config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ehci/@/arm/arm/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ehci/@/arm/arm/machdep.c

/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/

/*-
 * Copyright (c) 2004 Olivier Houchard
 * Copyright (c) 1994-1998 Mark Brinicombe.
 * Copyright (c) 1994 Brini.
 * All rights reserved.
 *
 * This code is derived from software written for Brini by Mark Brinicombe
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Mark Brinicombe
 *	for the NetBSD Project.
 * 4. The name of the company nor the name of the author may be used to
 *    endorse or promote products derived from this software without specific
 *    prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Machine dependant functions for kernel setup
 *
 * Created      : 17/09/94
 * Updated	: 18/04/01 updated for new wscons
 */

#include "opt_compat.h"
#include "opt_ddb.h"

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/arm/arm/machdep.c 236238 2012-05-29 14:50:21Z fabient $");

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/ptrace.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/uio.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>

#include <machine/armreg.h>
#include <machine/cpu.h>
#include <machine/machdep.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/pcb.h>
#include <machine/pmap.h>
#include <machine/reg.h>
#include <machine/trap.h>
#include <machine/undefined.h>
#include <machine/vmparam.h>
#include <machine/sysarch.h>

uint32_t cpu_reset_address = 0;
int cold = 1;
vm_offset_t vector_page;

long realmem = 0;

int (*_arm_memcpy)(void *, void *, int, int) = NULL;
int (*_arm_bzero)(void *, int, int) = NULL;
int _min_memcpy_size = 0;
int _min_bzero_size = 0;

extern int *end;
#ifdef DDB
extern vm_offset_t ksym_start, ksym_end;
#endif

void
sendsig(catcher, ksi, mask)
	sig_t catcher;
	ksiginfo_t *ksi;
	sigset_t *mask;
{
	struct thread *td;
	struct proc *p;
	struct trapframe *tf;
	struct sigframe *fp, frame;
	struct sigacts *psp;
	int onstack;
	int sig;
	int code;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	code = ksi->ksi_code;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);
	tf = td->td_frame;
	onstack = sigonstack(tf->tf_usr_sp);

	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
	    catcher, sig);

	/* Allocate and validate space for the signal handler context. */
	if ((td->td_flags & TDP_ALTSTACK) != 0 && !(onstack) &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		fp = (struct sigframe *)(td->td_sigstk.ss_sp + 
		    td->td_sigstk.ss_size);
#if defined(COMPAT_43)
		td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
	} else
		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
		 
	/* make room on the stack */
	fp--;
	
	/* make the stack aligned */
	fp = (struct sigframe *)STACKALIGN(fp);
	/* Populate the siginfo frame. */
	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
	frame.sf_si = ksi->ksi_info;
	frame.sf_uc.uc_sigmask = *mask;
	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK ) 
	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
	frame.sf_uc.uc_stack = td->td_sigstk;
	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(td->td_proc);

	/* Copy the sigframe out to the user's stack. */
	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
		/* Process has trashed its stack. Kill it. */
		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
		PROC_LOCK(p);
		sigexit(td, SIGILL);
	}

	/* Translate the signal if appropriate. */
	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];

	/*
	 * Build context to run handler in.  We invoke the handler
	 * directly, only returning via the trampoline.  Note the
	 * trampoline version numbers are coordinated with machine-
	 * dependent code in libc.
	 */
	
	tf->tf_r0 = sig;
	tf->tf_r1 = (register_t)&fp->sf_si;
	tf->tf_r2 = (register_t)&fp->sf_uc;

	/* the trampoline uses r5 as the uc address */
	tf->tf_r5 = (register_t)&fp->sf_uc;
	tf->tf_pc = (register_t)catcher;
	tf->tf_usr_sp = (register_t)fp;
	tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));

	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
	    tf->tf_usr_sp);

	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}

struct kva_md_info kmi;

/*
 * arm32_vector_init:
 *
 *	Initialize the vector page, and select whether or not to
 *	relocate the vectors.
 *
 *	NOTE: We expect the vector page to be mapped at its expected
 *	destination.
 */

extern unsigned int page0[], page0_data[];
void
arm_vector_init(vm_offset_t va, int which)
{
	unsigned int *vectors = (int *) va;
	unsigned int *vectors_data = vectors + (page0_data - page0);
	int vec;

	/*
	 * Loop through the vectors we're taking over, and copy the
	 * vector's insn and data word.
	 */
	for (vec = 0; vec < ARM_NVEC; vec++) {
		if ((which & (1 << vec)) == 0) {
			/* Don't want to take over this vector. */
			continue;
		}
		vectors[vec] = page0[vec];
		vectors_data[vec] = page0_data[vec];
	}

	/* Now sync the vectors. */
	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));

	vector_page = va;

	if (va == ARM_VECTORS_HIGH) {
		/*
		 * Assume the MD caller knows what it's doing here, and
		 * really does want the vector page relocated.
		 *
		 * Note: This has to be done here (and not just in
		 * cpu_setup()) because the vector page needs to be
		 * accessible *before* cpu_startup() is called.
		 * Think ddb(9) ...
		 *
		 * NOTE: If the CPU control register is not readable,
		 * this will totally fail!  We'll just assume that
		 * any system that has high vector support has a
		 * readable CPU control register, for now.  If we
		 * ever encounter one that does not, we'll have to
		 * rethink this.
		 */
		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
	}
}

static void
cpu_startup(void *dummy)
{
	struct pcb *pcb = thread0.td_pcb;
#ifndef ARM_CACHE_LOCK_ENABLE
	vm_page_t m;
#endif

	cpu_setup("");
	identify_arm_cpu();

	printf("real memory  = %ju (%ju MB)\n", (uintmax_t)ptoa(physmem),
	    (uintmax_t)ptoa(physmem) / 1048576);
	realmem = physmem;

	/*
	 * Display the RAM layout.
	 */
	if (bootverbose) {
		int indx;

		printf("Physical memory chunk(s):\n");
		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
			vm_paddr_t size;

			size = phys_avail[indx + 1] - phys_avail[indx];
			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
			    (uintmax_t)phys_avail[indx],
			    (uintmax_t)phys_avail[indx + 1] - 1,
			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
		}
	}

	vm_ksubmap_init(&kmi);

	printf("avail memory = %ju (%ju MB)\n",
	    (uintmax_t)ptoa(cnt.v_free_count),
	    (uintmax_t)ptoa(cnt.v_free_count) / 1048576);

	bufinit();
	vm_pager_bufferinit();
	pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack +
	    USPACE_UNDEF_STACK_TOP;
	pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
	    USPACE_SVC_STACK_TOP;
	vector_page_setprot(VM_PROT_READ);
	pmap_set_pcb_pagedir(pmap_kernel(), pcb);
	pmap_postinit();
#ifdef ARM_CACHE_LOCK_ENABLE
	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
	arm_lock_cache_line(ARM_TP_ADDRESS);
#else
	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
#endif
	*(uint32_t *)ARM_RAS_START = 0;
	*(uint32_t *)ARM_RAS_END = 0xffffffff;
}

SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);

/*
 * Flush the D-cache for non-DMA I/O so that the I-cache can
 * be made coherent later.
 */
void
cpu_flush_dcache(void *ptr, size_t len)
{

	cpu_dcache_wb_range((uintptr_t)ptr, len);
	cpu_l2cache_wb_range((uintptr_t)ptr, len);
}

/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{

	return (ENXIO);
}

void
cpu_idle(int busy)
{
	cpu_sleep(0);
}

int
cpu_idle_wakeup(int cpu)
{

	return (0);
}

int
fill_regs(struct thread *td, struct reg *regs)
{
	struct trapframe *tf = td->td_frame;
	bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
	regs->r_sp = tf->tf_usr_sp;
	regs->r_lr = tf->tf_usr_lr;
	regs->r_pc = tf->tf_pc;
	regs->r_cpsr = tf->tf_spsr;
	return (0);
}
int
fill_fpregs(struct thread *td, struct fpreg *regs)
{
	bzero(regs, sizeof(*regs));
	return (0);
}

int
set_regs(struct thread *td, struct reg *regs)
{
	struct trapframe *tf = td->td_frame;
	
	bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
	tf->tf_usr_sp = regs->r_sp;
	tf->tf_usr_lr = regs->r_lr;
	tf->tf_pc = regs->r_pc;
	tf->tf_spsr &=  ~PSR_FLAGS;
	tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
	return (0);								
}

int
set_fpregs(struct thread *td, struct fpreg *regs)
{
	return (0);
}

int
fill_dbregs(struct thread *td, struct dbreg *regs)
{
	return (0);
}
int
set_dbregs(struct thread *td, struct dbreg *regs)
{
	return (0);
}


static int
ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
{
	struct iovec iov;
	struct uio uio;

	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
	iov.iov_base = (caddr_t) v;
	iov.iov_len = sizeof(u_int32_t);
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = (off_t)addr;
	uio.uio_resid = sizeof(u_int32_t);
	uio.uio_segflg = UIO_SYSSPACE;
	uio.uio_rw = UIO_READ;
	uio.uio_td = td;
	return proc_rwmem(td->td_proc, &uio);
}

static int
ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
{
	struct iovec iov;
	struct uio uio;

	PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
	iov.iov_base = (caddr_t) &v;
	iov.iov_len = sizeof(u_int32_t);
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = (off_t)addr;
	uio.uio_resid = sizeof(u_int32_t);
	uio.uio_segflg = UIO_SYSSPACE;
	uio.uio_rw = UIO_WRITE;
	uio.uio_td = td;
	return proc_rwmem(td->td_proc, &uio);
}

int
ptrace_single_step(struct thread *td)
{
	struct proc *p;
	int error;
	
	KASSERT(td->td_md.md_ptrace_instr == 0,
	 ("Didn't clear single step"));
	p = td->td_proc;
	PROC_UNLOCK(p);
	error = ptrace_read_int(td, td->td_frame->tf_pc + 4, 
	    &td->td_md.md_ptrace_instr);
	if (error)
		goto out;
	error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
	    PTRACE_BREAKPOINT);
	if (error)
		td->td_md.md_ptrace_instr = 0;
	td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
out:
	PROC_LOCK(p);
	return (error);
}

int
ptrace_clear_single_step(struct thread *td)
{
	struct proc *p;

	if (td->td_md.md_ptrace_instr) {
		p = td->td_proc;
		PROC_UNLOCK(p);
		ptrace_write_int(td, td->td_md.md_ptrace_addr,
		    td->td_md.md_ptrace_instr);
		PROC_LOCK(p);
		td->td_md.md_ptrace_instr = 0;
	}
	return (0);
}

int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
	td->td_frame->tf_pc = addr;
	return (0);
}

void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
}

void
spinlock_enter(void)
{
	struct thread *td;
	register_t cspr;

	td = curthread;
	if (td->td_md.md_spinlock_count == 0) {
		cspr = disable_interrupts(I32_bit | F32_bit);
		td->td_md.md_spinlock_count = 1;
		td->td_md.md_saved_cspr = cspr;
	} else
		td->td_md.md_spinlock_count++;
	critical_enter();
}

void
spinlock_exit(void)
{
	struct thread *td;
	register_t cspr;

	td = curthread;
	critical_exit();
	cspr = td->td_md.md_saved_cspr;
	td->td_md.md_spinlock_count--;
	if (td->td_md.md_spinlock_count == 0)
		restore_interrupts(cspr);
}

/*
 * Clear registers on exec
 */
void
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
{
	struct trapframe *tf = td->td_frame;

	memset(tf, 0, sizeof(*tf));
	tf->tf_usr_sp = stack;
	tf->tf_usr_lr = imgp->entry_addr;
	tf->tf_svc_lr = 0x77777777;
	tf->tf_pc = imgp->entry_addr;
	tf->tf_spsr = PSR_USR32_MODE;
}

/*
 * Get machine context.
 */
int
get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
{
	struct trapframe *tf = td->td_frame;
	__greg_t *gr = mcp->__gregs;

	if (clear_ret & GET_MC_CLEAR_RET)
		gr[_REG_R0] = 0;
	else
		gr[_REG_R0]   = tf->tf_r0;
	gr[_REG_R1]   = tf->tf_r1;
	gr[_REG_R2]   = tf->tf_r2;
	gr[_REG_R3]   = tf->tf_r3;
	gr[_REG_R4]   = tf->tf_r4;
	gr[_REG_R5]   = tf->tf_r5;
	gr[_REG_R6]   = tf->tf_r6;
	gr[_REG_R7]   = tf->tf_r7;
	gr[_REG_R8]   = tf->tf_r8;
	gr[_REG_R9]   = tf->tf_r9;
	gr[_REG_R10]  = tf->tf_r10;
	gr[_REG_R11]  = tf->tf_r11;
	gr[_REG_R12]  = tf->tf_r12;
	gr[_REG_SP]   = tf->tf_usr_sp;
	gr[_REG_LR]   = tf->tf_usr_lr;
	gr[_REG_PC]   = tf->tf_pc;
	gr[_REG_CPSR] = tf->tf_spsr;

	return (0);
}

/*
 * Set machine context.
 *
 * However, we don't set any but the user modifiable flags, and we won't
 * touch the cs selector.
 */
int
set_mcontext(struct thread *td, const mcontext_t *mcp)
{
	struct trapframe *tf = td->td_frame;
	const __greg_t *gr = mcp->__gregs;

	tf->tf_r0 = gr[_REG_R0];
	tf->tf_r1 = gr[_REG_R1];
	tf->tf_r2 = gr[_REG_R2];
	tf->tf_r3 = gr[_REG_R3];
	tf->tf_r4 = gr[_REG_R4];
	tf->tf_r5 = gr[_REG_R5];
	tf->tf_r6 = gr[_REG_R6];
	tf->tf_r7 = gr[_REG_R7];
	tf->tf_r8 = gr[_REG_R8];
	tf->tf_r9 = gr[_REG_R9];
	tf->tf_r10 = gr[_REG_R10];
	tf->tf_r11 = gr[_REG_R11];
	tf->tf_r12 = gr[_REG_R12];
	tf->tf_usr_sp = gr[_REG_SP];
	tf->tf_usr_lr = gr[_REG_LR];
	tf->tf_pc = gr[_REG_PC];
	tf->tf_spsr = gr[_REG_CPSR];

	return (0);
}

/*
 * MPSAFE
 */
int
sys_sigreturn(td, uap)
	struct thread *td;
	struct sigreturn_args /* {
		const struct __ucontext *sigcntxp;
	} */ *uap;
{
	struct sigframe sf;
	struct trapframe *tf;
	int spsr;
	
	if (uap == NULL)
		return (EFAULT);
	if (copyin(uap->sigcntxp, &sf, sizeof(sf)))
		return (EFAULT);
	/*
	 * Make sure the processor mode has not been tampered with and
	 * interrupts have not been disabled.
	 */
	spsr = sf.sf_uc.uc_mcontext.__gregs[_REG_CPSR];
	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
	    (spsr & (I32_bit | F32_bit)) != 0)
		return (EINVAL);
		/* Restore register context. */
	tf = td->td_frame;
	set_mcontext(td, &sf.sf_uc.uc_mcontext);

	/* Restore signal mask. */
	kern_sigprocmask(td, SIG_SETMASK, &sf.sf_uc.uc_sigmask, NULL, 0);

	return (EJUSTRETURN);
}


/*
 * Construct a PCB from a trapframe. This is called from kdb_trap() where
 * we want to start a backtrace from the function that caused us to enter
 * the debugger. We have the context in the trapframe, but base the trace
 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 * enough for a backtrace.
 */
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
	pcb->un_32.pcb32_r8 = tf->tf_r8;
	pcb->un_32.pcb32_r9 = tf->tf_r9;
	pcb->un_32.pcb32_r10 = tf->tf_r10;
	pcb->un_32.pcb32_r11 = tf->tf_r11;
	pcb->un_32.pcb32_r12 = tf->tf_r12;
	pcb->un_32.pcb32_pc = tf->tf_pc;
	pcb->un_32.pcb32_lr = tf->tf_usr_lr;
	pcb->un_32.pcb32_sp = tf->tf_usr_sp;
}

/*
 * Fake up a boot descriptor table
 */
vm_offset_t
fake_preload_metadata(void)
{
#ifdef DDB
	vm_offset_t zstart = 0, zend = 0;
#endif
	vm_offset_t lastaddr;
	int i = 0;
	static uint32_t fake_preload[35];

	fake_preload[i++] = MODINFO_NAME;
	fake_preload[i++] = strlen("kernel") + 1;
	strcpy((char*)&fake_preload[i++], "kernel");
	i += 1;
	fake_preload[i++] = MODINFO_TYPE;
	fake_preload[i++] = strlen("elf kernel") + 1;
	strcpy((char*)&fake_preload[i++], "elf kernel");
	i += 2;
	fake_preload[i++] = MODINFO_ADDR;
	fake_preload[i++] = sizeof(vm_offset_t);
	fake_preload[i++] = KERNVIRTADDR;
	fake_preload[i++] = MODINFO_SIZE;
	fake_preload[i++] = sizeof(uint32_t);
	fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
#ifdef DDB
	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
		fake_preload[i++] = sizeof(vm_offset_t);
		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
		fake_preload[i++] = sizeof(vm_offset_t);
		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
		zend = lastaddr;
		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
		ksym_start = zstart;
		ksym_end = zend;
	} else
#endif
		lastaddr = (vm_offset_t)&end;
	fake_preload[i++] = 0;
	fake_preload[i] = 0;
	preload_metadata = (void *)fake_preload;

	return (lastaddr);
}

Man Man