Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rue/@/opencrypto/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rue/@/opencrypto/deflate.c |
/* $OpenBSD: deflate.c,v 1.3 2001/08/20 02:45:22 hugh Exp $ */ /*- * Copyright (c) 2001 Jean-Jacques Bernard-Gundol (jj@wabbitt.org) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This file contains a wrapper around the deflate algo compression * functions using the zlib library (see net/zlib.{c,h}) */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/opencrypto/deflate.c 211616 2010-08-22 11:18:57Z rpaulo $"); #include "opt_kdtrace.h" #include <sys/types.h> #include <sys/param.h> #include <sys/malloc.h> #include <sys/param.h> #include <sys/kernel.h> #include <sys/sdt.h> #include <sys/systm.h> #include <net/zlib.h> #include <opencrypto/cryptodev.h> #include <opencrypto/deflate.h> SDT_PROVIDER_DECLARE(opencrypto); SDT_PROBE_DEFINE2(opencrypto, deflate, deflate_global, entry, entry, "int", "u_int32_t"); SDT_PROBE_DEFINE5(opencrypto, deflate, deflate_global, bad, bad, "int", "int", "int", "int", "int"); SDT_PROBE_DEFINE5(opencrypto, deflate, deflate_global, iter, iter, "int", "int", "int", "int", "int"); SDT_PROBE_DEFINE2(opencrypto, deflate, deflate_global, return, return, "int", "u_int32_t"); int window_inflate = -1 * MAX_WBITS; int window_deflate = -12; /* * This function takes a block of data and (de)compress it using the deflate * algorithm */ u_int32_t deflate_global(data, size, decomp, out) u_int8_t *data; u_int32_t size; int decomp; u_int8_t **out; { /* decomp indicates whether we compress (0) or decompress (1) */ z_stream zbuf; u_int8_t *output; u_int32_t count, result; int error, i; struct deflate_buf *bufh, *bufp; SDT_PROBE2(opencrypto, deflate, deflate_global, entry, decomp, size); bufh = bufp = NULL; if (!decomp) { i = 1; } else { /* * Choose a buffer with 4x the size of the input buffer * for the size of the output buffer in the case of * decompression. If it's not sufficient, it will need to be * updated while the decompression is going on. */ i = 4; } /* * Make sure we do have enough output space. Repeated calls to * deflate need at least 6 bytes of output buffer space to avoid * repeated markers. We will always provide at least 16 bytes. */ while ((size * i) < 16) i++; bufh = bufp = malloc(sizeof(*bufp) + (size_t)(size * i), M_CRYPTO_DATA, M_NOWAIT); if (bufp == NULL) { SDT_PROBE3(opencrypto, deflate, deflate_global, bad, decomp, 0, __LINE__); goto bad2; } bufp->next = NULL; bufp->size = size * i; bzero(&zbuf, sizeof(z_stream)); zbuf.zalloc = z_alloc; zbuf.zfree = z_free; zbuf.opaque = Z_NULL; zbuf.next_in = data; /* Data that is going to be processed. */ zbuf.avail_in = size; /* Total length of data to be processed. */ zbuf.next_out = bufp->data; zbuf.avail_out = bufp->size; error = decomp ? inflateInit2(&zbuf, window_inflate) : deflateInit2(&zbuf, Z_DEFAULT_COMPRESSION, Z_METHOD, window_deflate, Z_MEMLEVEL, Z_DEFAULT_STRATEGY); if (error != Z_OK) { SDT_PROBE3(opencrypto, deflate, deflate_global, bad, decomp, error, __LINE__); goto bad; } for (;;) { error = decomp ? inflate(&zbuf, Z_SYNC_FLUSH) : deflate(&zbuf, Z_FINISH); if (error != Z_OK && error != Z_STREAM_END) { /* * Unfortunately we are limited to 5 arguments, * thus use two probes. */ SDT_PROBE5(opencrypto, deflate, deflate_global, bad, decomp, error, __LINE__, zbuf.avail_in, zbuf.avail_out); SDT_PROBE5(opencrypto, deflate, deflate_global, bad, decomp, error, __LINE__, zbuf.state->dummy, zbuf.total_out); goto bad; } SDT_PROBE5(opencrypto, deflate, deflate_global, iter, decomp, error, __LINE__, zbuf.avail_in, zbuf.avail_out); SDT_PROBE5(opencrypto, deflate, deflate_global, iter, decomp, error, __LINE__, zbuf.state->dummy, zbuf.total_out); if (decomp && zbuf.avail_in == 0 && error == Z_STREAM_END) { /* Done. */ break; } else if (!decomp && error == Z_STREAM_END) { /* Done. */ break; } else if (zbuf.avail_out == 0) { struct deflate_buf *p; /* We need more output space for another iteration. */ p = malloc(sizeof(*p) + (size_t)(size * i), M_CRYPTO_DATA, M_NOWAIT); if (p == NULL) { SDT_PROBE3(opencrypto, deflate, deflate_global, bad, decomp, 0, __LINE__); goto bad; } p->next = NULL; p->size = size * i; bufp->next = p; bufp = p; zbuf.next_out = bufp->data; zbuf.avail_out = bufp->size; } else { /* Unexpect result. */ /* * Unfortunately we are limited to 5 arguments, * thus, again, use two probes. */ SDT_PROBE5(opencrypto, deflate, deflate_global, bad, decomp, error, __LINE__, zbuf.avail_in, zbuf.avail_out); SDT_PROBE5(opencrypto, deflate, deflate_global, bad, decomp, error, __LINE__, zbuf.state->dummy, zbuf.total_out); goto bad; } } result = count = zbuf.total_out; *out = malloc(result, M_CRYPTO_DATA, M_NOWAIT); if (*out == NULL) { SDT_PROBE3(opencrypto, deflate, deflate_global, bad, decomp, 0, __LINE__); goto bad; } if (decomp) inflateEnd(&zbuf); else deflateEnd(&zbuf); output = *out; for (bufp = bufh; bufp != NULL; ) { if (count > bufp->size) { struct deflate_buf *p; bcopy(bufp->data, *out, bufp->size); *out += bufp->size; count -= bufp->size; p = bufp; bufp = bufp->next; free(p, M_CRYPTO_DATA); } else { /* It should be the last buffer. */ bcopy(bufp->data, *out, count); *out += count; free(bufp, M_CRYPTO_DATA); bufp = NULL; count = 0; } } *out = output; SDT_PROBE2(opencrypto, deflate, deflate_global, return, decomp, result); return result; bad: if (decomp) inflateEnd(&zbuf); else deflateEnd(&zbuf); for (bufp = bufh; bufp != NULL; ) { struct deflate_buf *p; p = bufp; bufp = bufp->next; free(p, M_CRYPTO_DATA); } bad2: *out = NULL; return 0; } void * z_alloc(nil, type, size) void *nil; u_int type, size; { void *ptr; ptr = malloc(type *size, M_CRYPTO_DATA, M_NOWAIT); return ptr; } void z_free(nil, ptr) void *nil, *ptr; { free(ptr, M_CRYPTO_DATA); }