->parent = parent->parent; } if (newtag->parent != NULL) atomic_add_int(&parent->ref_count, 1); } if (_bus_dma_can_bounce(newtag->lowaddr, newtag->highaddr) || newtag->alignment > 1) newtag->flags |= BUS_DMA_COULD_BOUNCE; if (((newtag->flags & BUS_DMA_COULD_BOUNCE) != 0) && (flags & BUS_DMA_ALLOCNOW) != 0) { struct bounce_zone *bz; /* Must bounce */ if ((error = alloc_bounce_zone(newtag)) != 0) { free(newtag, M_DEVBUF); return (error); } bz = newtag->bounce_zone; if (ptoa(bz->total_bpages) < maxsize) { int pages; pages = atop(maxsize) - bz->total_bpages; /* Add pages to our bounce pool */ if (alloc_bounce_pages(newtag, pages) < pages) error = ENOMEM; } /* Performed initial allocation */ newtag->flags |= BUS_DMA_MIN_ALLOC_COMP; } else newtag->bounce_zone = NULL; if (error != 0) free(newtag, M_DEVBUF); else *dmat = newtag; CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->flags : 0), error); return (error); } int bus_dma_tag_destroy(bus_dma_tag_t dmat) { #ifdef KTR bus_dma_tag_t dmat_copy = dmat; #endif if (dmat != NULL) { if (dmat->map_count != 0) return (EBUSY); while (dmat != NULL) { bus_dma_tag_t parent; parent = dmat->parent; atomic_subtract_int(&dmat->ref_count, 1); if (dmat->ref_count == 0) { free(dmat, M_DEVBUF); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } CTR2(KTR_BUSDMA, "%s tag %p", __func__, dmat_copy); return (0); } #include <sys/kdb.h> /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { bus_dmamap_t newmap; int error = 0; newmap = _busdma_alloc_dmamap(); if (newmap == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } *mapp = newmap; newmap->dmat = dmat; newmap->allocbuffer = NULL; dmat->map_count++; /* * Bouncing might be required if the driver asks for an active * exclusion region, a data alignment that is stricter than 1, and/or * an active address boundary. */ if (dmat->flags & BUS_DMA_COULD_BOUNCE) { /* Must bounce */ struct bounce_zone *bz; int maxpages; if (dmat->bounce_zone == NULL) { if ((error = alloc_bounce_zone(dmat)) != 0) { _busdma_free_dmamap(newmap); *mapp = NULL; return (error); } } bz = dmat->bounce_zone; /* Initialize the new map */ STAILQ_INIT(&((*mapp)->bpages)); /* * Attempt to add pages to our pool on a per-instance * basis up to a sane limit. */ maxpages = MAX_BPAGES; if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 || (bz->map_count > 0 && bz->total_bpages < maxpages)) { int pages; pages = MAX(atop(dmat->maxsize), 1); pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 1); if (alloc_bounce_pages(dmat, pages) < pages) error = ENOMEM; if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0) { if (error == 0) dmat->flags |= BUS_DMA_MIN_ALLOC_COMP; } else { error = 0; } } bz->map_count++; } CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, error); return (0); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { if (STAILQ_FIRST(&map->bpages) != NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY); return (EBUSY); } _busdma_free_dmamap(map); if (dmat->bounce_zone) dmat->bounce_zone->map_count--; dmat->map_count--; CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat); return (0); } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { bus_dmamap_t newmap = NULL; int mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; newmap = _busdma_alloc_dmamap(); if (newmap == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, ENOMEM); return (ENOMEM); } dmat->map_count++; *mapp = newmap; newmap->dmat = dmat; if (dmat->maxsize <= PAGE_SIZE && (dmat->alignment < dmat->maxsize) && !_bus_dma_can_bounce(dmat->lowaddr, dmat->highaddr)) { *vaddr = malloc(dmat->maxsize, M_DEVBUF, mflags); } else { /* * XXX Use Contigmalloc until it is merged into this facility * and handles multi-seg allocations. Nobody is doing * multi-seg allocations yet though. */ *vaddr = contigmalloc(dmat->maxsize, M_DEVBUF, mflags, 0ul, dmat->lowaddr, dmat->alignment? dmat->alignment : 1ul, dmat->boundary); } if (*vaddr == NULL) { if (newmap != NULL) { _busdma_free_dmamap(newmap); dmat->map_count--; } *mapp = NULL; return (ENOMEM); } if (flags & BUS_DMA_COHERENT) { void *tmpaddr = arm_remap_nocache( (void *)((vm_offset_t)*vaddr &~ PAGE_MASK), dmat->maxsize + ((vm_offset_t)*vaddr & PAGE_MASK)); if (tmpaddr) { tmpaddr = (void *)((vm_offset_t)(tmpaddr) + ((vm_offset_t)*vaddr & PAGE_MASK)); newmap->origbuffer = *vaddr; newmap->allocbuffer = tmpaddr; *vaddr = tmpaddr; } else newmap->origbuffer = newmap->allocbuffer = NULL; } else newmap->origbuffer = newmap->allocbuffer = NULL; return (0); } /* * Free a piece of memory and it's allocated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { if (map->allocbuffer) { KASSERT(map->allocbuffer == vaddr, ("Trying to freeing the wrong DMA buffer")); vaddr = map->origbuffer; arm_unmap_nocache(map->allocbuffer, dmat->maxsize + ((vm_offset_t)vaddr & PAGE_MASK)); } if (dmat->maxsize <= PAGE_SIZE && dmat->alignment < dmat->maxsize && !_bus_dma_can_bounce(dmat->lowaddr, dmat->highaddr)) free(vaddr, M_DEVBUF); else { contigfree(vaddr, dmat->maxsize, M_DEVBUF); } dmat->map_count--; _busdma_free_dmamap(map); CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags); } static int _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags) { vm_offset_t vaddr; vm_offset_t vendaddr; bus_addr_t paddr; if ((map->pagesneeded == 0)) { CTR3(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d", dmat->lowaddr, dmat->boundary, dmat->alignment); CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = trunc_page((vm_offset_t)buf); vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { if (__predict_true(pmap == pmap_kernel())) paddr = pmap_kextract(vaddr); else paddr = pmap_extract(pmap, vaddr); if (((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) && run_filter(dmat, paddr) != 0) map->pagesneeded++; vaddr += PAGE_SIZE; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } /* Reserve Necessary Bounce Pages */ if (map->pagesneeded != 0) { mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); } return (0); } /* * Utility function to load a linear buffer. lastaddrp holds state * between invocations (for multiple-buffer loads). segp contains * the starting segment on entrance, and the ending segment on exit. * first indicates if this is the first invocation of this function. */ static __inline int bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dma_segment_t *segs, bus_dmamap_t map, void *buf, bus_size_t buflen, struct pmap *pmap, int flags, vm_offset_t *lastaddrp, int *segp) { bus_size_t sgsize; bus_addr_t curaddr, lastaddr, baddr, bmask; vm_offset_t vaddr = (vm_offset_t)buf; int seg; int error = 0; pd_entry_t *pde; pt_entry_t pte; pt_entry_t *ptep; lastaddr = *lastaddrp; bmask = ~(dmat->boundary - 1); if ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) { error = _bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags); if (error) return (error); } CTR3(KTR_BUSDMA, "lowaddr= %d boundary= %d, " "alignment= %d", dmat->lowaddr, dmat->boundary, dmat->alignment); for (seg = *segp; buflen > 0 ; ) { /* * Get the physical address for this segment. * * XXX Don't support checking for coherent mappings * XXX in user address space. */ if (__predict_true(pmap == pmap_kernel())) { if (pmap_get_pde_pte(pmap, vaddr, &pde, &ptep) == FALSE) return (EFAULT); if (__predict_false(pmap_pde_section(pde))) { if (*pde & L1_S_SUPERSEC) curaddr = (*pde & L1_SUP_FRAME) | (vaddr & L1_SUP_OFFSET); else curaddr = (*pde & L1_S_FRAME) | (vaddr & L1_S_OFFSET); if (*pde & L1_S_CACHE_MASK) { map->flags &= ~DMAMAP_COHERENT; } } else { pte = *ptep; KASSERT((pte & L2_TYPE_MASK) != L2_TYPE_INV, ("INV type")); if (__predict_false((pte & L2_TYPE_MASK) == L2_TYPE_L)) { curaddr = (pte & L2_L_FRAME) | (vaddr & L2_L_OFFSET); if (pte & L2_L_CACHE_MASK) { map->flags &= ~DMAMAP_COHERENT; } } else { curaddr = (pte & L2_S_FRAME) | (vaddr & L2_S_OFFSET); if (pte & L2_S_CACHE_MASK) { map->flags &= ~DMAMAP_COHERENT; } } } } else { curaddr = pmap_extract(pmap, vaddr); map->flags &= ~DMAMAP_COHERENT; } /* * Compute the segment size, and adjust counts. */ sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK); if (sgsize > dmat->maxsegsz) sgsize = dmat->maxsegsz; if (buflen < sgsize) sgsize = buflen; /* * Make sure we don't cross any boundaries. */ if (dmat->boundary > 0) { baddr = (curaddr + dmat->boundary) & bmask; if (sgsize > (baddr - curaddr)) sgsize = (baddr - curaddr); } if (((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) && map->pagesneeded != 0 && run_filter(dmat, curaddr)) curaddr = add_bounce_page(dmat, map, vaddr, sgsize); if (dmat->ranges) { struct arm32_dma_range *dr; dr = _bus_dma_inrange(dmat->ranges, dmat->_nranges, curaddr); if (dr == NULL) return (EINVAL); /* * In a valid DMA range. Translate the physical * memory address to an address in the DMA window. */ curaddr = (curaddr - dr->dr_sysbase) + dr->dr_busbase; } /* * Insert chunk into a segment, coalescing with * the previous segment if possible. */ if (seg >= 0 && curaddr == lastaddr && (segs[seg].ds_len + sgsize) <= dmat->maxsegsz && (dmat->boundary == 0 || (segs[seg].ds_addr & bmask) == (curaddr & bmask))) { segs[seg].ds_len += sgsize; goto segdone; } else { if (++seg >= dmat->nsegments) break; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } if (error) break; segdone: lastaddr = curaddr + sgsize; vaddr += sgsize; buflen -= sgsize; } *segp = seg; *lastaddrp = lastaddr; /* * Did we fit? */ if (buflen != 0) error = EFBIG; /* XXX better return value here? */ return (error); } /* * Map the buffer buf into bus space using the dmamap map. */ int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags) { vm_offset_t lastaddr = 0; int error, nsegs = -1; #ifdef __CC_SUPPORTS_DYNAMIC_ARRAY_INIT bus_dma_segment_t dm_segments[dmat->nsegments]; #else bus_dma_segment_t dm_segments[BUS_DMAMAP_NSEGS]; #endif KASSERT(dmat != NULL, ("dmatag is NULL")); KASSERT(map != NULL, ("dmamap is NULL")); map->callback = callback; map->callback_arg = callback_arg; map->flags &= ~DMAMAP_TYPE_MASK; map->flags |= DMAMAP_LINEAR|DMAMAP_COHERENT; map->buffer = buf; map->len = buflen; error = bus_dmamap_load_buffer(dmat, dm_segments, map, buf, buflen, kernel_pmap, flags, &lastaddr, &nsegs); if (error == EINPROGRESS) return (error); if (error) (*callback)(callback_arg, NULL, 0, error); else (*callback)(callback_arg, dm_segments, nsegs + 1, error); CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, dmat->flags, nsegs + 1, error); return (error); } /* * Like bus_dmamap_load(), but for mbufs. */ int bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dmamap_callback2_t *callback, void *callback_arg, int flags) { #ifdef __CC_SUPPORTS_DYNAMIC_ARRAY_INIT bus_dma_segment_t dm_segments[dmat->nsegments]; #else bus_dma_segment_t dm_segments[BUS_DMAMAP_NSEGS]; #endif int nsegs = -1, error = 0; M_ASSERTPKTHDR(m0); map->flags &= ~DMAMAP_TYPE_MASK; map->flags |= DMAMAP_MBUF | DMAMAP_COHERENT; map->buffer = m0; map->len = 0; if (m0->m_pkthdr.len <= dmat->maxsize) { vm_offset_t lastaddr = 0; struct mbuf *m; for (m = m0; m != NULL && error == 0; m = m->m_next) { if (m->m_len > 0) { error = bus_dmamap_load_buffer(dmat, dm_segments, map, m->m_data, m->m_len, pmap_kernel(), flags, &lastaddr, &nsegs); map->len += m->m_len; } } } else { error = EINVAL; } if (error) { /* * force "no valid mappings" on error in callback. */ (*callback)(callback_arg, dm_segments, 0, 0, error); } else { (*callback)(callback_arg, dm_segments, nsegs + 1, m0->m_pkthdr.len, error); } CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, dmat->flags, error, nsegs + 1); return (error); } int bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dma_segment_t *segs, int *nsegs, int flags) { int error = 0; M_ASSERTPKTHDR(m0); flags |= BUS_DMA_NOWAIT; *nsegs = -1; map->flags &= ~DMAMAP_TYPE_MASK; map->flags |= DMAMAP_MBUF | DMAMAP_COHERENT; map->buffer = m0; map->len = 0; if (m0->m_pkthdr.len <= dmat->maxsize) { vm_offset_t lastaddr = 0; struct mbuf *m; for (m = m0; m != NULL && error == 0; m = m->m_next) { if (m->m_len > 0) { error = bus_dmamap_load_buffer(dmat, segs, map, m->m_data, m->m_len, pmap_kernel(), flags, &lastaddr, nsegs); map->len += m->m_len; } } } else { error = EINVAL; } /* XXX FIXME: Having to increment nsegs is really annoying */ ++*nsegs; CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, dmat->flags, error, *nsegs); return (error); } /* * Like bus_dmamap_load(), but for uios. */ int bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio, bus_dmamap_callback2_t *callback, void *callback_arg, int flags) { vm_offset_t lastaddr = 0; #ifdef __CC_SUPPORTS_DYNAMIC_ARRAY_INIT bus_dma_segment_t dm_segments[dmat->nsegments]; #else bus_dma_segment_t dm_segments[BUS_DMAMAP_NSEGS]; #endif int nsegs, i, error; bus_size_t resid; struct iovec *iov; struct pmap *pmap; resid = uio->uio_resid; iov = uio->uio_iov; map->flags &= ~DMAMAP_TYPE_MASK; map->flags |= DMAMAP_UIO|DMAMAP_COHERENT; map->buffer = uio; map->len = 0; if (uio->uio_segflg == UIO_USERSPACE) { KASSERT(uio->uio_td != NULL, ("bus_dmamap_load_uio: USERSPACE but no proc")); pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace); } else pmap = kernel_pmap; error = 0; nsegs = -1; for (i = 0; i < uio->uio_iovcnt && resid != 0 && !error; i++) { /* * Now at the first iovec to load. Load each iovec * until we have exhausted the residual count. */ bus_size_t minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len; caddr_t addr = (caddr_t) iov[i].iov_base; if (minlen > 0) { error = bus_dmamap_load_buffer(dmat, dm_segments, map, addr, minlen, pmap, flags, &lastaddr, &nsegs); map->len += minlen; resid -= minlen; } } if (error) { /* * force "no valid mappings" on error in callback. */ (*callback)(callback_arg, dm_segments, 0, 0, error); } else { (*callback)(callback_arg, dm_segments, nsegs+1, uio->uio_resid, error); } CTR5(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d nsegs %d", __func__, dmat, dmat->flags, error, nsegs + 1); return (error); } /* * Release the mapping held by map. */ void _bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; map->flags &= ~DMAMAP_TYPE_MASK; while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } return; } static void bus_dmamap_sync_buf(void *buf, int len, bus_dmasync_op_t op) { char _tmp_cl[arm_dcache_align], _tmp_clend[arm_dcache_align]; register_t s; int partial; if ((op & BUS_DMASYNC_PREWRITE) && !(op & BUS_DMASYNC_PREREAD)) { cpu_dcache_wb_range((vm_offset_t)buf, len); cpu_l2cache_wb_range((vm_offset_t)buf, len); } partial = (((vm_offset_t)buf) | len) & arm_dcache_align_mask; if (op & BUS_DMASYNC_PREREAD) { if (!(op & BUS_DMASYNC_PREWRITE) && !partial) { cpu_dcache_inv_range((vm_offset_t)buf, len); cpu_l2cache_inv_range((vm_offset_t)buf, len); } else { cpu_dcache_wbinv_range((vm_offset_t)buf, len); cpu_l2cache_wbinv_range((vm_offset_t)buf, len); } } if (op & BUS_DMASYNC_POSTREAD) { if (partial) { s = intr_disable(); if ((vm_offset_t)buf & arm_dcache_align_mask) memcpy(_tmp_cl, (void *)((vm_offset_t)buf & ~arm_dcache_align_mask), (vm_offset_t)buf & arm_dcache_align_mask); if (((vm_offset_t)buf + len) & arm_dcache_align_mask) memcpy(_tmp_clend, (void *)((vm_offset_t)buf + len), arm_dcache_align - (((vm_offset_t)(buf) + len) & arm_dcache_align_mask)); } cpu_dcache_inv_range((vm_offset_t)buf, len); cpu_l2cache_inv_range((vm_offset_t)buf, len); if (partial) { if ((vm_offset_t)buf & arm_dcache_align_mask) memcpy((void *)((vm_offset_t)buf & ~arm_dcache_align_mask), _tmp_cl, (vm_offset_t)buf & arm_dcache_align_mask); if (((vm_offset_t)buf + len) & arm_dcache_align_mask) memcpy((void *)((vm_offset_t)buf + len), _tmp_clend, arm_dcache_align - (((vm_offset_t)(buf) + len) & arm_dcache_align_mask)); intr_restore(s); } } } static void _bus_dmamap_sync_bp(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; STAILQ_FOREACH(bpage, &map->bpages, links) { if (op & BUS_DMASYNC_PREWRITE) { bcopy((void *)bpage->datavaddr, (void *)(bpage->vaddr_nocache != 0 ? bpage->vaddr_nocache : bpage->vaddr), bpage->datacount); if (bpage->vaddr_nocache == 0) { cpu_dcache_wb_range(bpage->vaddr, bpage->datacount); cpu_l2cache_wb_range(bpage->vaddr, bpage->datacount); } dmat->bounce_zone->total_bounced++; } if (op & BUS_DMASYNC_POSTREAD) { if (bpage->vaddr_nocache == 0) { cpu_dcache_inv_range(bpage->vaddr, bpage->datacount); cpu_l2cache_inv_range(bpage->vaddr, bpage->datacount); } bcopy((void *)(bpage->vaddr_nocache != 0 ? bpage->vaddr_nocache : bpage->vaddr), (void *)bpage->datavaddr, bpage->datacount); dmat->bounce_zone->total_bounced++; } } } static __inline int _bus_dma_buf_is_in_bp(bus_dmamap_t map, void *buf, int len) { struct bounce_page *bpage; STAILQ_FOREACH(bpage, &map->bpages, links) { if ((vm_offset_t)buf >= bpage->datavaddr && (vm_offset_t)buf + len <= bpage->datavaddr + bpage->datacount) return (1); } return (0); } void _bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct mbuf *m; struct uio *uio; int resid; struct iovec *iov; if (op == BUS_DMASYNC_POSTWRITE) return; if (STAILQ_FIRST(&map->bpages)) _bus_dmamap_sync_bp(dmat, map, op); if (map->flags & DMAMAP_COHERENT) return; CTR3(KTR_BUSDMA, "%s: op %x flags %x", __func__, op, map->flags); switch(map->flags & DMAMAP_TYPE_MASK) { case DMAMAP_LINEAR: if (!(_bus_dma_buf_is_in_bp(map, map->buffer, map->len))) bus_dmamap_sync_buf(map->buffer, map->len, op); break; case DMAMAP_MBUF: m = map->buffer; while (m) { if (m->m_len > 0 && !(_bus_dma_buf_is_in_bp(map, m->m_data, m->m_len))) bus_dmamap_sync_buf(m->m_data, m->m_len, op); m = m->m_next; } break; case DMAMAP_UIO: uio = map->buffer; iov = uio->uio_iov; resid = uio->uio_resid; for (int i = 0; i < uio->uio_iovcnt && resid != 0; i++) { bus_size_t minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len; if (minlen > 0) { if (!_bus_dma_buf_is_in_bp(map, iov[i].iov_base, minlen)) bus_dmamap_sync_buf(iov[i].iov_base, minlen, op); resid -= minlen; } } break; default: break; } cpu_drain_writebuf(); } static void init_bounce_pages(void *dummy __unused) { total_bpages = 0; STAILQ_INIT(&bounce_zone_list); STAILQ_INIT(&bounce_map_waitinglist); STAILQ_INIT(&bounce_map_callbacklist); mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF); } SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL); static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if ((dmat->alignment <= bz->alignment) && (dmat->lowaddr >= bz->lowaddr)) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->lowaddr; bz->alignment = MAX(dmat->alignment, PAGE_SIZE); bz->map_count = 0; snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, 0, ""); return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF, M_NOWAIT | M_ZERO); if (bpage == NULL) break; bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); if (bpage->vaddr == 0) { free(bpage, M_DEVBUF); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); bpage->vaddr_nocache = (vm_offset_t)arm_remap_nocache( (void *)bpage->vaddr, PAGE_SIZE); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_size_t size) { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); KASSERT(map != NULL, ("add_bounce_page: bad map %p", map)); bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ bpage->vaddr |= vaddr & PAGE_MASK; bpage->busaddr |= vaddr & PAGE_MASK; } bpage->datavaddr = vaddr; bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bus_dmamap *map; struct bounce_zone *bz; bz = dmat->bounce_zone; bpage->datavaddr = 0; bpage->datacount = 0; if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. Other uses * of this bounce page may need to store a full page of * data and/or assume it starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } mtx_lock(&bounce_lock); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; bz->active_bpages--; if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); busdma_swi_pending = 1; bz->total_deferred++; swi_sched(vm_ih, 0); } } mtx_unlock(&bounce_lock); } void busdma_swi(void) { bus_dma_tag_t dmat; struct bus_dmamap *map; mtx_lock(&bounce_lock); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); mtx_unlock(&bounce_lock); dmat = map->dmat; (dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_LOCK); bus_dmamap_load(map->dmat, map, map->buffer, map->len, map->callback, map->callback_arg, /*flags*/0); (dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_UNLOCK); mtx_lock(&bounce_lock); } mtx_unlock(&bounce_lock); }