Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rue/@/dev/hwpmc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rue/@/dev/hwpmc/hwpmc_amd.c |
/*- * Copyright (c) 2003-2008 Joseph Koshy * Copyright (c) 2007 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by A. Joseph Koshy under * sponsorship from the FreeBSD Foundation and Google, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/hwpmc/hwpmc_amd.c 236238 2012-05-29 14:50:21Z fabient $"); /* Support for the AMD K7 and later processors */ #include <sys/param.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/pmc.h> #include <sys/pmckern.h> #include <sys/smp.h> #include <sys/systm.h> #include <machine/cpu.h> #include <machine/cpufunc.h> #include <machine/md_var.h> #include <machine/specialreg.h> #ifdef DEBUG enum pmc_class amd_pmc_class; #endif /* AMD K7 & K8 PMCs */ struct amd_descr { struct pmc_descr pm_descr; /* "base class" */ uint32_t pm_evsel; /* address of EVSEL register */ uint32_t pm_perfctr; /* address of PERFCTR register */ }; static struct amd_descr amd_pmcdesc[AMD_NPMCS] = { { .pm_descr = { .pd_name = "", .pd_class = -1, .pd_caps = AMD_PMC_CAPS, .pd_width = 48 }, .pm_evsel = AMD_PMC_EVSEL_0, .pm_perfctr = AMD_PMC_PERFCTR_0 }, { .pm_descr = { .pd_name = "", .pd_class = -1, .pd_caps = AMD_PMC_CAPS, .pd_width = 48 }, .pm_evsel = AMD_PMC_EVSEL_1, .pm_perfctr = AMD_PMC_PERFCTR_1 }, { .pm_descr = { .pd_name = "", .pd_class = -1, .pd_caps = AMD_PMC_CAPS, .pd_width = 48 }, .pm_evsel = AMD_PMC_EVSEL_2, .pm_perfctr = AMD_PMC_PERFCTR_2 }, { .pm_descr = { .pd_name = "", .pd_class = -1, .pd_caps = AMD_PMC_CAPS, .pd_width = 48 }, .pm_evsel = AMD_PMC_EVSEL_3, .pm_perfctr = AMD_PMC_PERFCTR_3 } }; struct amd_event_code_map { enum pmc_event pe_ev; /* enum value */ uint8_t pe_code; /* encoded event mask */ uint8_t pe_mask; /* bits allowed in unit mask */ }; const struct amd_event_code_map amd_event_codes[] = { #if defined(__i386__) /* 32 bit Athlon (K7) only */ { PMC_EV_K7_DC_ACCESSES, 0x40, 0 }, { PMC_EV_K7_DC_MISSES, 0x41, 0 }, { PMC_EV_K7_DC_REFILLS_FROM_L2, 0x42, AMD_PMC_UNITMASK_MOESI }, { PMC_EV_K7_DC_REFILLS_FROM_SYSTEM, 0x43, AMD_PMC_UNITMASK_MOESI }, { PMC_EV_K7_DC_WRITEBACKS, 0x44, AMD_PMC_UNITMASK_MOESI }, { PMC_EV_K7_L1_DTLB_MISS_AND_L2_DTLB_HITS, 0x45, 0 }, { PMC_EV_K7_L1_AND_L2_DTLB_MISSES, 0x46, 0 }, { PMC_EV_K7_MISALIGNED_REFERENCES, 0x47, 0 }, { PMC_EV_K7_IC_FETCHES, 0x80, 0 }, { PMC_EV_K7_IC_MISSES, 0x81, 0 }, { PMC_EV_K7_L1_ITLB_MISSES, 0x84, 0 }, { PMC_EV_K7_L1_L2_ITLB_MISSES, 0x85, 0 }, { PMC_EV_K7_RETIRED_INSTRUCTIONS, 0xC0, 0 }, { PMC_EV_K7_RETIRED_OPS, 0xC1, 0 }, { PMC_EV_K7_RETIRED_BRANCHES, 0xC2, 0 }, { PMC_EV_K7_RETIRED_BRANCHES_MISPREDICTED, 0xC3, 0 }, { PMC_EV_K7_RETIRED_TAKEN_BRANCHES, 0xC4, 0 }, { PMC_EV_K7_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0 }, { PMC_EV_K7_RETIRED_FAR_CONTROL_TRANSFERS, 0xC6, 0 }, { PMC_EV_K7_RETIRED_RESYNC_BRANCHES, 0xC7, 0 }, { PMC_EV_K7_INTERRUPTS_MASKED_CYCLES, 0xCD, 0 }, { PMC_EV_K7_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0 }, { PMC_EV_K7_HARDWARE_INTERRUPTS, 0xCF, 0 }, #endif { PMC_EV_K8_FP_DISPATCHED_FPU_OPS, 0x00, 0x3F }, { PMC_EV_K8_FP_CYCLES_WITH_NO_FPU_OPS_RETIRED, 0x01, 0x00 }, { PMC_EV_K8_FP_DISPATCHED_FPU_FAST_FLAG_OPS, 0x02, 0x00 }, { PMC_EV_K8_LS_SEGMENT_REGISTER_LOAD, 0x20, 0x7F }, { PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SELF_MODIFYING_CODE, 0x21, 0x00 }, { PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x22, 0x00 }, { PMC_EV_K8_LS_BUFFER2_FULL, 0x23, 0x00 }, { PMC_EV_K8_LS_LOCKED_OPERATION, 0x24, 0x07 }, { PMC_EV_K8_LS_MICROARCHITECTURAL_LATE_CANCEL, 0x25, 0x00 }, { PMC_EV_K8_LS_RETIRED_CFLUSH_INSTRUCTIONS, 0x26, 0x00 }, { PMC_EV_K8_LS_RETIRED_CPUID_INSTRUCTIONS, 0x27, 0x00 }, { PMC_EV_K8_DC_ACCESS, 0x40, 0x00 }, { PMC_EV_K8_DC_MISS, 0x41, 0x00 }, { PMC_EV_K8_DC_REFILL_FROM_L2, 0x42, 0x1F }, { PMC_EV_K8_DC_REFILL_FROM_SYSTEM, 0x43, 0x1F }, { PMC_EV_K8_DC_COPYBACK, 0x44, 0x1F }, { PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_HIT, 0x45, 0x00 }, { PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_MISS, 0x46, 0x00 }, { PMC_EV_K8_DC_MISALIGNED_DATA_REFERENCE, 0x47, 0x00 }, { PMC_EV_K8_DC_MICROARCHITECTURAL_LATE_CANCEL, 0x48, 0x00 }, { PMC_EV_K8_DC_MICROARCHITECTURAL_EARLY_CANCEL, 0x49, 0x00 }, { PMC_EV_K8_DC_ONE_BIT_ECC_ERROR, 0x4A, 0x03 }, { PMC_EV_K8_DC_DISPATCHED_PREFETCH_INSTRUCTIONS, 0x4B, 0x07 }, { PMC_EV_K8_DC_DCACHE_ACCESSES_BY_LOCKS, 0x4C, 0x03 }, { PMC_EV_K8_BU_CPU_CLK_UNHALTED, 0x76, 0x00 }, { PMC_EV_K8_BU_INTERNAL_L2_REQUEST, 0x7D, 0x1F }, { PMC_EV_K8_BU_FILL_REQUEST_L2_MISS, 0x7E, 0x07 }, { PMC_EV_K8_BU_FILL_INTO_L2, 0x7F, 0x03 }, { PMC_EV_K8_IC_FETCH, 0x80, 0x00 }, { PMC_EV_K8_IC_MISS, 0x81, 0x00 }, { PMC_EV_K8_IC_REFILL_FROM_L2, 0x82, 0x00 }, { PMC_EV_K8_IC_REFILL_FROM_SYSTEM, 0x83, 0x00 }, { PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_HIT, 0x84, 0x00 }, { PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_MISS, 0x85, 0x00 }, { PMC_EV_K8_IC_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x86, 0x00 }, { PMC_EV_K8_IC_INSTRUCTION_FETCH_STALL, 0x87, 0x00 }, { PMC_EV_K8_IC_RETURN_STACK_HIT, 0x88, 0x00 }, { PMC_EV_K8_IC_RETURN_STACK_OVERFLOW, 0x89, 0x00 }, { PMC_EV_K8_FR_RETIRED_X86_INSTRUCTIONS, 0xC0, 0x00 }, { PMC_EV_K8_FR_RETIRED_UOPS, 0xC1, 0x00 }, { PMC_EV_K8_FR_RETIRED_BRANCHES, 0xC2, 0x00 }, { PMC_EV_K8_FR_RETIRED_BRANCHES_MISPREDICTED, 0xC3, 0x00 }, { PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES, 0xC4, 0x00 }, { PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0x00 }, { PMC_EV_K8_FR_RETIRED_FAR_CONTROL_TRANSFERS, 0xC6, 0x00 }, { PMC_EV_K8_FR_RETIRED_RESYNCS, 0xC7, 0x00 }, { PMC_EV_K8_FR_RETIRED_NEAR_RETURNS, 0xC8, 0x00 }, { PMC_EV_K8_FR_RETIRED_NEAR_RETURNS_MISPREDICTED, 0xC9, 0x00 }, { PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED_BY_ADDR_MISCOMPARE, 0xCA, 0x00 }, { PMC_EV_K8_FR_RETIRED_FPU_INSTRUCTIONS, 0xCB, 0x0F }, { PMC_EV_K8_FR_RETIRED_FASTPATH_DOUBLE_OP_INSTRUCTIONS, 0xCC, 0x07 }, { PMC_EV_K8_FR_INTERRUPTS_MASKED_CYCLES, 0xCD, 0x00 }, { PMC_EV_K8_FR_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0x00 }, { PMC_EV_K8_FR_TAKEN_HARDWARE_INTERRUPTS, 0xCF, 0x00 }, { PMC_EV_K8_FR_DECODER_EMPTY, 0xD0, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALLS, 0xD1, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_FROM_BRANCH_ABORT_TO_RETIRE, 0xD2, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_FOR_SERIALIZATION, 0xD3, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_FOR_SEGMENT_LOAD, 0xD4, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_WHEN_REORDER_BUFFER_IS_FULL, 0xD5, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_WHEN_RESERVATION_STATIONS_ARE_FULL, 0xD6, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FPU_IS_FULL, 0xD7, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_WHEN_LS_IS_FULL, 0xD8, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_WHEN_WAITING_FOR_ALL_TO_BE_QUIET, 0xD9, 0x00 }, { PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FAR_XFER_OR_RESYNC_BRANCH_PENDING, 0xDA, 0x00 }, { PMC_EV_K8_FR_FPU_EXCEPTIONS, 0xDB, 0x0F }, { PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR0, 0xDC, 0x00 }, { PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR1, 0xDD, 0x00 }, { PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR2, 0xDE, 0x00 }, { PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR3, 0xDF, 0x00 }, { PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_ACCESS_EVENT, 0xE0, 0x7 }, { PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_TABLE_OVERFLOW, 0xE1, 0x00 }, { PMC_EV_K8_NB_MEMORY_CONTROLLER_DRAM_COMMAND_SLOTS_MISSED, 0xE2, 0x00 }, { PMC_EV_K8_NB_MEMORY_CONTROLLER_TURNAROUND, 0xE3, 0x07 }, { PMC_EV_K8_NB_MEMORY_CONTROLLER_BYPASS_SATURATION, 0xE4, 0x0F }, { PMC_EV_K8_NB_SIZED_COMMANDS, 0xEB, 0x7F }, { PMC_EV_K8_NB_PROBE_RESULT, 0xEC, 0x0F }, { PMC_EV_K8_NB_HT_BUS0_BANDWIDTH, 0xF6, 0x0F }, { PMC_EV_K8_NB_HT_BUS1_BANDWIDTH, 0xF7, 0x0F }, { PMC_EV_K8_NB_HT_BUS2_BANDWIDTH, 0xF8, 0x0F } }; const int amd_event_codes_size = sizeof(amd_event_codes) / sizeof(amd_event_codes[0]); /* * Per-processor information */ struct amd_cpu { struct pmc_hw pc_amdpmcs[AMD_NPMCS]; }; static struct amd_cpu **amd_pcpu; /* * read a pmc register */ static int amd_read_pmc(int cpu, int ri, pmc_value_t *v) { enum pmc_mode mode; const struct amd_descr *pd; struct pmc *pm; pmc_value_t tmp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row-index %d", __LINE__, ri)); KASSERT(amd_pcpu[cpu], ("[amd,%d] null per-cpu, cpu %d", __LINE__, cpu)); pm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc; pd = &amd_pmcdesc[ri]; KASSERT(pm != NULL, ("[amd,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__, cpu, ri)); mode = PMC_TO_MODE(pm); PMCDBG(MDP,REA,1,"amd-read id=%d class=%d", ri, pd->pm_descr.pd_class); #ifdef DEBUG KASSERT(pd->pm_descr.pd_class == amd_pmc_class, ("[amd,%d] unknown PMC class (%d)", __LINE__, pd->pm_descr.pd_class)); #endif tmp = rdmsr(pd->pm_perfctr); /* RDMSR serializes */ PMCDBG(MDP,REA,2,"amd-read (pre-munge) id=%d -> %jd", ri, tmp); if (PMC_IS_SAMPLING_MODE(mode)) { /* Sign extend 48 bit value to 64 bits. */ tmp = (pmc_value_t) (((int64_t) tmp << 16) >> 16); tmp = AMD_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp); } *v = tmp; PMCDBG(MDP,REA,2,"amd-read (post-munge) id=%d -> %jd", ri, *v); return 0; } /* * Write a PMC MSR. */ static int amd_write_pmc(int cpu, int ri, pmc_value_t v) { const struct amd_descr *pd; enum pmc_mode mode; struct pmc *pm; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row-index %d", __LINE__, ri)); pm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc; pd = &amd_pmcdesc[ri]; KASSERT(pm != NULL, ("[amd,%d] PMC not owned (cpu%d,pmc%d)", __LINE__, cpu, ri)); mode = PMC_TO_MODE(pm); #ifdef DEBUG KASSERT(pd->pm_descr.pd_class == amd_pmc_class, ("[amd,%d] unknown PMC class (%d)", __LINE__, pd->pm_descr.pd_class)); #endif /* use 2's complement of the count for sampling mode PMCs */ if (PMC_IS_SAMPLING_MODE(mode)) v = AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v); PMCDBG(MDP,WRI,1,"amd-write cpu=%d ri=%d v=%jx", cpu, ri, v); /* write the PMC value */ wrmsr(pd->pm_perfctr, v); return 0; } /* * configure hardware pmc according to the configuration recorded in * pmc 'pm'. */ static int amd_config_pmc(int cpu, int ri, struct pmc *pm) { struct pmc_hw *phw; PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row-index %d", __LINE__, ri)); phw = &amd_pcpu[cpu]->pc_amdpmcs[ri]; KASSERT(pm == NULL || phw->phw_pmc == NULL, ("[amd,%d] pm=%p phw->pm=%p hwpmc not unconfigured", __LINE__, pm, phw->phw_pmc)); phw->phw_pmc = pm; return 0; } /* * Retrieve a configured PMC pointer from hardware state. */ static int amd_get_config(int cpu, int ri, struct pmc **ppm) { *ppm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc; return 0; } /* * Machine dependent actions taken during the context switch in of a * thread. */ static int amd_switch_in(struct pmc_cpu *pc, struct pmc_process *pp) { (void) pc; PMCDBG(MDP,SWI,1, "pc=%p pp=%p enable-msr=%d", pc, pp, (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0); /* enable the RDPMC instruction if needed */ if (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) load_cr4(rcr4() | CR4_PCE); return 0; } /* * Machine dependent actions taken during the context switch out of a * thread. */ static int amd_switch_out(struct pmc_cpu *pc, struct pmc_process *pp) { (void) pc; (void) pp; /* can be NULL */ PMCDBG(MDP,SWO,1, "pc=%p pp=%p enable-msr=%d", pc, pp, pp ? (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) == 1 : 0); /* always turn off the RDPMC instruction */ load_cr4(rcr4() & ~CR4_PCE); return 0; } /* * Check if a given allocation is feasible. */ static int amd_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { int i; uint32_t allowed_unitmask, caps, config, unitmask; enum pmc_event pe; const struct pmc_descr *pd; (void) cpu; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row index %d", __LINE__, ri)); pd = &amd_pmcdesc[ri].pm_descr; /* check class match */ if (pd->pd_class != a->pm_class) return EINVAL; caps = pm->pm_caps; PMCDBG(MDP,ALL,1,"amd-allocate ri=%d caps=0x%x", ri, caps); if ((pd->pd_caps & caps) != caps) return EPERM; pe = a->pm_ev; /* map ev to the correct event mask code */ config = allowed_unitmask = 0; for (i = 0; i < amd_event_codes_size; i++) if (amd_event_codes[i].pe_ev == pe) { config = AMD_PMC_TO_EVENTMASK(amd_event_codes[i].pe_code); allowed_unitmask = AMD_PMC_TO_UNITMASK(amd_event_codes[i].pe_mask); break; } if (i == amd_event_codes_size) return EINVAL; unitmask = a->pm_md.pm_amd.pm_amd_config & AMD_PMC_UNITMASK; if (unitmask & ~allowed_unitmask) /* disallow reserved bits */ return EINVAL; if (unitmask && (caps & PMC_CAP_QUALIFIER)) config |= unitmask; if (caps & PMC_CAP_THRESHOLD) config |= a->pm_md.pm_amd.pm_amd_config & AMD_PMC_COUNTERMASK; /* set at least one of the 'usr' or 'os' caps */ if (caps & PMC_CAP_USER) config |= AMD_PMC_USR; if (caps & PMC_CAP_SYSTEM) config |= AMD_PMC_OS; if ((caps & (PMC_CAP_USER|PMC_CAP_SYSTEM)) == 0) config |= (AMD_PMC_USR|AMD_PMC_OS); if (caps & PMC_CAP_EDGE) config |= AMD_PMC_EDGE; if (caps & PMC_CAP_INVERT) config |= AMD_PMC_INVERT; if (caps & PMC_CAP_INTERRUPT) config |= AMD_PMC_INT; pm->pm_md.pm_amd.pm_amd_evsel = config; /* save config value */ PMCDBG(MDP,ALL,2,"amd-allocate ri=%d -> config=0x%x", ri, config); return 0; } /* * Release machine dependent state associated with a PMC. This is a * no-op on this architecture. * */ /* ARGSUSED0 */ static int amd_release_pmc(int cpu, int ri, struct pmc *pmc) { #ifdef DEBUG const struct amd_descr *pd; #endif struct pmc_hw *phw; (void) pmc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row-index %d", __LINE__, ri)); phw = &amd_pcpu[cpu]->pc_amdpmcs[ri]; KASSERT(phw->phw_pmc == NULL, ("[amd,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc)); #ifdef DEBUG pd = &amd_pmcdesc[ri]; if (pd->pm_descr.pd_class == amd_pmc_class) KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel), ("[amd,%d] PMC %d released while active", __LINE__, ri)); #endif return 0; } /* * start a PMC. */ static int amd_start_pmc(int cpu, int ri) { uint32_t config; struct pmc *pm; struct pmc_hw *phw; const struct amd_descr *pd; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row-index %d", __LINE__, ri)); phw = &amd_pcpu[cpu]->pc_amdpmcs[ri]; pm = phw->phw_pmc; pd = &amd_pmcdesc[ri]; KASSERT(pm != NULL, ("[amd,%d] starting cpu%d,pmc%d with null pmc record", __LINE__, cpu, ri)); PMCDBG(MDP,STA,1,"amd-start cpu=%d ri=%d", cpu, ri); KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel), ("[amd,%d] pmc%d,cpu%d: Starting active PMC \"%s\"", __LINE__, ri, cpu, pd->pm_descr.pd_name)); /* turn on the PMC ENABLE bit */ config = pm->pm_md.pm_amd.pm_amd_evsel | AMD_PMC_ENABLE; PMCDBG(MDP,STA,2,"amd-start config=0x%x", config); wrmsr(pd->pm_evsel, config); return 0; } /* * Stop a PMC. */ static int amd_stop_pmc(int cpu, int ri) { struct pmc *pm; struct pmc_hw *phw; const struct amd_descr *pd; uint64_t config; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] illegal row-index %d", __LINE__, ri)); phw = &amd_pcpu[cpu]->pc_amdpmcs[ri]; pm = phw->phw_pmc; pd = &amd_pmcdesc[ri]; KASSERT(pm != NULL, ("[amd,%d] cpu%d,pmc%d no PMC to stop", __LINE__, cpu, ri)); KASSERT(!AMD_PMC_IS_STOPPED(pd->pm_evsel), ("[amd,%d] PMC%d, CPU%d \"%s\" already stopped", __LINE__, ri, cpu, pd->pm_descr.pd_name)); PMCDBG(MDP,STO,1,"amd-stop ri=%d", ri); /* turn off the PMC ENABLE bit */ config = pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE; wrmsr(pd->pm_evsel, config); return 0; } /* * Interrupt handler. This function needs to return '1' if the * interrupt was this CPU's PMCs or '0' otherwise. It is not allowed * to sleep or do anything a 'fast' interrupt handler is not allowed * to do. */ static int amd_intr(int cpu, struct trapframe *tf) { int i, error, retval; uint32_t config, evsel, perfctr; struct pmc *pm; struct amd_cpu *pac; pmc_value_t v; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] out of range CPU %d", __LINE__, cpu)); PMCDBG(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf, TRAPF_USERMODE(tf)); retval = 0; pac = amd_pcpu[cpu]; /* * look for all PMCs that have interrupted: * - look for a running, sampling PMC which has overflowed * and which has a valid 'struct pmc' association * * If found, we call a helper to process the interrupt. * * If multiple PMCs interrupt at the same time, the AMD64 * processor appears to deliver as many NMIs as there are * outstanding PMC interrupts. So we process only one NMI * interrupt at a time. */ for (i = 0; retval == 0 && i < AMD_NPMCS; i++) { if ((pm = pac->pc_amdpmcs[i].phw_pmc) == NULL || !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) { continue; } if (!AMD_PMC_HAS_OVERFLOWED(i)) continue; retval = 1; /* Found an interrupting PMC. */ if (pm->pm_state != PMC_STATE_RUNNING) continue; /* Stop the PMC, reload count. */ evsel = AMD_PMC_EVSEL_0 + i; perfctr = AMD_PMC_PERFCTR_0 + i; v = pm->pm_sc.pm_reloadcount; config = rdmsr(evsel); KASSERT((config & ~AMD_PMC_ENABLE) == (pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE), ("[amd,%d] config mismatch reg=0x%x pm=0x%x", __LINE__, config, pm->pm_md.pm_amd.pm_amd_evsel)); wrmsr(evsel, config & ~AMD_PMC_ENABLE); wrmsr(perfctr, AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v)); /* Restart the counter if logging succeeded. */ error = pmc_process_interrupt(cpu, PMC_HR, pm, tf, TRAPF_USERMODE(tf)); if (error == 0) wrmsr(evsel, config | AMD_PMC_ENABLE); } atomic_add_int(retval ? &pmc_stats.pm_intr_processed : &pmc_stats.pm_intr_ignored, 1); return (retval); } /* * describe a PMC */ static int amd_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { int error; size_t copied; const struct amd_descr *pd; struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] row-index %d out of range", __LINE__, ri)); phw = &amd_pcpu[cpu]->pc_amdpmcs[ri]; pd = &amd_pmcdesc[ri]; if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name, PMC_NAME_MAX, &copied)) != 0) return error; pi->pm_class = pd->pm_descr.pd_class; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return 0; } /* * i386 specific entry points */ /* * return the MSR address of the given PMC. */ static int amd_get_msr(int ri, uint32_t *msr) { KASSERT(ri >= 0 && ri < AMD_NPMCS, ("[amd,%d] ri %d out of range", __LINE__, ri)); *msr = amd_pmcdesc[ri].pm_perfctr - AMD_PMC_PERFCTR_0; return (0); } /* * processor dependent initialization. */ static int amd_pcpu_init(struct pmc_mdep *md, int cpu) { int classindex, first_ri, n; struct pmc_cpu *pc; struct amd_cpu *pac; struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] insane cpu number %d", __LINE__, cpu)); PMCDBG(MDP,INI,1,"amd-init cpu=%d", cpu); amd_pcpu[cpu] = pac = malloc(sizeof(struct amd_cpu), M_PMC, M_WAITOK|M_ZERO); /* * Set the content of the hardware descriptors to a known * state and initialize pointers in the MI per-cpu descriptor. */ pc = pmc_pcpu[cpu]; #if defined(__amd64__) classindex = PMC_MDEP_CLASS_INDEX_K8; #elif defined(__i386__) classindex = md->pmd_cputype == PMC_CPU_AMD_K8 ? PMC_MDEP_CLASS_INDEX_K8 : PMC_MDEP_CLASS_INDEX_K7; #endif first_ri = md->pmd_classdep[classindex].pcd_ri; KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu pointer", __LINE__)); for (n = 0, phw = pac->pc_amdpmcs; n < AMD_NPMCS; n++, phw++) { phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n); phw->phw_pmc = NULL; pc->pc_hwpmcs[n + first_ri] = phw; } return (0); } /* * processor dependent cleanup prior to the KLD * being unloaded */ static int amd_pcpu_fini(struct pmc_mdep *md, int cpu) { int classindex, first_ri, i; uint32_t evsel; struct pmc_cpu *pc; struct amd_cpu *pac; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[amd,%d] insane cpu number (%d)", __LINE__, cpu)); PMCDBG(MDP,INI,1,"amd-cleanup cpu=%d", cpu); /* * First, turn off all PMCs on this CPU. */ for (i = 0; i < 4; i++) { /* XXX this loop is now not needed */ evsel = rdmsr(AMD_PMC_EVSEL_0 + i); evsel &= ~AMD_PMC_ENABLE; wrmsr(AMD_PMC_EVSEL_0 + i, evsel); } /* * Next, free up allocated space. */ if ((pac = amd_pcpu[cpu]) == NULL) return (0); amd_pcpu[cpu] = NULL; #ifdef DEBUG for (i = 0; i < AMD_NPMCS; i++) { KASSERT(pac->pc_amdpmcs[i].phw_pmc == NULL, ("[amd,%d] CPU%d/PMC%d in use", __LINE__, cpu, i)); KASSERT(AMD_PMC_IS_STOPPED(AMD_PMC_EVSEL_0 + (i-1)), ("[amd,%d] CPU%d/PMC%d not stopped", __LINE__, cpu, i)); } #endif pc = pmc_pcpu[cpu]; KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu state", __LINE__)); #if defined(__amd64__) classindex = PMC_MDEP_CLASS_INDEX_K8; #elif defined(__i386__) classindex = md->pmd_cputype == PMC_CPU_AMD_K8 ? PMC_MDEP_CLASS_INDEX_K8 : PMC_MDEP_CLASS_INDEX_K7; #endif first_ri = md->pmd_classdep[classindex].pcd_ri; /* * Reset pointers in the MI 'per-cpu' state. */ for (i = 0; i < AMD_NPMCS; i++) { pc->pc_hwpmcs[i + first_ri] = NULL; } free(pac, M_PMC); return (0); } /* * Initialize ourselves. */ struct pmc_mdep * pmc_amd_initialize(void) { int classindex, error, i, ncpus; struct pmc_classdep *pcd; enum pmc_cputype cputype; struct pmc_mdep *pmc_mdep; enum pmc_class class; char *name; /* * The presence of hardware performance counters on the AMD * Athlon, Duron or later processors, is _not_ indicated by * any of the processor feature flags set by the 'CPUID' * instruction, so we only check the 'instruction family' * field returned by CPUID for instruction family >= 6. */ name = NULL; switch (cpu_id & 0xF00) { #if defined(__i386__) case 0x600: /* Athlon(tm) processor */ classindex = PMC_MDEP_CLASS_INDEX_K7; cputype = PMC_CPU_AMD_K7; class = PMC_CLASS_K7; name = "K7"; break; #endif case 0xF00: /* Athlon64/Opteron processor */ classindex = PMC_MDEP_CLASS_INDEX_K8; cputype = PMC_CPU_AMD_K8; class = PMC_CLASS_K8; name = "K8"; break; default: (void) printf("pmc: Unknown AMD CPU.\n"); return NULL; } #ifdef DEBUG amd_pmc_class = class; #endif /* * Allocate space for pointers to PMC HW descriptors and for * the MDEP structure used by MI code. */ amd_pcpu = malloc(sizeof(struct amd_cpu *) * pmc_cpu_max(), M_PMC, M_WAITOK|M_ZERO); /* * These processors have two classes of PMCs: the TSC and * programmable PMCs. */ pmc_mdep = pmc_mdep_alloc(2); pmc_mdep->pmd_cputype = cputype; ncpus = pmc_cpu_max(); /* Initialize the TSC. */ error = pmc_tsc_initialize(pmc_mdep, ncpus); if (error) goto error; /* Initialize AMD K7 and K8 PMC handling. */ pcd = &pmc_mdep->pmd_classdep[classindex]; pcd->pcd_caps = AMD_PMC_CAPS; pcd->pcd_class = class; pcd->pcd_num = AMD_NPMCS; pcd->pcd_ri = pmc_mdep->pmd_npmc; pcd->pcd_width = 48; /* fill in the correct pmc name and class */ for (i = 0; i < AMD_NPMCS; i++) { (void) snprintf(amd_pmcdesc[i].pm_descr.pd_name, sizeof(amd_pmcdesc[i].pm_descr.pd_name), "%s-%d", name, i); amd_pmcdesc[i].pm_descr.pd_class = class; } pcd->pcd_allocate_pmc = amd_allocate_pmc; pcd->pcd_config_pmc = amd_config_pmc; pcd->pcd_describe = amd_describe; pcd->pcd_get_config = amd_get_config; pcd->pcd_get_msr = amd_get_msr; pcd->pcd_pcpu_fini = amd_pcpu_fini; pcd->pcd_pcpu_init = amd_pcpu_init; pcd->pcd_read_pmc = amd_read_pmc; pcd->pcd_release_pmc = amd_release_pmc; pcd->pcd_start_pmc = amd_start_pmc; pcd->pcd_stop_pmc = amd_stop_pmc; pcd->pcd_write_pmc = amd_write_pmc; pmc_mdep->pmd_pcpu_init = NULL; pmc_mdep->pmd_pcpu_fini = NULL; pmc_mdep->pmd_intr = amd_intr; pmc_mdep->pmd_switch_in = amd_switch_in; pmc_mdep->pmd_switch_out = amd_switch_out; pmc_mdep->pmd_npmc += AMD_NPMCS; PMCDBG(MDP,INI,0,"%s","amd-initialize"); return (pmc_mdep); error: if (error) { free(pmc_mdep, M_PMC); pmc_mdep = NULL; } return (NULL); } /* * Finalization code for AMD CPUs. */ void pmc_amd_finalize(struct pmc_mdep *md) { #if defined(INVARIANTS) int classindex, i, ncpus, pmcclass; #endif pmc_tsc_finalize(md); KASSERT(amd_pcpu != NULL, ("[amd,%d] NULL per-cpu array pointer", __LINE__)); #if defined(INVARIANTS) switch (md->pmd_cputype) { #if defined(__i386__) case PMC_CPU_AMD_K7: classindex = PMC_MDEP_CLASS_INDEX_K7; pmcclass = PMC_CLASS_K7; break; #endif default: classindex = PMC_MDEP_CLASS_INDEX_K8; pmcclass = PMC_CLASS_K8; } KASSERT(md->pmd_classdep[classindex].pcd_class == pmcclass, ("[amd,%d] pmc class mismatch", __LINE__)); ncpus = pmc_cpu_max(); for (i = 0; i < ncpus; i++) KASSERT(amd_pcpu[i] == NULL, ("[amd,%d] non-null pcpu", __LINE__)); #endif free(amd_pcpu, M_PMC); amd_pcpu = NULL; }