Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/stge/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/stge/@/contrib/octeon-sdk/cvmx-l2c.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * * Implementation of the Level 2 Cache (L2C) control, * measurement, and debugging facilities. * * <hr>$Revision: 52004 $<hr> * */ #ifdef CVMX_BUILD_FOR_LINUX_KERNEL #include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx-l2c.h> #include <asm/octeon/cvmx-spinlock.h> #else #if !defined(__FreeBSD__) || !defined(_KERNEL) #include "cvmx-config.h" #endif #include "cvmx.h" #include "cvmx-l2c.h" #include "cvmx-spinlock.h" #include "cvmx-interrupt.h" #endif #ifndef CVMX_BUILD_FOR_LINUX_HOST /* This spinlock is used internally to ensure that only one core is performing ** certain L2 operations at a time. ** ** NOTE: This only protects calls from within a single application - if multiple applications ** or operating systems are running, then it is up to the user program to coordinate between them. */ CVMX_SHARED cvmx_spinlock_t cvmx_l2c_spinlock; #endif CVMX_SHARED cvmx_spinlock_t cvmx_l2c_vrt_spinlock; int cvmx_l2c_get_core_way_partition(uint32_t core) { uint32_t field; /* Validate the core number */ if (core >= cvmx_octeon_num_cores()) return -1; if (OCTEON_IS_MODEL(OCTEON_CN63XX)) return (cvmx_read_csr(CVMX_L2C_WPAR_PPX(core)) & 0xffff); /* Use the lower two bits of the coreNumber to determine the bit offset * of the UMSK[] field in the L2C_SPAR register. */ field = (core & 0x3) * 8; /* Return the UMSK[] field from the appropriate L2C_SPAR register based * on the coreNumber. */ switch (core & 0xC) { case 0x0: return((cvmx_read_csr(CVMX_L2C_SPAR0) & (0xFF << field)) >> field); case 0x4: return((cvmx_read_csr(CVMX_L2C_SPAR1) & (0xFF << field)) >> field); case 0x8: return((cvmx_read_csr(CVMX_L2C_SPAR2) & (0xFF << field)) >> field); case 0xC: return((cvmx_read_csr(CVMX_L2C_SPAR3) & (0xFF << field)) >> field); } return(0); } int cvmx_l2c_set_core_way_partition(uint32_t core, uint32_t mask) { uint32_t field; uint32_t valid_mask; valid_mask = (0x1 << cvmx_l2c_get_num_assoc()) - 1; mask &= valid_mask; /* A UMSK setting which blocks all L2C Ways is an error on some chips */ if (mask == valid_mask && !OCTEON_IS_MODEL(OCTEON_CN63XX)) return -1; /* Validate the core number */ if (core >= cvmx_octeon_num_cores()) return -1; if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { cvmx_write_csr(CVMX_L2C_WPAR_PPX(core), mask); return 0; } /* Use the lower two bits of core to determine the bit offset of the * UMSK[] field in the L2C_SPAR register. */ field = (core & 0x3) * 8; /* Assign the new mask setting to the UMSK[] field in the appropriate * L2C_SPAR register based on the core_num. * */ switch (core & 0xC) { case 0x0: cvmx_write_csr(CVMX_L2C_SPAR0, (cvmx_read_csr(CVMX_L2C_SPAR0) & ~(0xFF << field)) | mask << field); break; case 0x4: cvmx_write_csr(CVMX_L2C_SPAR1, (cvmx_read_csr(CVMX_L2C_SPAR1) & ~(0xFF << field)) | mask << field); break; case 0x8: cvmx_write_csr(CVMX_L2C_SPAR2, (cvmx_read_csr(CVMX_L2C_SPAR2) & ~(0xFF << field)) | mask << field); break; case 0xC: cvmx_write_csr(CVMX_L2C_SPAR3, (cvmx_read_csr(CVMX_L2C_SPAR3) & ~(0xFF << field)) | mask << field); break; } return 0; } int cvmx_l2c_set_hw_way_partition(uint32_t mask) { uint32_t valid_mask; valid_mask = (0x1 << cvmx_l2c_get_num_assoc()) - 1; mask &= valid_mask; /* A UMSK setting which blocks all L2C Ways is an error on some chips */ if (mask == valid_mask && !OCTEON_IS_MODEL(OCTEON_CN63XX)) return -1; if (OCTEON_IS_MODEL(OCTEON_CN63XX)) cvmx_write_csr(CVMX_L2C_WPAR_IOBX(0), mask); else cvmx_write_csr(CVMX_L2C_SPAR4, (cvmx_read_csr(CVMX_L2C_SPAR4) & ~0xFF) | mask); return 0; } int cvmx_l2c_get_hw_way_partition(void) { if (OCTEON_IS_MODEL(OCTEON_CN63XX)) return(cvmx_read_csr(CVMX_L2C_WPAR_IOBX(0)) & 0xffff); else return(cvmx_read_csr(CVMX_L2C_SPAR4) & (0xFF)); } void cvmx_l2c_config_perf(uint32_t counter, cvmx_l2c_event_t event, uint32_t clear_on_read) { if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX)) { cvmx_l2c_pfctl_t pfctl; pfctl.u64 = cvmx_read_csr(CVMX_L2C_PFCTL); switch (counter) { case 0: pfctl.s.cnt0sel = event; pfctl.s.cnt0ena = 1; pfctl.s.cnt0rdclr = clear_on_read; break; case 1: pfctl.s.cnt1sel = event; pfctl.s.cnt1ena = 1; pfctl.s.cnt1rdclr = clear_on_read; break; case 2: pfctl.s.cnt2sel = event; pfctl.s.cnt2ena = 1; pfctl.s.cnt2rdclr = clear_on_read; break; case 3: default: pfctl.s.cnt3sel = event; pfctl.s.cnt3ena = 1; pfctl.s.cnt3rdclr = clear_on_read; break; } cvmx_write_csr(CVMX_L2C_PFCTL, pfctl.u64); } else { cvmx_l2c_tadx_prf_t l2c_tadx_prf; int tad; cvmx_warn("L2C performance counter events are different for this chip, mapping 'event' to cvmx_l2c_tad_event_t\n"); cvmx_warn_if(clear_on_read, "L2C counters don't support clear on read for this chip\n"); l2c_tadx_prf.u64 = cvmx_read_csr(CVMX_L2C_TADX_PRF(0)); switch (counter) { case 0: l2c_tadx_prf.s.cnt0sel = event; break; case 1: l2c_tadx_prf.s.cnt1sel = event; break; case 2: l2c_tadx_prf.s.cnt2sel = event; break; default: case 3: l2c_tadx_prf.s.cnt3sel = event; break; } for (tad=0; tad<CVMX_L2C_TADS; tad++) cvmx_write_csr(CVMX_L2C_TADX_PRF(tad), l2c_tadx_prf.u64); } } uint64_t cvmx_l2c_read_perf(uint32_t counter) { switch (counter) { case 0: if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX)) return(cvmx_read_csr(CVMX_L2C_PFC0)); else { uint64_t counter = 0; int tad; for (tad=0; tad<CVMX_L2C_TADS; tad++) counter += cvmx_read_csr(CVMX_L2C_TADX_PFC0(tad)); return counter; } case 1: if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX)) return(cvmx_read_csr(CVMX_L2C_PFC1)); else { uint64_t counter = 0; int tad; for (tad=0; tad<CVMX_L2C_TADS; tad++) counter += cvmx_read_csr(CVMX_L2C_TADX_PFC1(tad)); return counter; } case 2: if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX)) return(cvmx_read_csr(CVMX_L2C_PFC2)); else { uint64_t counter = 0; int tad; for (tad=0; tad<CVMX_L2C_TADS; tad++) counter += cvmx_read_csr(CVMX_L2C_TADX_PFC2(tad)); return counter; } case 3: default: if (OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN3XXX)) return(cvmx_read_csr(CVMX_L2C_PFC3)); else { uint64_t counter = 0; int tad; for (tad=0; tad<CVMX_L2C_TADS; tad++) counter += cvmx_read_csr(CVMX_L2C_TADX_PFC3(tad)); return counter; } } } #ifndef CVMX_BUILD_FOR_LINUX_HOST /** * @INTERNAL * Helper function use to fault in cache lines for L2 cache locking * * @param addr Address of base of memory region to read into L2 cache * @param len Length (in bytes) of region to fault in */ static void fault_in(uint64_t addr, int len) { volatile char *ptr; volatile char dummy; /* Adjust addr and length so we get all cache lines even for ** small ranges spanning two cache lines */ len += addr & CVMX_CACHE_LINE_MASK; addr &= ~CVMX_CACHE_LINE_MASK; ptr = (volatile char *)cvmx_phys_to_ptr(addr); CVMX_DCACHE_INVALIDATE; /* Invalidate L1 cache to make sure all loads result in data being in L2 */ while (len > 0) { dummy += *ptr; len -= CVMX_CACHE_LINE_SIZE; ptr += CVMX_CACHE_LINE_SIZE; } } int cvmx_l2c_lock_line(uint64_t addr) { if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { int shift = CVMX_L2C_TAG_ADDR_ALIAS_SHIFT; uint64_t assoc = cvmx_l2c_get_num_assoc(); uint64_t tag = addr >> shift; uint64_t index = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, cvmx_l2c_address_to_index(addr) << CVMX_L2C_IDX_ADDR_SHIFT); uint64_t way; cvmx_l2c_tadx_tag_t l2c_tadx_tag; CVMX_CACHE_LCKL2(CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, addr), 0); /* Make sure we were able to lock the line */ for (way = 0; way < assoc; way++) { CVMX_CACHE_LTGL2I(index | (way << shift), 0); CVMX_SYNC; // make sure CVMX_L2C_TADX_TAG is updated l2c_tadx_tag.u64 = cvmx_read_csr(CVMX_L2C_TADX_TAG(0)); if (l2c_tadx_tag.s.valid && l2c_tadx_tag.s.tag == tag) break; } /* Check if a valid line is found */ if (way >= assoc) { //cvmx_dprintf("ERROR: cvmx_l2c_lock_line: line not found for locking at 0x%llx address\n", (unsigned long long)addr); return -1; } /* Check if lock bit is not set */ if (!l2c_tadx_tag.s.lock) { //cvmx_dprintf("ERROR: cvmx_l2c_lock_line: Not able to lock at 0x%llx address\n", (unsigned long long)addr); return -1; } return way; } else { int retval = 0; cvmx_l2c_dbg_t l2cdbg; cvmx_l2c_lckbase_t lckbase; cvmx_l2c_lckoff_t lckoff; cvmx_l2t_err_t l2t_err; cvmx_spinlock_lock(&cvmx_l2c_spinlock); l2cdbg.u64 = 0; lckbase.u64 = 0; lckoff.u64 = 0; /* Clear l2t error bits if set */ l2t_err.u64 = cvmx_read_csr(CVMX_L2T_ERR); l2t_err.s.lckerr = 1; l2t_err.s.lckerr2 = 1; cvmx_write_csr(CVMX_L2T_ERR, l2t_err.u64); addr &= ~CVMX_CACHE_LINE_MASK; /* Set this core as debug core */ l2cdbg.s.ppnum = cvmx_get_core_num(); CVMX_SYNC; cvmx_write_csr(CVMX_L2C_DBG, l2cdbg.u64); cvmx_read_csr(CVMX_L2C_DBG); lckoff.s.lck_offset = 0; /* Only lock 1 line at a time */ cvmx_write_csr(CVMX_L2C_LCKOFF, lckoff.u64); cvmx_read_csr(CVMX_L2C_LCKOFF); if (((cvmx_l2c_cfg_t)(cvmx_read_csr(CVMX_L2C_CFG))).s.idxalias) { int alias_shift = CVMX_L2C_IDX_ADDR_SHIFT + 2 * CVMX_L2_SET_BITS - 1; uint64_t addr_tmp = addr ^ (addr & ((1 << alias_shift) - 1)) >> CVMX_L2_SET_BITS; lckbase.s.lck_base = addr_tmp >> 7; } else { lckbase.s.lck_base = addr >> 7; } lckbase.s.lck_ena = 1; cvmx_write_csr(CVMX_L2C_LCKBASE, lckbase.u64); cvmx_read_csr(CVMX_L2C_LCKBASE); // Make sure it gets there fault_in(addr, CVMX_CACHE_LINE_SIZE); lckbase.s.lck_ena = 0; cvmx_write_csr(CVMX_L2C_LCKBASE, lckbase.u64); cvmx_read_csr(CVMX_L2C_LCKBASE); // Make sure it gets there /* Stop being debug core */ cvmx_write_csr(CVMX_L2C_DBG, 0); cvmx_read_csr(CVMX_L2C_DBG); l2t_err.u64 = cvmx_read_csr(CVMX_L2T_ERR); if (l2t_err.s.lckerr || l2t_err.s.lckerr2) retval = 1; /* We were unable to lock the line */ cvmx_spinlock_unlock(&cvmx_l2c_spinlock); return(retval); } } int cvmx_l2c_lock_mem_region(uint64_t start, uint64_t len) { int retval = 0; /* Round start/end to cache line boundaries */ len += start & CVMX_CACHE_LINE_MASK; start &= ~CVMX_CACHE_LINE_MASK; len = (len + CVMX_CACHE_LINE_MASK) & ~CVMX_CACHE_LINE_MASK; while (len) { retval += cvmx_l2c_lock_line(start); start += CVMX_CACHE_LINE_SIZE; len -= CVMX_CACHE_LINE_SIZE; } return(retval); } void cvmx_l2c_flush(void) { uint64_t assoc, set; uint64_t n_assoc, n_set; n_set = cvmx_l2c_get_num_sets(); n_assoc = cvmx_l2c_get_num_assoc(); if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { uint64_t address; /* These may look like constants, but they aren't... */ int assoc_shift = CVMX_L2C_TAG_ADDR_ALIAS_SHIFT; int set_shift = CVMX_L2C_IDX_ADDR_SHIFT; for (set=0; set < n_set; set++) { for(assoc=0; assoc < n_assoc; assoc++) { address = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, (assoc << assoc_shift) | (set << set_shift)); CVMX_CACHE_WBIL2I(address, 0); } } } else { for (set=0; set < n_set; set++) for(assoc=0; assoc < n_assoc; assoc++) cvmx_l2c_flush_line(assoc, set); } } int cvmx_l2c_unlock_line(uint64_t address) { if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { int assoc; cvmx_l2c_tag_t tag; uint32_t tag_addr; uint32_t index = cvmx_l2c_address_to_index(address); tag_addr = ((address >> CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) & ((1 << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) - 1)); /* For 63XX, we can flush a line by using the physical address directly, ** so finding the cache line used by the address is only required to provide ** the proper return value for the function. */ for(assoc = 0; assoc < CVMX_L2_ASSOC; assoc++) { tag = cvmx_l2c_get_tag(assoc, index); if (tag.s.V && (tag.s.addr == tag_addr)) { CVMX_CACHE_WBIL2(CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, address), 0); return tag.s.L; } } } else { int assoc; cvmx_l2c_tag_t tag; uint32_t tag_addr; uint32_t index = cvmx_l2c_address_to_index(address); /* Compute portion of address that is stored in tag */ tag_addr = ((address >> CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) & ((1 << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) - 1)); for(assoc = 0; assoc < CVMX_L2_ASSOC; assoc++) { tag = cvmx_l2c_get_tag(assoc, index); if (tag.s.V && (tag.s.addr == tag_addr)) { cvmx_l2c_flush_line(assoc, index); return tag.s.L; } } } return 0; } int cvmx_l2c_unlock_mem_region(uint64_t start, uint64_t len) { int num_unlocked = 0; /* Round start/end to cache line boundaries */ len += start & CVMX_CACHE_LINE_MASK; start &= ~CVMX_CACHE_LINE_MASK; len = (len + CVMX_CACHE_LINE_MASK) & ~CVMX_CACHE_LINE_MASK; while (len > 0) { num_unlocked += cvmx_l2c_unlock_line(start); start += CVMX_CACHE_LINE_SIZE; len -= CVMX_CACHE_LINE_SIZE; } return num_unlocked; } /* Internal l2c tag types. These are converted to a generic structure ** that can be used on all chips */ typedef union { uint64_t u64; #if __BYTE_ORDER == __BIG_ENDIAN struct cvmx_l2c_tag_cn50xx { uint64_t reserved : 40; uint64_t V : 1; // Line valid uint64_t D : 1; // Line dirty uint64_t L : 1; // Line locked uint64_t U : 1; // Use, LRU eviction uint64_t addr : 20; // Phys mem addr (33..14) } cn50xx; struct cvmx_l2c_tag_cn30xx { uint64_t reserved : 41; uint64_t V : 1; // Line valid uint64_t D : 1; // Line dirty uint64_t L : 1; // Line locked uint64_t U : 1; // Use, LRU eviction uint64_t addr : 19; // Phys mem addr (33..15) } cn30xx; struct cvmx_l2c_tag_cn31xx { uint64_t reserved : 42; uint64_t V : 1; // Line valid uint64_t D : 1; // Line dirty uint64_t L : 1; // Line locked uint64_t U : 1; // Use, LRU eviction uint64_t addr : 18; // Phys mem addr (33..16) } cn31xx; struct cvmx_l2c_tag_cn38xx { uint64_t reserved : 43; uint64_t V : 1; // Line valid uint64_t D : 1; // Line dirty uint64_t L : 1; // Line locked uint64_t U : 1; // Use, LRU eviction uint64_t addr : 17; // Phys mem addr (33..17) } cn38xx; struct cvmx_l2c_tag_cn58xx { uint64_t reserved : 44; uint64_t V : 1; // Line valid uint64_t D : 1; // Line dirty uint64_t L : 1; // Line locked uint64_t U : 1; // Use, LRU eviction uint64_t addr : 16; // Phys mem addr (33..18) } cn58xx; struct cvmx_l2c_tag_cn58xx cn56xx; /* 2048 sets */ struct cvmx_l2c_tag_cn31xx cn52xx; /* 512 sets */ #endif } __cvmx_l2c_tag_t; /** * @INTERNAL * Function to read a L2C tag. This code make the current core * the 'debug core' for the L2. This code must only be executed by * 1 core at a time. * * @param assoc Association (way) of the tag to dump * @param index Index of the cacheline * * @return The Octeon model specific tag structure. This is translated by a wrapper * function to a generic form that is easier for applications to use. */ static __cvmx_l2c_tag_t __read_l2_tag(uint64_t assoc, uint64_t index) { uint64_t debug_tag_addr = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, (index << 7) + 96); uint64_t core = cvmx_get_core_num(); __cvmx_l2c_tag_t tag_val; uint64_t dbg_addr = CVMX_L2C_DBG; unsigned long flags; cvmx_l2c_dbg_t debug_val; debug_val.u64 = 0; /* For low core count parts, the core number is always small enough ** to stay in the correct field and not set any reserved bits */ debug_val.s.ppnum = core; debug_val.s.l2t = 1; debug_val.s.set = assoc; CVMX_SYNC; /* Make sure core is quiet (no prefetches, etc.) before entering debug mode */ CVMX_DCACHE_INVALIDATE; /* Flush L1 to make sure debug load misses L1 */ cvmx_local_irq_save(flags); /* The following must be done in assembly as when in debug mode all data loads from ** L2 return special debug data, not normal memory contents. Also, interrupts must be disabled, ** since if an interrupt occurs while in debug mode the ISR will get debug data from all its memory ** reads instead of the contents of memory */ asm volatile ( " .set push \n" " .set mips64 \n" " .set noreorder \n" " sd %[dbg_val], 0(%[dbg_addr]) \n" /* Enter debug mode, wait for store */ " ld $0, 0(%[dbg_addr]) \n" " ld %[tag_val], 0(%[tag_addr]) \n" /* Read L2C tag data */ " sd $0, 0(%[dbg_addr]) \n" /* Exit debug mode, wait for store */ " ld $0, 0(%[dbg_addr]) \n" " cache 9, 0($0) \n" /* Invalidate dcache to discard debug data */ " .set pop \n" :[tag_val] "=r" (tag_val): [dbg_addr] "r" (dbg_addr), [dbg_val] "r" (debug_val), [tag_addr] "r" (debug_tag_addr) : "memory"); cvmx_local_irq_restore(flags); return(tag_val); } cvmx_l2c_tag_t cvmx_l2c_get_tag(uint32_t association, uint32_t index) { cvmx_l2c_tag_t tag; tag.u64 = 0; if ((int)association >= cvmx_l2c_get_num_assoc()) { cvmx_dprintf("ERROR: cvmx_l2c_get_tag association out of range\n"); return(tag); } if ((int)index >= cvmx_l2c_get_num_sets()) { cvmx_dprintf("ERROR: cvmx_l2c_get_tag index out of range (arg: %d, max: %d)\n", (int)index, cvmx_l2c_get_num_sets()); return(tag); } if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { cvmx_l2c_tadx_tag_t l2c_tadx_tag; uint64_t address = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, (association << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) | (index << CVMX_L2C_IDX_ADDR_SHIFT)); /* Use L2 cache Index load tag cache instruction, as hardware loads the virtual tag for the L2 cache block with the contents of L2C_TAD0_TAG register. */ CVMX_CACHE_LTGL2I(address, 0); CVMX_SYNC; // make sure CVMX_L2C_TADX_TAG is updated l2c_tadx_tag.u64 = cvmx_read_csr(CVMX_L2C_TADX_TAG(0)); tag.s.V = l2c_tadx_tag.s.valid; tag.s.D = l2c_tadx_tag.s.dirty; tag.s.L = l2c_tadx_tag.s.lock; tag.s.U = l2c_tadx_tag.s.use; tag.s.addr = l2c_tadx_tag.s.tag; } else { __cvmx_l2c_tag_t tmp_tag; /* __read_l2_tag is intended for internal use only */ tmp_tag = __read_l2_tag(association, index); /* Convert all tag structure types to generic version, as it can represent all models */ if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) { tag.s.V = tmp_tag.cn58xx.V; tag.s.D = tmp_tag.cn58xx.D; tag.s.L = tmp_tag.cn58xx.L; tag.s.U = tmp_tag.cn58xx.U; tag.s.addr = tmp_tag.cn58xx.addr; } else if (OCTEON_IS_MODEL(OCTEON_CN38XX)) { tag.s.V = tmp_tag.cn38xx.V; tag.s.D = tmp_tag.cn38xx.D; tag.s.L = tmp_tag.cn38xx.L; tag.s.U = tmp_tag.cn38xx.U; tag.s.addr = tmp_tag.cn38xx.addr; } else if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN52XX)) { tag.s.V = tmp_tag.cn31xx.V; tag.s.D = tmp_tag.cn31xx.D; tag.s.L = tmp_tag.cn31xx.L; tag.s.U = tmp_tag.cn31xx.U; tag.s.addr = tmp_tag.cn31xx.addr; } else if (OCTEON_IS_MODEL(OCTEON_CN30XX)) { tag.s.V = tmp_tag.cn30xx.V; tag.s.D = tmp_tag.cn30xx.D; tag.s.L = tmp_tag.cn30xx.L; tag.s.U = tmp_tag.cn30xx.U; tag.s.addr = tmp_tag.cn30xx.addr; } else if (OCTEON_IS_MODEL(OCTEON_CN50XX)) { tag.s.V = tmp_tag.cn50xx.V; tag.s.D = tmp_tag.cn50xx.D; tag.s.L = tmp_tag.cn50xx.L; tag.s.U = tmp_tag.cn50xx.U; tag.s.addr = tmp_tag.cn50xx.addr; } else { cvmx_dprintf("Unsupported OCTEON Model in %s\n", __FUNCTION__); } } return tag; } #endif uint32_t cvmx_l2c_address_to_index (uint64_t addr) { uint64_t idx = addr >> CVMX_L2C_IDX_ADDR_SHIFT; int indxalias = 0; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { cvmx_l2c_ctl_t l2c_ctl; l2c_ctl.u64 = cvmx_read_csr(CVMX_L2C_CTL); indxalias = !l2c_ctl.s.disidxalias; } else { cvmx_l2c_cfg_t l2c_cfg; l2c_cfg.u64 = cvmx_read_csr(CVMX_L2C_CFG); indxalias = l2c_cfg.s.idxalias; } if (indxalias) { if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { uint32_t a_14_12 = (idx / (CVMX_L2C_MEMBANK_SELECT_SIZE/(1<<CVMX_L2C_IDX_ADDR_SHIFT))) & 0x7; idx ^= idx / cvmx_l2c_get_num_sets(); idx ^= a_14_12; } else { idx ^= ((addr & CVMX_L2C_ALIAS_MASK) >> CVMX_L2C_TAG_ADDR_ALIAS_SHIFT); } } idx &= CVMX_L2C_IDX_MASK; return(idx); } int cvmx_l2c_get_cache_size_bytes(void) { return (cvmx_l2c_get_num_sets() * cvmx_l2c_get_num_assoc() * CVMX_CACHE_LINE_SIZE); } /** * Return log base 2 of the number of sets in the L2 cache * @return */ int cvmx_l2c_get_set_bits(void) { int l2_set_bits; if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)) l2_set_bits = 11; /* 2048 sets */ else if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)) l2_set_bits = 10; /* 1024 sets */ else if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN52XX)) l2_set_bits = 9; /* 512 sets */ else if (OCTEON_IS_MODEL(OCTEON_CN30XX)) l2_set_bits = 8; /* 256 sets */ else if (OCTEON_IS_MODEL(OCTEON_CN50XX)) l2_set_bits = 7; /* 128 sets */ else { cvmx_dprintf("Unsupported OCTEON Model in %s\n", __FUNCTION__); l2_set_bits = 11; /* 2048 sets */ } return(l2_set_bits); } /* Return the number of sets in the L2 Cache */ int cvmx_l2c_get_num_sets(void) { return (1 << cvmx_l2c_get_set_bits()); } /* Return the number of associations in the L2 Cache */ int cvmx_l2c_get_num_assoc(void) { int l2_assoc; if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN38XX)) l2_assoc = 8; else if (OCTEON_IS_MODEL(OCTEON_CN63XX)) l2_assoc = 16; else if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN30XX)) l2_assoc = 4; else { cvmx_dprintf("Unsupported OCTEON Model in %s\n", __FUNCTION__); l2_assoc = 8; } /* Check to see if part of the cache is disabled */ if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { cvmx_mio_fus_dat3_t mio_fus_dat3; mio_fus_dat3.u64 = cvmx_read_csr(CVMX_MIO_FUS_DAT3); /* cvmx_mio_fus_dat3.s.l2c_crip fuses map as follows <2> will be not used for 63xx <1> disables 1/2 ways <0> disables 1/4 ways They are cumulative, so for 63xx: <1> <0> 0 0 16-way 2MB cache 0 1 12-way 1.5MB cache 1 0 8-way 1MB cache 1 1 4-way 512KB cache */ if (mio_fus_dat3.s.l2c_crip == 3) l2_assoc = 4; else if (mio_fus_dat3.s.l2c_crip == 2) l2_assoc = 8; else if (mio_fus_dat3.s.l2c_crip == 1) l2_assoc = 12; } else { cvmx_l2d_fus3_t val; val.u64 = cvmx_read_csr(CVMX_L2D_FUS3); /* Using shifts here, as bit position names are different for each model but they all mean the same. */ if ((val.u64 >> 35) & 0x1) l2_assoc = l2_assoc >> 2; else if ((val.u64 >> 34) & 0x1) l2_assoc = l2_assoc >> 1; } return(l2_assoc); } #ifndef CVMX_BUILD_FOR_LINUX_HOST /** * Flush a line from the L2 cache * This should only be called from one core at a time, as this routine * sets the core to the 'debug' core in order to flush the line. * * @param assoc Association (or way) to flush * @param index Index to flush */ void cvmx_l2c_flush_line(uint32_t assoc, uint32_t index) { /* Check the range of the index. */ if (index > (uint32_t)cvmx_l2c_get_num_sets()) { cvmx_dprintf("ERROR: cvmx_l2c_flush_line index out of range.\n"); return; } /* Check the range of association. */ if (assoc > (uint32_t)cvmx_l2c_get_num_assoc()) { cvmx_dprintf("ERROR: cvmx_l2c_flush_line association out of range.\n"); return; } if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { uint64_t address; /* Create the address based on index and association. Bits<20:17> select the way of the cache block involved in the operation Bits<16:7> of the effect address select the index */ address = CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, (assoc << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT) | (index << CVMX_L2C_IDX_ADDR_SHIFT)); CVMX_CACHE_WBIL2I(address, 0); } else { cvmx_l2c_dbg_t l2cdbg; l2cdbg.u64 = 0; if (!OCTEON_IS_MODEL(OCTEON_CN30XX)) l2cdbg.s.ppnum = cvmx_get_core_num(); l2cdbg.s.finv = 1; l2cdbg.s.set = assoc; cvmx_spinlock_lock(&cvmx_l2c_spinlock); /* Enter debug mode, and make sure all other writes complete before we ** enter debug mode */ CVMX_SYNC; cvmx_write_csr(CVMX_L2C_DBG, l2cdbg.u64); cvmx_read_csr(CVMX_L2C_DBG); CVMX_PREPARE_FOR_STORE (CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, index*CVMX_CACHE_LINE_SIZE), 0); /* Exit debug mode */ CVMX_SYNC; cvmx_write_csr(CVMX_L2C_DBG, 0); cvmx_read_csr(CVMX_L2C_DBG); cvmx_spinlock_unlock(&cvmx_l2c_spinlock); } } #endif #ifndef CVMX_BUILD_FOR_LINUX_HOST /* L2C Virtualization APIs. These APIs are based on Octeon II documentation. */ /** * @INTERNAL * Helper function to decode VALUE to number of allowed virtualization IDS. * Returns L2C_VRT_CTL[NUMID]. * * @param nvid Number of virtual Ids. * @return On success decode to NUMID, or to -1 on failure. */ static inline int __cvmx_l2c_vrt_decode_numid(int nvid) { int bits = -1; int zero_bits = -1; if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { if (nvid < 1 || nvid > CVMX_L2C_VRT_MAX_VIRTID_ALLOWED) { cvmx_dprintf("WARNING: Invalid number of virtual ids(%d) requested, should be <= 64\n", nvid); return bits; } while (nvid) { if ((nvid & 1) == 0) zero_bits++; bits++; nvid >>= 1; } if (bits == 1 || (zero_bits && ((bits - zero_bits) == 1))) return zero_bits; } return -1; } /** * Set maxium number of Virtual IDs allowed in a machine. * * @param nvid Number of virtial ids allowed in a machine. * @return Return 0 on success or -1 on failure. */ int cvmx_l2c_vrt_set_max_virtids(int nvid) { if (OCTEON_IS_MODEL(OCTEON_CN63XX)) { cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); if (l2c_vrt_ctl.s.enable) { cvmx_dprintf("WARNING: Changing number of Virtual Machine IDs is not allowed after Virtualization is enabled\n"); return -1; } if (nvid < 1 || nvid > CVMX_L2C_VRT_MAX_VIRTID_ALLOWED) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_max_virtids: Invalid number of Virtual Machine IDs(%d) requested, max allowed %d\n", nvid, CVMX_L2C_VRT_MAX_VIRTID_ALLOWED); return -1; } /* Calculate the numid based on nvid */ l2c_vrt_ctl.s.numid = __cvmx_l2c_vrt_decode_numid(nvid); cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64); } return 0; } /** * Get maxium number of virtual IDs allowed in a machine. * * @return Return number of virtual machine IDs or -1 on failure. */ int cvmx_l2c_vrt_get_max_virtids(void) { int virtids = -1; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); virtids = 1 << (l2c_vrt_ctl.s.numid + 1); if (virtids > CVMX_L2C_VRT_MAX_VIRTID_ALLOWED) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_get_max_virtids: Invalid number of Virtual IDs initialized (%d)\n", virtids); return -1; } } return virtids; } /** * @INTERNAL * Helper function to decode VALUE to memory space coverage of L2C_VRT_MEM. * Returns L2C_VRT_CTL[MEMSZ]. * * @param memsz Memory in GB. * @return On success, decode to MEMSZ, or on failure return -1. */ static inline int __cvmx_l2c_vrt_decode_memsize(int memsz) { int bits = 0; int zero_bits = 0; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { if (memsz == 0 || memsz > CVMX_L2C_VRT_MAX_MEMSZ_ALLOWED) { cvmx_dprintf("WARNING: Invalid virtual memory size(%d) requested, should be <= %d\n", memsz, CVMX_L2C_VRT_MAX_MEMSZ_ALLOWED); return -1; } while (memsz) { if ((memsz & 1) == 0) zero_bits++; bits++; memsz >>= 1; } if (bits == 1 || (bits - zero_bits) == 1) return zero_bits; } return -1; } /** * Set the maxium size of memory space to be allocated for virtualization. * * @param memsz Size of the virtual memory in GB * @return Return 0 on success or -1 on failure. */ int cvmx_l2c_vrt_set_max_memsz(int memsz) { if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; int decode = 0; l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); if (l2c_vrt_ctl.s.enable) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_memsz: Changing the size of the memory after Virtualization is enabled is not allowed.\n"); return -1; } if (memsz >= (int)(cvmx_sysinfo_get()->system_dram_size / 1000000)) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_memsz: Invalid memory size (%d GB), greater than available on the chip\n", memsz); return -1; } decode = __cvmx_l2c_vrt_decode_memsize(memsz); if (decode == -1) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_set_memsz: Invalid memory size (%d GB), refer to L2C_VRT_CTL[MEMSZ] for more information\n", memsz); return -1; } l2c_vrt_ctl.s.memsz = decode; cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64); } return 0; } /** * Set a Virtual ID to a set of cores. * * @param virtid Assign virtid to a set of cores. * @param coremask The group of cores to assign a unique virtual id. * @return Return 0 on success, otherwise -1. */ int cvmx_l2c_vrt_assign_virtid(int virtid, uint32_t coremask) { uint32_t core = 0; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { int found = 0; int max_virtid = cvmx_l2c_vrt_get_max_virtids(); if (virtid > max_virtid) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_assign_virt_id: Max %d number of virtids are allowed, passed %d.\n", max_virtid, virtid); return -1; } while (core < cvmx_octeon_num_cores()) { if ((coremask >> core) & 1) { cvmx_l2c_virtid_ppx_t l2c_virtid_ppx; cvmx_l2c_virtid_iobx_t l2c_virtid_iobx; l2c_virtid_ppx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_PPX(core)); /* Check if the core already has a virtid assigned. */ if (l2c_virtid_ppx.s.id) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_assign_virt_id: Changing virtid of core #%d to %d from %d.\n", (unsigned int)core, virtid, l2c_virtid_ppx.s.id); /* Flush L2 cache to avoid write errors */ cvmx_l2c_flush(); } cvmx_write_csr(CVMX_L2C_VIRTID_PPX(core), virtid & 0x3f); /* Set the IOB to normal mode. */ l2c_virtid_iobx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_IOBX(core)); l2c_virtid_iobx.s.id = 1; l2c_virtid_iobx.s.dwbid = 0; cvmx_write_csr(CVMX_L2C_VIRTID_IOBX(core), l2c_virtid_iobx.u64); found = 1; } core++; } /* Invalid coremask passed. */ if (!found) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_assign_virt_id: Invalid coremask(0x%x) passed\n", (unsigned int)coremask); return -1; } } return 0; } /** * Remove a virt id assigned to a set of cores. Update the virtid mask and * virtid stored for each core. * * @param virtid Remove the specified Virtualization machine ID. */ void cvmx_l2c_vrt_remove_virtid(int virtid) { if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { uint32_t core; cvmx_l2c_virtid_ppx_t l2c_virtid_ppx; for (core = 0; core < cvmx_octeon_num_cores(); core++) { l2c_virtid_ppx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_PPX(core)); if (virtid == l2c_virtid_ppx.s.id) cvmx_write_csr(CVMX_L2C_VIRTID_PPX(core), 0); } } } /** * Helper function to protect the memory region based on the granularity. */ static uint64_t __cvmx_l2c_vrt_get_granularity(void) { uint64_t gran = 0; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { int nvid; uint64_t szd; cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); nvid = cvmx_l2c_vrt_get_max_virtids(); szd = (1ull << l2c_vrt_ctl.s.memsz) * 1024 * 1024 * 1024; gran = (unsigned long long)(szd * nvid)/(32ull * 1024); } return gran; } /** * Block a memory region to be updated for a given virtual id. * * @param start_addr Starting address of memory region * @param size Size of the memory to protect * @param virtid Virtual ID to use * @param mode Allow/Disallow write access * = 0, Allow write access by virtid * = 1, Disallow write access by virtid */ int cvmx_l2c_vrt_memprotect(uint64_t start_addr, int size, int virtid, int mode) { if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { /* Check the alignment of start address, should be aligned to the granularity. */ uint64_t gran = __cvmx_l2c_vrt_get_granularity(); uint64_t end_addr = start_addr + size; int byte_offset, virtid_offset; cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; cvmx_l2c_vrt_memx_t l2c_vrt_mem; l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); /* No need to protect if virtualization is not enabled */ if (!l2c_vrt_ctl.s.enable) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Virtualization is not enabled.\n"); return -1; } if (virtid > cvmx_l2c_vrt_get_max_virtids()) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Virtualization id is greater than max allowed\n"); return -1; } /* No need to protect if virtid is not assigned to a core */ { cvmx_l2c_virtid_ppx_t l2c_virtid_ppx; int found = 0; uint32_t core; for (core = 0; core < cvmx_octeon_num_cores(); core++) { l2c_virtid_ppx.u64 = cvmx_read_csr(CVMX_L2C_VIRTID_PPX(core)); if (l2c_virtid_ppx.s.id == virtid) { found = 1; break; } } if (found == 0) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Virtualization id (%d) is not assigned to any core.\n", virtid); return -1; } } /* Make sure previous stores are through before protecting the memory. */ CVMX_SYNCW; /* If the L2/DRAM physical address is >= 512 MB, subtract 256 MB to get the address to use. This is because L2C removes the 256MB "hole" between DR0 and DR1. */ if (start_addr >= (512 * 1024 * 1024)) start_addr -= 256 * 1024 * 1024; if (start_addr != ((start_addr + (gran - 1)) & ~(gran - 1))) { cvmx_dprintf("WARNING: cvmx_l2c_vrt_memprotect: Start address is not aligned\n"); return -1; } /* Check the size of the memory to protect, should be aligned to the granularity. */ if (end_addr != ((end_addr + (gran - 1)) & ~(gran - 1))) { end_addr = (start_addr + (gran - 1)) & ~(gran - 1); size = start_addr - end_addr; } byte_offset = l2c_vrt_ctl.s.memsz + l2c_vrt_ctl.s.numid + 16; virtid_offset = 14 - l2c_vrt_ctl.s.numid; cvmx_spinlock_lock(&cvmx_l2c_vrt_spinlock); /* Enable memory protection for each virtid for the specified range. */ while (start_addr < end_addr) { /* When L2C virtualization is enabled and a bit is set in L2C_VRT_MEM(0..1023), then L2C prevents the selected virtual machine from storing to the selected L2C/DRAM region. */ int offset, position, i; int l2c_vrt_mem_bit_index = start_addr >> byte_offset; l2c_vrt_mem_bit_index |= (virtid << virtid_offset); offset = l2c_vrt_mem_bit_index >> 5; position = l2c_vrt_mem_bit_index & 0x1f; l2c_vrt_mem.u64 = cvmx_read_csr(CVMX_L2C_VRT_MEMX(offset)); /* Allow/Disallow write access to memory. */ if (mode == 0) l2c_vrt_mem.s.data &= ~(1 << position); else l2c_vrt_mem.s.data |= 1 << position; l2c_vrt_mem.s.parity = 0; /* PARITY<i> is the even parity of DATA<i*8+7:i*8>, which means that each bit<i> in PARITY[0..3], is the XOR of all the bits in the corresponding byte in DATA. */ for (i = 0; i <= 4; i++) { uint64_t mask = 0xffull << (i*8); if ((cvmx_pop(l2c_vrt_mem.s.data & mask) & 0x1)) l2c_vrt_mem.s.parity |= (1ull << i); } cvmx_write_csr(CVMX_L2C_VRT_MEMX(offset), l2c_vrt_mem.u64); start_addr += gran; } cvmx_spinlock_unlock(&cvmx_l2c_vrt_spinlock); } return 0; } #endif /** * Enable virtualization. * * @param mode Whether out of bound writes are an error. */ void cvmx_l2c_vrt_enable(int mode) { if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; /* Enable global virtualization */ l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); l2c_vrt_ctl.s.ooberr = mode; l2c_vrt_ctl.s.enable = 1; cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64); } } /** * Disable virtualization. */ void cvmx_l2c_vrt_disable(void) { if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { cvmx_l2c_vrt_ctl_t l2c_vrt_ctl; /* Disable global virtualization */ l2c_vrt_ctl.u64 = cvmx_read_csr(CVMX_L2C_VRT_CTL); l2c_vrt_ctl.s.enable = 0; cvmx_write_csr(CVMX_L2C_VRT_CTL, l2c_vrt_ctl.u64); } }