Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/stge/@/dev/ath/ath_hal/ar5212/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/stge/@/dev/ath/ath_hal/ar5212/ar2413.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5212/ar2413.c 187831 2009-01-28 18:00:22Z sam $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ar5212/ar5212.h" #include "ar5212/ar5212reg.h" #include "ar5212/ar5212phy.h" #include "ah_eeprom_v3.h" #define AH_5212_2413 #include "ar5212/ar5212.ini" #define N(a) (sizeof(a)/sizeof(a[0])) struct ar2413State { RF_HAL_FUNCS base; /* public state, must be first */ uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; uint32_t Bank1Data[N(ar5212Bank1_2413)]; uint32_t Bank2Data[N(ar5212Bank2_2413)]; uint32_t Bank3Data[N(ar5212Bank3_2413)]; uint32_t Bank6Data[N(ar5212Bank6_2413)]; uint32_t Bank7Data[N(ar5212Bank7_2413)]; /* * Private state for reduced stack usage. */ /* filled out Vpd table for all pdGains (chanL) */ uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] [MAX_PWR_RANGE_IN_HALF_DB]; /* filled out Vpd table for all pdGains (chanR) */ uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] [MAX_PWR_RANGE_IN_HALF_DB]; /* filled out Vpd table for all pdGains (interpolated) */ uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] [MAX_PWR_RANGE_IN_HALF_DB]; }; #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal) extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits, uint32_t firstBit, uint32_t column); static void ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, int writes) { HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes); HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes); HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes); } /* * Take the MHz channel value and set the Channel value * * ASSUMES: Writes enabled to analog bus */ static HAL_BOOL ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint16_t freq = ath_hal_gethwchannel(ah, chan); uint32_t channelSel = 0; uint32_t bModeSynth = 0; uint32_t aModeRefSel = 0; uint32_t reg32 = 0; OS_MARK(ah, AH_MARK_SETCHANNEL, freq); if (freq < 4800) { uint32_t txctl; if (((freq - 2192) % 5) == 0) { channelSel = ((freq - 672) * 2 - 3040)/10; bModeSynth = 0; } else if (((freq - 2224) % 5) == 0) { channelSel = ((freq - 704) * 2 - 3040) / 10; bModeSynth = 1; } else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } channelSel = (channelSel << 2) & 0xff; channelSel = ath_hal_reverseBits(channelSel, 8); txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } } else if (((freq % 5) == 2) && (freq <= 5435)) { freq = freq - 2; /* Align to even 5MHz raster */ channelSel = ath_hal_reverseBits( (uint32_t)(((freq - 4800)*10)/25 + 1), 8); aModeRefSel = ath_hal_reverseBits(0, 2); } else if ((freq % 20) == 0 && freq >= 5120) { channelSel = ath_hal_reverseBits( ((freq - 4800) / 20 << 2), 8); aModeRefSel = ath_hal_reverseBits(3, 2); } else if ((freq % 10) == 0) { channelSel = ath_hal_reverseBits( ((freq - 4800) / 10 << 1), 8); aModeRefSel = ath_hal_reverseBits(2, 2); } else if ((freq % 5) == 0) { channelSel = ath_hal_reverseBits( (freq - 4800) / 5, 8); aModeRefSel = ath_hal_reverseBits(1, 2); } else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | (1 << 12) | 0x1; OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); reg32 >>= 8; OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); AH_PRIVATE(ah)->ah_curchan = chan; return AH_TRUE; } /* * Reads EEPROM header info from device structure and programs * all rf registers * * REQUIRES: Access to the analog rf device */ static HAL_BOOL ar2413SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t modesIndex, uint16_t *rfXpdGain) { #define RF_BANK_SETUP(_priv, _ix, _col) do { \ int i; \ for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \ (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\ } while (0) struct ath_hal_5212 *ahp = AH5212(ah); const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; uint16_t ob2GHz = 0, db2GHz = 0; struct ar2413State *priv = AR2413(ah); int regWrites = 0; HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", __func__, chan->ic_freq, chan->ic_flags, modesIndex); HALASSERT(priv); /* Setup rf parameters */ if (IEEE80211_IS_CHAN_B(chan)) { ob2GHz = ee->ee_obFor24; db2GHz = ee->ee_dbFor24; } else { ob2GHz = ee->ee_obFor24g; db2GHz = ee->ee_dbFor24g; } /* Bank 1 Write */ RF_BANK_SETUP(priv, 1, 1); /* Bank 2 Write */ RF_BANK_SETUP(priv, 2, modesIndex); /* Bank 3 Write */ RF_BANK_SETUP(priv, 3, modesIndex); /* Bank 6 Write */ RF_BANK_SETUP(priv, 6, modesIndex); ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0); ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0); /* Bank 7 Setup */ RF_BANK_SETUP(priv, 7, modesIndex); /* Write Analog registers */ HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites); HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites); HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites); HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites); HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites); /* Now that we have reprogrammed rfgain value, clear the flag. */ ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; return AH_TRUE; #undef RF_BANK_SETUP } /* * Return a reference to the requested RF Bank. */ static uint32_t * ar2413GetRfBank(struct ath_hal *ah, int bank) { struct ar2413State *priv = AR2413(ah); HALASSERT(priv != AH_NULL); switch (bank) { case 1: return priv->Bank1Data; case 2: return priv->Bank2Data; case 3: return priv->Bank3Data; case 6: return priv->Bank6Data; case 7: return priv->Bank7Data; } HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", __func__, bank); return AH_NULL; } /* * Return indices surrounding the value in sorted integer lists. * * NB: the input list is assumed to be sorted in ascending order */ static void GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, uint32_t *vlo, uint32_t *vhi) { int16_t target = v; const uint16_t *ep = lp+listSize; const uint16_t *tp; /* * Check first and last elements for out-of-bounds conditions. */ if (target < lp[0]) { *vlo = *vhi = 0; return; } if (target >= ep[-1]) { *vlo = *vhi = listSize - 1; return; } /* look for value being near or between 2 values in list */ for (tp = lp; tp < ep; tp++) { /* * If value is close to the current value of the list * then target is not between values, it is one of the values */ if (*tp == target) { *vlo = *vhi = tp - (const uint16_t *) lp; return; } /* * Look for value being between current value and next value * if so return these 2 values */ if (target < tp[1]) { *vlo = tp - (const uint16_t *) lp; *vhi = *vlo + 1; return; } } } /* * Fill the Vpdlist for indices Pmax-Pmin */ static HAL_BOOL ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, const int16_t *pwrList, const uint16_t *VpdList, uint16_t numIntercepts, uint16_t retVpdList[][64]) { uint16_t ii, jj, kk; int16_t currPwr = (int16_t)(2*Pmin); /* since Pmin is pwr*2 and pwrList is 4*pwr */ uint32_t idxL, idxR; ii = 0; jj = 0; if (numIntercepts < 2) return AH_FALSE; while (ii <= (uint16_t)(Pmax - Pmin)) { GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, numIntercepts, &(idxL), &(idxR)); if (idxR < 1) idxR = 1; /* extrapolate below */ if (idxL == (uint32_t)(numIntercepts - 1)) idxL = numIntercepts - 2; /* extrapolate above */ if (pwrList[idxL] == pwrList[idxR]) kk = VpdList[idxL]; else kk = (uint16_t) (((currPwr - pwrList[idxL])*VpdList[idxR]+ (pwrList[idxR] - currPwr)*VpdList[idxL])/ (pwrList[idxR] - pwrList[idxL])); retVpdList[pdGainIdx][ii] = kk; ii++; currPwr += 2; /* half dB steps */ } return AH_TRUE; } /* * Returns interpolated or the scaled up interpolated value */ static int16_t interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, int16_t targetLeft, int16_t targetRight) { int16_t rv; if (srcRight != srcLeft) { rv = ((target - srcLeft)*targetRight + (srcRight - target)*targetLeft) / (srcRight - srcLeft); } else { rv = targetLeft; } return rv; } /* * Uses the data points read from EEPROM to reconstruct the pdadc power table * Called by ar2413SetPowerTable() */ static int ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, const RAW_DATA_STRUCT_2413 *pRawDataset, uint16_t pdGainOverlap_t2, int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], uint16_t pPdGainValues[], uint16_t pPDADCValues[]) { struct ar2413State *priv = AR2413(ah); #define VpdTable_L priv->vpdTable_L #define VpdTable_R priv->vpdTable_R #define VpdTable_I priv->vpdTable_I uint32_t ii, jj, kk; int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ uint32_t idxL, idxR; uint32_t numPdGainsUsed = 0; /* * If desired to support -ve power levels in future, just * change pwr_I_0 to signed 5-bits. */ int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; /* to accomodate -ve power levels later on. */ int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; /* to accomodate -ve power levels later on */ uint16_t numVpd = 0; uint16_t Vpd_step; int16_t tmpVal ; uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; /* Get upper lower index */ GetLowerUpperIndex(channel, pRawDataset->pChannels, pRawDataset->numChannels, &(idxL), &(idxR)); for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; /* work backwards 'cause highest pdGain for lowest power */ numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; if (numVpd > 0) { pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; } Pmin_t2[numPdGainsUsed] = (int16_t) (Pmin_t2[numPdGainsUsed] / 2); Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); ar2413FillVpdTable( numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L ); ar2413FillVpdTable( numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R ); for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { VpdTable_I[numPdGainsUsed][kk] = interpolate_signed( channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); } /* fill VpdTable_I for this pdGain */ numPdGainsUsed++; } /* if this pdGain is used */ } *pMinCalPower = Pmin_t2[0]; kk = 0; /* index for the final table */ for (ii = 0; ii < numPdGainsUsed; ii++) { if (ii == (numPdGainsUsed - 1)) pPdGainBoundaries[ii] = Pmax_t2[ii] + PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; else pPdGainBoundaries[ii] = (uint16_t) ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); if (pPdGainBoundaries[ii] > 63) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: clamp pPdGainBoundaries[%d] %d\n", __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ pPdGainBoundaries[ii] = 63; } /* Find starting index for this pdGain */ if (ii == 0) ss = 0; /* for the first pdGain, start from index 0 */ else ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - pdGainOverlap_t2; Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); /* *-ve ss indicates need to extrapolate data below for this pdGain */ while (ss < 0) { tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); ss++; } sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; while (ss < (int16_t)maxIndex) pPDADCValues[kk++] = VpdTable_I[ii][ss++]; Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - VpdTable_I[ii][sizeCurrVpdTable-2]); Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); /* * for last gain, pdGainBoundary == Pmax_t2, so will * have to extrapolate */ if (tgtIndex > maxIndex) { /* need to extrapolate above */ while(ss < (int16_t)tgtIndex) { tmpVal = (uint16_t) (VpdTable_I[ii][sizeCurrVpdTable-1] + (ss-maxIndex)*Vpd_step); pPDADCValues[kk++] = (tmpVal > 127) ? 127 : tmpVal; ss++; } } /* extrapolated above */ } /* for all pdGainUsed */ while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; ii++; } while (kk < 128) { pPDADCValues[kk] = pPDADCValues[kk-1]; kk++; } return numPdGainsUsed; #undef VpdTable_L #undef VpdTable_R #undef VpdTable_I } static HAL_BOOL ar2413SetPowerTable(struct ath_hal *ah, int16_t *minPower, int16_t *maxPower, const struct ieee80211_channel *chan, uint16_t *rfXpdGain) { uint16_t freq = ath_hal_gethwchannel(ah, chan); struct ath_hal_5212 *ahp = AH5212(ah); const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; uint16_t pdGainOverlap_t2; int16_t minCalPower2413_t2; uint16_t *pdadcValues = ahp->ah_pcdacTable; uint16_t gainBoundaries[4]; uint32_t reg32, regoffset; int i, numPdGainsUsed; #ifndef AH_USE_INIPDGAIN uint32_t tpcrg1; #endif HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", __func__, freq, chan->ic_flags); if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; else if (IEEE80211_IS_CHAN_B(chan)) pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); return AH_FALSE; } pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP); numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah, freq, pRawDataset, pdGainOverlap_t2, &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues); HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); #ifdef AH_USE_INIPDGAIN /* * Use pd_gains curve from eeprom; Atheros always uses * the default curve from the ini file but some vendors * (e.g. Zcomax) want to override this curve and not * honoring their settings results in tx power 5dBm low. */ OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (pRawDataset->pDataPerChannel[0].numPdGains - 1)); #else tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); switch (numPdGainsUsed) { case 3: tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); /* fall thru... */ case 2: tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); /* fall thru... */ case 1: tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); break; } #ifdef AH_DEBUG if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " "pd_gains (default 0x%x, calculated 0x%x)\n", __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); #endif OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); #endif /* * Note the pdadc table may not start at 0 dBm power, could be * negative or greater than 0. Need to offset the power * values by the amount of minPower for griffin */ if (minCalPower2413_t2 != 0) ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2); else ahp->ah_txPowerIndexOffset = 0; /* Finally, write the power values into the baseband power table */ regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ for (i = 0; i < 32; i++) { reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | ((pdadcValues[4*i + 1] & 0xFF) << 8) | ((pdadcValues[4*i + 2] & 0xFF) << 16) | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; OS_REG_WRITE(ah, regoffset, reg32); regoffset += 4; } OS_REG_WRITE(ah, AR_PHY_TPCRG5, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); return AH_TRUE; } static int16_t ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) { uint32_t ii,jj; uint16_t Pmin=0,numVpd; for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; /* work backwards 'cause highest pdGain for lowest power */ numVpd = data->pDataPerPDGain[jj].numVpd; if (numVpd > 0) { Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; return(Pmin); } } return(Pmin); } static int16_t ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) { uint32_t ii; uint16_t Pmax=0,numVpd; for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { /* work forwards cuase lowest pdGain for highest power */ numVpd = data->pDataPerPDGain[ii].numVpd; if (numVpd > 0) { Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; return(Pmax); } } return(Pmax); } static HAL_BOOL ar2413GetChannelMaxMinPower(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *maxPow, int16_t *minPow) { uint16_t freq = chan->ic_freq; /* NB: never mapped */ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL; uint16_t numChannels; int totalD,totalF, totalMin,last, i; *maxPow = 0; if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; else if (IEEE80211_IS_CHAN_B(chan)) pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; else return(AH_FALSE); numChannels = pRawDataset->numChannels; data = pRawDataset->pDataPerChannel; /* Make sure the channel is in the range of the TP values * (freq piers) */ if (numChannels < 1) return(AH_FALSE); if ((freq < data[0].channelValue) || (freq > data[numChannels-1].channelValue)) { if (freq < data[0].channelValue) { *maxPow = ar2413GetMaxPower(ah, &data[0]); *minPow = ar2413GetMinPower(ah, &data[0]); return(AH_TRUE); } else { *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]); *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]); return(AH_TRUE); } } /* Linearly interpolate the power value now */ for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); last = i++); totalD = data[i].channelValue - data[last].channelValue; if (totalD > 0) { totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]); *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + ar2413GetMaxPower(ah, &data[last])*totalD)/totalD); totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]); *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar2413GetMinPower(ah, &data[last])*totalD)/totalD); return(AH_TRUE); } else { if (freq == data[i].channelValue) { *maxPow = ar2413GetMaxPower(ah, &data[i]); *minPow = ar2413GetMinPower(ah, &data[i]); return(AH_TRUE); } else return(AH_FALSE); } } /* * Free memory for analog bank scratch buffers */ static void ar2413RfDetach(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); HALASSERT(ahp->ah_rfHal != AH_NULL); ath_hal_free(ahp->ah_rfHal); ahp->ah_rfHal = AH_NULL; } /* * Allocate memory for analog bank scratch buffers * Scratch Buffer will be reinitialized every reset so no need to zero now */ static HAL_BOOL ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status) { struct ath_hal_5212 *ahp = AH5212(ah); struct ar2413State *priv; HALASSERT(ah->ah_magic == AR5212_MAGIC); HALASSERT(ahp->ah_rfHal == AH_NULL); priv = ath_hal_malloc(sizeof(struct ar2413State)); if (priv == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot allocate private state\n", __func__); *status = HAL_ENOMEM; /* XXX */ return AH_FALSE; } priv->base.rfDetach = ar2413RfDetach; priv->base.writeRegs = ar2413WriteRegs; priv->base.getRfBank = ar2413GetRfBank; priv->base.setChannel = ar2413SetChannel; priv->base.setRfRegs = ar2413SetRfRegs; priv->base.setPowerTable = ar2413SetPowerTable; priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower; priv->base.getNfAdjust = ar5212GetNfAdjust; ahp->ah_pcdacTable = priv->pcdacTable; ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); ahp->ah_rfHal = &priv->base; return AH_TRUE; } static HAL_BOOL ar2413Probe(struct ath_hal *ah) { return IS_2413(ah); } AH_RF(RF2413, ar2413Probe, ar2413RfAttach);