Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rum/@/compat/ndis/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rum/@/compat/ndis/subr_ntoskrnl.c |
/*- * Copyright (c) 2003 * Bill Paul <wpaul@windriver.com>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/compat/ndis/subr_ntoskrnl.c 229739 2012-01-06 22:15:58Z dim $"); #include <sys/ctype.h> #include <sys/unistd.h> #include <sys/param.h> #include <sys/types.h> #include <sys/errno.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/callout.h> #include <sys/kdb.h> #include <sys/kernel.h> #include <sys/proc.h> #include <sys/condvar.h> #include <sys/kthread.h> #include <sys/module.h> #include <sys/smp.h> #include <sys/sched.h> #include <sys/sysctl.h> #include <machine/atomic.h> #include <machine/bus.h> #include <machine/stdarg.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/pmap.h> #include <vm/uma.h> #include <vm/vm_kern.h> #include <vm/vm_map.h> #include <vm/vm_extern.h> #include <compat/ndis/pe_var.h> #include <compat/ndis/cfg_var.h> #include <compat/ndis/resource_var.h> #include <compat/ndis/ntoskrnl_var.h> #include <compat/ndis/hal_var.h> #include <compat/ndis/ndis_var.h> #ifdef NTOSKRNL_DEBUG_TIMERS static int sysctl_show_timers(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers, CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_show_timers, "I", "Show ntoskrnl timer stats"); #endif struct kdpc_queue { list_entry kq_disp; struct thread *kq_td; int kq_cpu; int kq_exit; int kq_running; kspin_lock kq_lock; nt_kevent kq_proc; nt_kevent kq_done; }; typedef struct kdpc_queue kdpc_queue; struct wb_ext { struct cv we_cv; struct thread *we_td; }; typedef struct wb_ext wb_ext; #define NTOSKRNL_TIMEOUTS 256 #ifdef NTOSKRNL_DEBUG_TIMERS static uint64_t ntoskrnl_timer_fires; static uint64_t ntoskrnl_timer_sets; static uint64_t ntoskrnl_timer_reloads; static uint64_t ntoskrnl_timer_cancels; #endif struct callout_entry { struct callout ce_callout; list_entry ce_list; }; typedef struct callout_entry callout_entry; static struct list_entry ntoskrnl_calllist; static struct mtx ntoskrnl_calllock; struct kuser_shared_data kuser_shared_data; static struct list_entry ntoskrnl_intlist; static kspin_lock ntoskrnl_intlock; static uint8_t RtlEqualUnicodeString(unicode_string *, unicode_string *, uint8_t); static void RtlCopyString(ansi_string *, const ansi_string *); static void RtlCopyUnicodeString(unicode_string *, unicode_string *); static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *, void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *); static irp *IoBuildAsynchronousFsdRequest(uint32_t, device_object *, void *, uint32_t, uint64_t *, io_status_block *); static irp *IoBuildDeviceIoControlRequest(uint32_t, device_object *, void *, uint32_t, void *, uint32_t, uint8_t, nt_kevent *, io_status_block *); static irp *IoAllocateIrp(uint8_t, uint8_t); static void IoReuseIrp(irp *, uint32_t); static void IoFreeIrp(irp *); static void IoInitializeIrp(irp *, uint16_t, uint8_t); static irp *IoMakeAssociatedIrp(irp *, uint8_t); static uint32_t KeWaitForMultipleObjects(uint32_t, nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t, int64_t *, wait_block *); static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t); static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *); static void ntoskrnl_satisfy_multiple_waits(wait_block *); static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *); static void ntoskrnl_insert_timer(ktimer *, int); static void ntoskrnl_remove_timer(ktimer *); #ifdef NTOSKRNL_DEBUG_TIMERS static void ntoskrnl_show_timers(void); #endif static void ntoskrnl_timercall(void *); static void ntoskrnl_dpc_thread(void *); static void ntoskrnl_destroy_dpc_threads(void); static void ntoskrnl_destroy_workitem_threads(void); static void ntoskrnl_workitem_thread(void *); static void ntoskrnl_workitem(device_object *, void *); static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int); static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int); static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *); static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t); static uint16_t READ_REGISTER_USHORT(uint16_t *); static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t); static uint32_t READ_REGISTER_ULONG(uint32_t *); static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t); static uint8_t READ_REGISTER_UCHAR(uint8_t *); static int64_t _allmul(int64_t, int64_t); static int64_t _alldiv(int64_t, int64_t); static int64_t _allrem(int64_t, int64_t); static int64_t _allshr(int64_t, uint8_t); static int64_t _allshl(int64_t, uint8_t); static uint64_t _aullmul(uint64_t, uint64_t); static uint64_t _aulldiv(uint64_t, uint64_t); static uint64_t _aullrem(uint64_t, uint64_t); static uint64_t _aullshr(uint64_t, uint8_t); static uint64_t _aullshl(uint64_t, uint8_t); static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *); static void InitializeSListHead(slist_header *); static slist_entry *ntoskrnl_popsl(slist_header *); static void ExFreePoolWithTag(void *, uint32_t); static void ExInitializePagedLookasideList(paged_lookaside_list *, lookaside_alloc_func *, lookaside_free_func *, uint32_t, size_t, uint32_t, uint16_t); static void ExDeletePagedLookasideList(paged_lookaside_list *); static void ExInitializeNPagedLookasideList(npaged_lookaside_list *, lookaside_alloc_func *, lookaside_free_func *, uint32_t, size_t, uint32_t, uint16_t); static void ExDeleteNPagedLookasideList(npaged_lookaside_list *); static slist_entry *ExInterlockedPushEntrySList(slist_header *, slist_entry *, kspin_lock *); static slist_entry *ExInterlockedPopEntrySList(slist_header *, kspin_lock *); static uint32_t InterlockedIncrement(volatile uint32_t *); static uint32_t InterlockedDecrement(volatile uint32_t *); static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t); static void *MmAllocateContiguousMemory(uint32_t, uint64_t); static void *MmAllocateContiguousMemorySpecifyCache(uint32_t, uint64_t, uint64_t, uint64_t, enum nt_caching_type); static void MmFreeContiguousMemory(void *); static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t, enum nt_caching_type); static uint32_t MmSizeOfMdl(void *, size_t); static void *MmMapLockedPages(mdl *, uint8_t); static void *MmMapLockedPagesSpecifyCache(mdl *, uint8_t, uint32_t, void *, uint32_t, uint32_t); static void MmUnmapLockedPages(void *, mdl *); static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **); static void RtlZeroMemory(void *, size_t); static void RtlSecureZeroMemory(void *, size_t); static void RtlFillMemory(void *, size_t, uint8_t); static void RtlMoveMemory(void *, const void *, size_t); static ndis_status RtlCharToInteger(const char *, uint32_t, uint32_t *); static void RtlCopyMemory(void *, const void *, size_t); static size_t RtlCompareMemory(const void *, const void *, size_t); static ndis_status RtlUnicodeStringToInteger(unicode_string *, uint32_t, uint32_t *); static int atoi (const char *); static long atol (const char *); static int rand(void); static void srand(unsigned int); static void KeQuerySystemTime(uint64_t *); static uint32_t KeTickCount(void); static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t); static int32_t IoOpenDeviceRegistryKey(struct device_object *, uint32_t, uint32_t, void **); static void ntoskrnl_thrfunc(void *); static ndis_status PsCreateSystemThread(ndis_handle *, uint32_t, void *, ndis_handle, void *, void *, void *); static ndis_status PsTerminateSystemThread(ndis_status); static ndis_status IoGetDeviceObjectPointer(unicode_string *, uint32_t, void *, device_object *); static ndis_status IoGetDeviceProperty(device_object *, uint32_t, uint32_t, void *, uint32_t *); static void KeInitializeMutex(kmutant *, uint32_t); static uint32_t KeReleaseMutex(kmutant *, uint8_t); static uint32_t KeReadStateMutex(kmutant *); static ndis_status ObReferenceObjectByHandle(ndis_handle, uint32_t, void *, uint8_t, void **, void **); static void ObfDereferenceObject(void *); static uint32_t ZwClose(ndis_handle); static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t, uint32_t, void *); static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...); static uint32_t IoWMIRegistrationControl(device_object *, uint32_t); static void *ntoskrnl_memset(void *, int, size_t); static void *ntoskrnl_memmove(void *, void *, size_t); static void *ntoskrnl_memchr(void *, unsigned char, size_t); static char *ntoskrnl_strstr(char *, char *); static char *ntoskrnl_strncat(char *, char *, size_t); static int ntoskrnl_toupper(int); static int ntoskrnl_tolower(int); static funcptr ntoskrnl_findwrap(funcptr); static uint32_t DbgPrint(char *, ...); static void DbgBreakPoint(void); static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long); static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *); static int32_t KeSetPriorityThread(struct thread *, int32_t); static void dummy(void); static struct mtx ntoskrnl_dispatchlock; static struct mtx ntoskrnl_interlock; static kspin_lock ntoskrnl_cancellock; static int ntoskrnl_kth = 0; static struct nt_objref_head ntoskrnl_reflist; static uma_zone_t mdl_zone; static uma_zone_t iw_zone; static struct kdpc_queue *kq_queues; static struct kdpc_queue *wq_queues; static int wq_idx = 0; int ntoskrnl_libinit() { image_patch_table *patch; int error; struct proc *p; kdpc_queue *kq; callout_entry *e; int i; mtx_init(&ntoskrnl_dispatchlock, "ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE); mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN); KeInitializeSpinLock(&ntoskrnl_cancellock); KeInitializeSpinLock(&ntoskrnl_intlock); TAILQ_INIT(&ntoskrnl_reflist); InitializeListHead(&ntoskrnl_calllist); InitializeListHead(&ntoskrnl_intlist); mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN); kq_queues = ExAllocatePoolWithTag(NonPagedPool, #ifdef NTOSKRNL_MULTIPLE_DPCS sizeof(kdpc_queue) * mp_ncpus, 0); #else sizeof(kdpc_queue), 0); #endif if (kq_queues == NULL) return (ENOMEM); wq_queues = ExAllocatePoolWithTag(NonPagedPool, sizeof(kdpc_queue) * WORKITEM_THREADS, 0); if (wq_queues == NULL) return (ENOMEM); #ifdef NTOSKRNL_MULTIPLE_DPCS bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus); #else bzero((char *)kq_queues, sizeof(kdpc_queue)); #endif bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS); /* * Launch the DPC threads. */ #ifdef NTOSKRNL_MULTIPLE_DPCS for (i = 0; i < mp_ncpus; i++) { #else for (i = 0; i < 1; i++) { #endif kq = kq_queues + i; kq->kq_cpu = i; error = kproc_create(ntoskrnl_dpc_thread, kq, &p, RFHIGHPID, NDIS_KSTACK_PAGES, "Windows DPC %d", i); if (error) panic("failed to launch DPC thread"); } /* * Launch the workitem threads. */ for (i = 0; i < WORKITEM_THREADS; i++) { kq = wq_queues + i; error = kproc_create(ntoskrnl_workitem_thread, kq, &p, RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Workitem %d", i); if (error) panic("failed to launch workitem thread"); } patch = ntoskrnl_functbl; while (patch->ipt_func != NULL) { windrv_wrap((funcptr)patch->ipt_func, (funcptr *)&patch->ipt_wrap, patch->ipt_argcnt, patch->ipt_ftype); patch++; } for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) { e = ExAllocatePoolWithTag(NonPagedPool, sizeof(callout_entry), 0); if (e == NULL) panic("failed to allocate timeouts"); mtx_lock_spin(&ntoskrnl_calllock); InsertHeadList((&ntoskrnl_calllist), (&e->ce_list)); mtx_unlock_spin(&ntoskrnl_calllock); } /* * MDLs are supposed to be variable size (they describe * buffers containing some number of pages, but we don't * know ahead of time how many pages that will be). But * always allocating them off the heap is very slow. As * a compromise, we create an MDL UMA zone big enough to * handle any buffer requiring up to 16 pages, and we * use those for any MDLs for buffers of 16 pages or less * in size. For buffers larger than that (which we assume * will be few and far between, we allocate the MDLs off * the heap. */ mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); return (0); } int ntoskrnl_libfini() { image_patch_table *patch; callout_entry *e; list_entry *l; patch = ntoskrnl_functbl; while (patch->ipt_func != NULL) { windrv_unwrap(patch->ipt_wrap); patch++; } /* Stop the workitem queues. */ ntoskrnl_destroy_workitem_threads(); /* Stop the DPC queues. */ ntoskrnl_destroy_dpc_threads(); ExFreePool(kq_queues); ExFreePool(wq_queues); uma_zdestroy(mdl_zone); uma_zdestroy(iw_zone); mtx_lock_spin(&ntoskrnl_calllock); while(!IsListEmpty(&ntoskrnl_calllist)) { l = RemoveHeadList(&ntoskrnl_calllist); e = CONTAINING_RECORD(l, callout_entry, ce_list); mtx_unlock_spin(&ntoskrnl_calllock); ExFreePool(e); mtx_lock_spin(&ntoskrnl_calllock); } mtx_unlock_spin(&ntoskrnl_calllock); mtx_destroy(&ntoskrnl_dispatchlock); mtx_destroy(&ntoskrnl_interlock); mtx_destroy(&ntoskrnl_calllock); return (0); } /* * We need to be able to reference this externally from the wrapper; * GCC only generates a local implementation of memset. */ static void * ntoskrnl_memset(buf, ch, size) void *buf; int ch; size_t size; { return (memset(buf, ch, size)); } static void * ntoskrnl_memmove(dst, src, size) void *src; void *dst; size_t size; { bcopy(src, dst, size); return (dst); } static void * ntoskrnl_memchr(void *buf, unsigned char ch, size_t len) { if (len != 0) { unsigned char *p = buf; do { if (*p++ == ch) return (p - 1); } while (--len != 0); } return (NULL); } static char * ntoskrnl_strstr(s, find) char *s, *find; { char c, sc; size_t len; if ((c = *find++) != 0) { len = strlen(find); do { do { if ((sc = *s++) == 0) return (NULL); } while (sc != c); } while (strncmp(s, find, len) != 0); s--; } return ((char *)s); } /* Taken from libc */ static char * ntoskrnl_strncat(dst, src, n) char *dst; char *src; size_t n; { if (n != 0) { char *d = dst; const char *s = src; while (*d != 0) d++; do { if ((*d = *s++) == 0) break; d++; } while (--n != 0); *d = 0; } return (dst); } static int ntoskrnl_toupper(c) int c; { return (toupper(c)); } static int ntoskrnl_tolower(c) int c; { return (tolower(c)); } static uint8_t RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2, uint8_t caseinsensitive) { int i; if (str1->us_len != str2->us_len) return (FALSE); for (i = 0; i < str1->us_len; i++) { if (caseinsensitive == TRUE) { if (toupper((char)(str1->us_buf[i] & 0xFF)) != toupper((char)(str2->us_buf[i] & 0xFF))) return (FALSE); } else { if (str1->us_buf[i] != str2->us_buf[i]) return (FALSE); } } return (TRUE); } static void RtlCopyString(dst, src) ansi_string *dst; const ansi_string *src; { if (src != NULL && src->as_buf != NULL && dst->as_buf != NULL) { dst->as_len = min(src->as_len, dst->as_maxlen); memcpy(dst->as_buf, src->as_buf, dst->as_len); if (dst->as_len < dst->as_maxlen) dst->as_buf[dst->as_len] = 0; } else dst->as_len = 0; } static void RtlCopyUnicodeString(dest, src) unicode_string *dest; unicode_string *src; { if (dest->us_maxlen >= src->us_len) dest->us_len = src->us_len; else dest->us_len = dest->us_maxlen; memcpy(dest->us_buf, src->us_buf, dest->us_len); } static void ntoskrnl_ascii_to_unicode(ascii, unicode, len) char *ascii; uint16_t *unicode; int len; { int i; uint16_t *ustr; ustr = unicode; for (i = 0; i < len; i++) { *ustr = (uint16_t)ascii[i]; ustr++; } } static void ntoskrnl_unicode_to_ascii(unicode, ascii, len) uint16_t *unicode; char *ascii; int len; { int i; uint8_t *astr; astr = ascii; for (i = 0; i < len / 2; i++) { *astr = (uint8_t)unicode[i]; astr++; } } uint32_t RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate) { if (dest == NULL || src == NULL) return (STATUS_INVALID_PARAMETER); dest->as_len = src->us_len / 2; if (dest->as_maxlen < dest->as_len) dest->as_len = dest->as_maxlen; if (allocate == TRUE) { dest->as_buf = ExAllocatePoolWithTag(NonPagedPool, (src->us_len / 2) + 1, 0); if (dest->as_buf == NULL) return (STATUS_INSUFFICIENT_RESOURCES); dest->as_len = dest->as_maxlen = src->us_len / 2; } else { dest->as_len = src->us_len / 2; /* XXX */ if (dest->as_maxlen < dest->as_len) dest->as_len = dest->as_maxlen; } ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf, dest->as_len * 2); return (STATUS_SUCCESS); } uint32_t RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src, uint8_t allocate) { if (dest == NULL || src == NULL) return (STATUS_INVALID_PARAMETER); if (allocate == TRUE) { dest->us_buf = ExAllocatePoolWithTag(NonPagedPool, src->as_len * 2, 0); if (dest->us_buf == NULL) return (STATUS_INSUFFICIENT_RESOURCES); dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2; } else { dest->us_len = src->as_len * 2; /* XXX */ if (dest->us_maxlen < dest->us_len) dest->us_len = dest->us_maxlen; } ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf, dest->us_len / 2); return (STATUS_SUCCESS); } void * ExAllocatePoolWithTag(pooltype, len, tag) uint32_t pooltype; size_t len; uint32_t tag; { void *buf; buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO); if (buf == NULL) return (NULL); return (buf); } static void ExFreePoolWithTag(buf, tag) void *buf; uint32_t tag; { ExFreePool(buf); } void ExFreePool(buf) void *buf; { free(buf, M_DEVBUF); } uint32_t IoAllocateDriverObjectExtension(drv, clid, extlen, ext) driver_object *drv; void *clid; uint32_t extlen; void **ext; { custom_extension *ce; ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension) + extlen, 0); if (ce == NULL) return (STATUS_INSUFFICIENT_RESOURCES); ce->ce_clid = clid; InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list)); *ext = (void *)(ce + 1); return (STATUS_SUCCESS); } void * IoGetDriverObjectExtension(drv, clid) driver_object *drv; void *clid; { list_entry *e; custom_extension *ce; /* * Sanity check. Our dummy bus drivers don't have * any driver extentions. */ if (drv->dro_driverext == NULL) return (NULL); e = drv->dro_driverext->dre_usrext.nle_flink; while (e != &drv->dro_driverext->dre_usrext) { ce = (custom_extension *)e; if (ce->ce_clid == clid) return ((void *)(ce + 1)); e = e->nle_flink; } return (NULL); } uint32_t IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname, uint32_t devtype, uint32_t devchars, uint8_t exclusive, device_object **newdev) { device_object *dev; dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0); if (dev == NULL) return (STATUS_INSUFFICIENT_RESOURCES); dev->do_type = devtype; dev->do_drvobj = drv; dev->do_currirp = NULL; dev->do_flags = 0; if (devextlen) { dev->do_devext = ExAllocatePoolWithTag(NonPagedPool, devextlen, 0); if (dev->do_devext == NULL) { ExFreePool(dev); return (STATUS_INSUFFICIENT_RESOURCES); } bzero(dev->do_devext, devextlen); } else dev->do_devext = NULL; dev->do_size = sizeof(device_object) + devextlen; dev->do_refcnt = 1; dev->do_attacheddev = NULL; dev->do_nextdev = NULL; dev->do_devtype = devtype; dev->do_stacksize = 1; dev->do_alignreq = 1; dev->do_characteristics = devchars; dev->do_iotimer = NULL; KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE); /* * Vpd is used for disk/tape devices, * but we don't support those. (Yet.) */ dev->do_vpb = NULL; dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool, sizeof(devobj_extension), 0); if (dev->do_devobj_ext == NULL) { if (dev->do_devext != NULL) ExFreePool(dev->do_devext); ExFreePool(dev); return (STATUS_INSUFFICIENT_RESOURCES); } dev->do_devobj_ext->dve_type = 0; dev->do_devobj_ext->dve_size = sizeof(devobj_extension); dev->do_devobj_ext->dve_devobj = dev; /* * Attach this device to the driver object's list * of devices. Note: this is not the same as attaching * the device to the device stack. The driver's AddDevice * routine must explicitly call IoAddDeviceToDeviceStack() * to do that. */ if (drv->dro_devobj == NULL) { drv->dro_devobj = dev; dev->do_nextdev = NULL; } else { dev->do_nextdev = drv->dro_devobj; drv->dro_devobj = dev; } *newdev = dev; return (STATUS_SUCCESS); } void IoDeleteDevice(dev) device_object *dev; { device_object *prev; if (dev == NULL) return; if (dev->do_devobj_ext != NULL) ExFreePool(dev->do_devobj_ext); if (dev->do_devext != NULL) ExFreePool(dev->do_devext); /* Unlink the device from the driver's device list. */ prev = dev->do_drvobj->dro_devobj; if (prev == dev) dev->do_drvobj->dro_devobj = dev->do_nextdev; else { while (prev->do_nextdev != dev) prev = prev->do_nextdev; prev->do_nextdev = dev->do_nextdev; } ExFreePool(dev); } device_object * IoGetAttachedDevice(dev) device_object *dev; { device_object *d; if (dev == NULL) return (NULL); d = dev; while (d->do_attacheddev != NULL) d = d->do_attacheddev; return (d); } static irp * IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status) uint32_t func; device_object *dobj; void *buf; uint32_t len; uint64_t *off; nt_kevent *event; io_status_block *status; { irp *ip; ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status); if (ip == NULL) return (NULL); ip->irp_usrevent = event; return (ip); } static irp * IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status) uint32_t func; device_object *dobj; void *buf; uint32_t len; uint64_t *off; io_status_block *status; { irp *ip; io_stack_location *sl; ip = IoAllocateIrp(dobj->do_stacksize, TRUE); if (ip == NULL) return (NULL); ip->irp_usriostat = status; ip->irp_tail.irp_overlay.irp_thread = NULL; sl = IoGetNextIrpStackLocation(ip); sl->isl_major = func; sl->isl_minor = 0; sl->isl_flags = 0; sl->isl_ctl = 0; sl->isl_devobj = dobj; sl->isl_fileobj = NULL; sl->isl_completionfunc = NULL; ip->irp_userbuf = buf; if (dobj->do_flags & DO_BUFFERED_IO) { ip->irp_assoc.irp_sysbuf = ExAllocatePoolWithTag(NonPagedPool, len, 0); if (ip->irp_assoc.irp_sysbuf == NULL) { IoFreeIrp(ip); return (NULL); } bcopy(buf, ip->irp_assoc.irp_sysbuf, len); } if (dobj->do_flags & DO_DIRECT_IO) { ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip); if (ip->irp_mdl == NULL) { if (ip->irp_assoc.irp_sysbuf != NULL) ExFreePool(ip->irp_assoc.irp_sysbuf); IoFreeIrp(ip); return (NULL); } ip->irp_userbuf = NULL; ip->irp_assoc.irp_sysbuf = NULL; } if (func == IRP_MJ_READ) { sl->isl_parameters.isl_read.isl_len = len; if (off != NULL) sl->isl_parameters.isl_read.isl_byteoff = *off; else sl->isl_parameters.isl_read.isl_byteoff = 0; } if (func == IRP_MJ_WRITE) { sl->isl_parameters.isl_write.isl_len = len; if (off != NULL) sl->isl_parameters.isl_write.isl_byteoff = *off; else sl->isl_parameters.isl_write.isl_byteoff = 0; } return (ip); } static irp * IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf, uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal, nt_kevent *event, io_status_block *status) { irp *ip; io_stack_location *sl; uint32_t buflen; ip = IoAllocateIrp(dobj->do_stacksize, TRUE); if (ip == NULL) return (NULL); ip->irp_usrevent = event; ip->irp_usriostat = status; ip->irp_tail.irp_overlay.irp_thread = NULL; sl = IoGetNextIrpStackLocation(ip); sl->isl_major = isinternal == TRUE ? IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL; sl->isl_minor = 0; sl->isl_flags = 0; sl->isl_ctl = 0; sl->isl_devobj = dobj; sl->isl_fileobj = NULL; sl->isl_completionfunc = NULL; sl->isl_parameters.isl_ioctl.isl_iocode = iocode; sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen; sl->isl_parameters.isl_ioctl.isl_obuflen = olen; switch(IO_METHOD(iocode)) { case METHOD_BUFFERED: if (ilen > olen) buflen = ilen; else buflen = olen; if (buflen) { ip->irp_assoc.irp_sysbuf = ExAllocatePoolWithTag(NonPagedPool, buflen, 0); if (ip->irp_assoc.irp_sysbuf == NULL) { IoFreeIrp(ip); return (NULL); } } if (ilen && ibuf != NULL) { bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen); bzero((char *)ip->irp_assoc.irp_sysbuf + ilen, buflen - ilen); } else bzero(ip->irp_assoc.irp_sysbuf, ilen); ip->irp_userbuf = obuf; break; case METHOD_IN_DIRECT: case METHOD_OUT_DIRECT: if (ilen && ibuf != NULL) { ip->irp_assoc.irp_sysbuf = ExAllocatePoolWithTag(NonPagedPool, ilen, 0); if (ip->irp_assoc.irp_sysbuf == NULL) { IoFreeIrp(ip); return (NULL); } bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen); } if (olen && obuf != NULL) { ip->irp_mdl = IoAllocateMdl(obuf, olen, FALSE, FALSE, ip); /* * Normally we would MmProbeAndLockPages() * here, but we don't have to in our * imlementation. */ } break; case METHOD_NEITHER: ip->irp_userbuf = obuf; sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf; break; default: break; } /* * Ideally, we should associate this IRP with the calling * thread here. */ return (ip); } static irp * IoAllocateIrp(uint8_t stsize, uint8_t chargequota) { irp *i; i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0); if (i == NULL) return (NULL); IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize); return (i); } static irp * IoMakeAssociatedIrp(irp *ip, uint8_t stsize) { irp *associrp; associrp = IoAllocateIrp(stsize, FALSE); if (associrp == NULL) return (NULL); mtx_lock(&ntoskrnl_dispatchlock); associrp->irp_flags |= IRP_ASSOCIATED_IRP; associrp->irp_tail.irp_overlay.irp_thread = ip->irp_tail.irp_overlay.irp_thread; associrp->irp_assoc.irp_master = ip; mtx_unlock(&ntoskrnl_dispatchlock); return (associrp); } static void IoFreeIrp(ip) irp *ip; { ExFreePool(ip); } static void IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize) { bzero((char *)io, IoSizeOfIrp(ssize)); io->irp_size = psize; io->irp_stackcnt = ssize; io->irp_currentstackloc = ssize; InitializeListHead(&io->irp_thlist); io->irp_tail.irp_overlay.irp_csl = (io_stack_location *)(io + 1) + ssize; } static void IoReuseIrp(ip, status) irp *ip; uint32_t status; { uint8_t allocflags; allocflags = ip->irp_allocflags; IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt); ip->irp_iostat.isb_status = status; ip->irp_allocflags = allocflags; } void IoAcquireCancelSpinLock(uint8_t *irql) { KeAcquireSpinLock(&ntoskrnl_cancellock, irql); } void IoReleaseCancelSpinLock(uint8_t irql) { KeReleaseSpinLock(&ntoskrnl_cancellock, irql); } uint8_t IoCancelIrp(irp *ip) { cancel_func cfunc; uint8_t cancelirql; IoAcquireCancelSpinLock(&cancelirql); cfunc = IoSetCancelRoutine(ip, NULL); ip->irp_cancel = TRUE; if (cfunc == NULL) { IoReleaseCancelSpinLock(cancelirql); return (FALSE); } ip->irp_cancelirql = cancelirql; MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip); return (uint8_t)IoSetCancelValue(ip, TRUE); } uint32_t IofCallDriver(dobj, ip) device_object *dobj; irp *ip; { driver_object *drvobj; io_stack_location *sl; uint32_t status; driver_dispatch disp; drvobj = dobj->do_drvobj; if (ip->irp_currentstackloc <= 0) panic("IoCallDriver(): out of stack locations"); IoSetNextIrpStackLocation(ip); sl = IoGetCurrentIrpStackLocation(ip); sl->isl_devobj = dobj; disp = drvobj->dro_dispatch[sl->isl_major]; status = MSCALL2(disp, dobj, ip); return (status); } void IofCompleteRequest(irp *ip, uint8_t prioboost) { uint32_t status; device_object *dobj; io_stack_location *sl; completion_func cf; KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING, ("incorrect IRP(%p) status (STATUS_PENDING)", ip)); sl = IoGetCurrentIrpStackLocation(ip); IoSkipCurrentIrpStackLocation(ip); do { if (sl->isl_ctl & SL_PENDING_RETURNED) ip->irp_pendingreturned = TRUE; if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1)) dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj; else dobj = NULL; if (sl->isl_completionfunc != NULL && ((ip->irp_iostat.isb_status == STATUS_SUCCESS && sl->isl_ctl & SL_INVOKE_ON_SUCCESS) || (ip->irp_iostat.isb_status != STATUS_SUCCESS && sl->isl_ctl & SL_INVOKE_ON_ERROR) || (ip->irp_cancel == TRUE && sl->isl_ctl & SL_INVOKE_ON_CANCEL))) { cf = sl->isl_completionfunc; status = MSCALL3(cf, dobj, ip, sl->isl_completionctx); if (status == STATUS_MORE_PROCESSING_REQUIRED) return; } else { if ((ip->irp_currentstackloc <= ip->irp_stackcnt) && (ip->irp_pendingreturned == TRUE)) IoMarkIrpPending(ip); } /* move to the next. */ IoSkipCurrentIrpStackLocation(ip); sl++; } while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1)); if (ip->irp_usriostat != NULL) *ip->irp_usriostat = ip->irp_iostat; if (ip->irp_usrevent != NULL) KeSetEvent(ip->irp_usrevent, prioboost, FALSE); /* Handle any associated IRPs. */ if (ip->irp_flags & IRP_ASSOCIATED_IRP) { uint32_t masterirpcnt; irp *masterirp; mdl *m; masterirp = ip->irp_assoc.irp_master; masterirpcnt = InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt); while ((m = ip->irp_mdl) != NULL) { ip->irp_mdl = m->mdl_next; IoFreeMdl(m); } IoFreeIrp(ip); if (masterirpcnt == 0) IoCompleteRequest(masterirp, IO_NO_INCREMENT); return; } /* With any luck, these conditions will never arise. */ if (ip->irp_flags & IRP_PAGING_IO) { if (ip->irp_mdl != NULL) IoFreeMdl(ip->irp_mdl); IoFreeIrp(ip); } } void ntoskrnl_intr(arg) void *arg; { kinterrupt *iobj; uint8_t irql; uint8_t claimed; list_entry *l; KeAcquireSpinLock(&ntoskrnl_intlock, &irql); l = ntoskrnl_intlist.nle_flink; while (l != &ntoskrnl_intlist) { iobj = CONTAINING_RECORD(l, kinterrupt, ki_list); claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx); if (claimed == TRUE) break; l = l->nle_flink; } KeReleaseSpinLock(&ntoskrnl_intlock, irql); } uint8_t KeAcquireInterruptSpinLock(iobj) kinterrupt *iobj; { uint8_t irql; KeAcquireSpinLock(&ntoskrnl_intlock, &irql); return (irql); } void KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql) { KeReleaseSpinLock(&ntoskrnl_intlock, irql); } uint8_t KeSynchronizeExecution(iobj, syncfunc, syncctx) kinterrupt *iobj; void *syncfunc; void *syncctx; { uint8_t irql; KeAcquireSpinLock(&ntoskrnl_intlock, &irql); MSCALL1(syncfunc, syncctx); KeReleaseSpinLock(&ntoskrnl_intlock, irql); return (TRUE); } /* * IoConnectInterrupt() is passed only the interrupt vector and * irql that a device wants to use, but no device-specific tag * of any kind. This conflicts rather badly with FreeBSD's * bus_setup_intr(), which needs the device_t for the device * requesting interrupt delivery. In order to bypass this * inconsistency, we implement a second level of interrupt * dispatching on top of bus_setup_intr(). All devices use * ntoskrnl_intr() as their ISR, and any device requesting * interrupts will be registered with ntoskrnl_intr()'s interrupt * dispatch list. When an interrupt arrives, we walk the list * and invoke all the registered ISRs. This effectively makes all * interrupts shared, but it's the only way to duplicate the * semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly. */ uint32_t IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx, kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql, uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat) { uint8_t curirql; *iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0); if (*iobj == NULL) return (STATUS_INSUFFICIENT_RESOURCES); (*iobj)->ki_svcfunc = svcfunc; (*iobj)->ki_svcctx = svcctx; if (lock == NULL) { KeInitializeSpinLock(&(*iobj)->ki_lock_priv); (*iobj)->ki_lock = &(*iobj)->ki_lock_priv; } else (*iobj)->ki_lock = lock; KeAcquireSpinLock(&ntoskrnl_intlock, &curirql); InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list)); KeReleaseSpinLock(&ntoskrnl_intlock, curirql); return (STATUS_SUCCESS); } void IoDisconnectInterrupt(iobj) kinterrupt *iobj; { uint8_t irql; if (iobj == NULL) return; KeAcquireSpinLock(&ntoskrnl_intlock, &irql); RemoveEntryList((&iobj->ki_list)); KeReleaseSpinLock(&ntoskrnl_intlock, irql); ExFreePool(iobj); } device_object * IoAttachDeviceToDeviceStack(src, dst) device_object *src; device_object *dst; { device_object *attached; mtx_lock(&ntoskrnl_dispatchlock); attached = IoGetAttachedDevice(dst); attached->do_attacheddev = src; src->do_attacheddev = NULL; src->do_stacksize = attached->do_stacksize + 1; mtx_unlock(&ntoskrnl_dispatchlock); return (attached); } void IoDetachDevice(topdev) device_object *topdev; { device_object *tail; mtx_lock(&ntoskrnl_dispatchlock); /* First, break the chain. */ tail = topdev->do_attacheddev; if (tail == NULL) { mtx_unlock(&ntoskrnl_dispatchlock); return; } topdev->do_attacheddev = tail->do_attacheddev; topdev->do_refcnt--; /* Now reduce the stacksize count for the takm_il objects. */ tail = topdev->do_attacheddev; while (tail != NULL) { tail->do_stacksize--; tail = tail->do_attacheddev; } mtx_unlock(&ntoskrnl_dispatchlock); } /* * For the most part, an object is considered signalled if * dh_sigstate == TRUE. The exception is for mutant objects * (mutexes), where the logic works like this: * * - If the thread already owns the object and sigstate is * less than or equal to 0, then the object is considered * signalled (recursive acquisition). * - If dh_sigstate == 1, the object is also considered * signalled. */ static int ntoskrnl_is_signalled(obj, td) nt_dispatch_header *obj; struct thread *td; { kmutant *km; if (obj->dh_type == DISP_TYPE_MUTANT) { km = (kmutant *)obj; if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) || obj->dh_sigstate == 1) return (TRUE); return (FALSE); } if (obj->dh_sigstate > 0) return (TRUE); return (FALSE); } static void ntoskrnl_satisfy_wait(obj, td) nt_dispatch_header *obj; struct thread *td; { kmutant *km; switch (obj->dh_type) { case DISP_TYPE_MUTANT: km = (struct kmutant *)obj; obj->dh_sigstate--; /* * If sigstate reaches 0, the mutex is now * non-signalled (the new thread owns it). */ if (obj->dh_sigstate == 0) { km->km_ownerthread = td; if (km->km_abandoned == TRUE) km->km_abandoned = FALSE; } break; /* Synchronization objects get reset to unsignalled. */ case DISP_TYPE_SYNCHRONIZATION_EVENT: case DISP_TYPE_SYNCHRONIZATION_TIMER: obj->dh_sigstate = 0; break; case DISP_TYPE_SEMAPHORE: obj->dh_sigstate--; break; default: break; } } static void ntoskrnl_satisfy_multiple_waits(wb) wait_block *wb; { wait_block *cur; struct thread *td; cur = wb; td = wb->wb_kthread; do { ntoskrnl_satisfy_wait(wb->wb_object, td); cur->wb_awakened = TRUE; cur = cur->wb_next; } while (cur != wb); } /* Always called with dispatcher lock held. */ static void ntoskrnl_waittest(obj, increment) nt_dispatch_header *obj; uint32_t increment; { wait_block *w, *next; list_entry *e; struct thread *td; wb_ext *we; int satisfied; /* * Once an object has been signalled, we walk its list of * wait blocks. If a wait block can be awakened, then satisfy * waits as necessary and wake the thread. * * The rules work like this: * * If a wait block is marked as WAITTYPE_ANY, then * we can satisfy the wait conditions on the current * object and wake the thread right away. Satisfying * the wait also has the effect of breaking us out * of the search loop. * * If the object is marked as WAITTYLE_ALL, then the * wait block will be part of a circularly linked * list of wait blocks belonging to a waiting thread * that's sleeping in KeWaitForMultipleObjects(). In * order to wake the thread, all the objects in the * wait list must be in the signalled state. If they * are, we then satisfy all of them and wake the * thread. * */ e = obj->dh_waitlisthead.nle_flink; while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) { w = CONTAINING_RECORD(e, wait_block, wb_waitlist); we = w->wb_ext; td = we->we_td; satisfied = FALSE; if (w->wb_waittype == WAITTYPE_ANY) { /* * Thread can be awakened if * any wait is satisfied. */ ntoskrnl_satisfy_wait(obj, td); satisfied = TRUE; w->wb_awakened = TRUE; } else { /* * Thread can only be woken up * if all waits are satisfied. * If the thread is waiting on multiple * objects, they should all be linked * through the wb_next pointers in the * wait blocks. */ satisfied = TRUE; next = w->wb_next; while (next != w) { if (ntoskrnl_is_signalled(obj, td) == FALSE) { satisfied = FALSE; break; } next = next->wb_next; } ntoskrnl_satisfy_multiple_waits(w); } if (satisfied == TRUE) cv_broadcastpri(&we->we_cv, (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ? w->wb_oldpri - (increment * 4) : PRI_MIN_KERN); e = e->nle_flink; } } /* * Return the number of 100 nanosecond intervals since * January 1, 1601. (?!?!) */ void ntoskrnl_time(tval) uint64_t *tval; { struct timespec ts; nanotime(&ts); *tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 + 11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */ } static void KeQuerySystemTime(current_time) uint64_t *current_time; { ntoskrnl_time(current_time); } static uint32_t KeTickCount(void) { struct timeval tv; getmicrouptime(&tv); return tvtohz(&tv); } /* * KeWaitForSingleObject() is a tricky beast, because it can be used * with several different object types: semaphores, timers, events, * mutexes and threads. Semaphores don't appear very often, but the * other object types are quite common. KeWaitForSingleObject() is * what's normally used to acquire a mutex, and it can be used to * wait for a thread termination. * * The Windows NDIS API is implemented in terms of Windows kernel * primitives, and some of the object manipulation is duplicated in * NDIS. For example, NDIS has timers and events, which are actually * Windows kevents and ktimers. Now, you're supposed to only use the * NDIS variants of these objects within the confines of the NDIS API, * but there are some naughty developers out there who will use * KeWaitForSingleObject() on NDIS timer and event objects, so we * have to support that as well. Conseqently, our NDIS timer and event * code has to be closely tied into our ntoskrnl timer and event code, * just as it is in Windows. * * KeWaitForSingleObject() may do different things for different kinds * of objects: * * - For events, we check if the event has been signalled. If the * event is already in the signalled state, we just return immediately, * otherwise we wait for it to be set to the signalled state by someone * else calling KeSetEvent(). Events can be either synchronization or * notification events. * * - For timers, if the timer has already fired and the timer is in * the signalled state, we just return, otherwise we wait on the * timer. Unlike an event, timers get signalled automatically when * they expire rather than someone having to trip them manually. * Timers initialized with KeInitializeTimer() are always notification * events: KeInitializeTimerEx() lets you initialize a timer as * either a notification or synchronization event. * * - For mutexes, we try to acquire the mutex and if we can't, we wait * on the mutex until it's available and then grab it. When a mutex is * released, it enters the signalled state, which wakes up one of the * threads waiting to acquire it. Mutexes are always synchronization * events. * * - For threads, the only thing we do is wait until the thread object * enters a signalled state, which occurs when the thread terminates. * Threads are always notification events. * * A notification event wakes up all threads waiting on an object. A * synchronization event wakes up just one. Also, a synchronization event * is auto-clearing, which means we automatically set the event back to * the non-signalled state once the wakeup is done. */ uint32_t KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime) { wait_block w; struct thread *td = curthread; struct timeval tv; int error = 0; uint64_t curtime; wb_ext we; nt_dispatch_header *obj; obj = arg; if (obj == NULL) return (STATUS_INVALID_PARAMETER); mtx_lock(&ntoskrnl_dispatchlock); cv_init(&we.we_cv, "KeWFS"); we.we_td = td; /* * Check to see if this object is already signalled, * and just return without waiting if it is. */ if (ntoskrnl_is_signalled(obj, td) == TRUE) { /* Sanity check the signal state value. */ if (obj->dh_sigstate != INT32_MIN) { ntoskrnl_satisfy_wait(obj, curthread); mtx_unlock(&ntoskrnl_dispatchlock); return (STATUS_SUCCESS); } else { /* * There's a limit to how many times we can * recursively acquire a mutant. If we hit * the limit, something is very wrong. */ if (obj->dh_type == DISP_TYPE_MUTANT) { mtx_unlock(&ntoskrnl_dispatchlock); panic("mutant limit exceeded"); } } } bzero((char *)&w, sizeof(wait_block)); w.wb_object = obj; w.wb_ext = &we; w.wb_waittype = WAITTYPE_ANY; w.wb_next = &w; w.wb_waitkey = 0; w.wb_awakened = FALSE; w.wb_oldpri = td->td_priority; InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist)); /* * The timeout value is specified in 100 nanosecond units * and can be a positive or negative number. If it's positive, * then the duetime is absolute, and we need to convert it * to an absolute offset relative to now in order to use it. * If it's negative, then the duetime is relative and we * just have to convert the units. */ if (duetime != NULL) { if (*duetime < 0) { tv.tv_sec = - (*duetime) / 10000000; tv.tv_usec = (- (*duetime) / 10) - (tv.tv_sec * 1000000); } else { ntoskrnl_time(&curtime); if (*duetime < curtime) tv.tv_sec = tv.tv_usec = 0; else { tv.tv_sec = ((*duetime) - curtime) / 10000000; tv.tv_usec = ((*duetime) - curtime) / 10 - (tv.tv_sec * 1000000); } } } if (duetime == NULL) cv_wait(&we.we_cv, &ntoskrnl_dispatchlock); else error = cv_timedwait(&we.we_cv, &ntoskrnl_dispatchlock, tvtohz(&tv)); RemoveEntryList(&w.wb_waitlist); cv_destroy(&we.we_cv); /* We timed out. Leave the object alone and return status. */ if (error == EWOULDBLOCK) { mtx_unlock(&ntoskrnl_dispatchlock); return (STATUS_TIMEOUT); } mtx_unlock(&ntoskrnl_dispatchlock); return (STATUS_SUCCESS); /* return (KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason, mode, alertable, duetime, &w)); */ } static uint32_t KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype, uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime, wait_block *wb_array) { struct thread *td = curthread; wait_block *whead, *w; wait_block _wb_array[MAX_WAIT_OBJECTS]; nt_dispatch_header *cur; struct timeval tv; int i, wcnt = 0, error = 0; uint64_t curtime; struct timespec t1, t2; uint32_t status = STATUS_SUCCESS; wb_ext we; if (cnt > MAX_WAIT_OBJECTS) return (STATUS_INVALID_PARAMETER); if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL) return (STATUS_INVALID_PARAMETER); mtx_lock(&ntoskrnl_dispatchlock); cv_init(&we.we_cv, "KeWFM"); we.we_td = td; if (wb_array == NULL) whead = _wb_array; else whead = wb_array; bzero((char *)whead, sizeof(wait_block) * cnt); /* First pass: see if we can satisfy any waits immediately. */ wcnt = 0; w = whead; for (i = 0; i < cnt; i++) { InsertTailList((&obj[i]->dh_waitlisthead), (&w->wb_waitlist)); w->wb_ext = &we; w->wb_object = obj[i]; w->wb_waittype = wtype; w->wb_waitkey = i; w->wb_awakened = FALSE; w->wb_oldpri = td->td_priority; w->wb_next = w + 1; w++; wcnt++; if (ntoskrnl_is_signalled(obj[i], td)) { /* * There's a limit to how many times * we can recursively acquire a mutant. * If we hit the limit, something * is very wrong. */ if (obj[i]->dh_sigstate == INT32_MIN && obj[i]->dh_type == DISP_TYPE_MUTANT) { mtx_unlock(&ntoskrnl_dispatchlock); panic("mutant limit exceeded"); } /* * If this is a WAITTYPE_ANY wait, then * satisfy the waited object and exit * right now. */ if (wtype == WAITTYPE_ANY) { ntoskrnl_satisfy_wait(obj[i], td); status = STATUS_WAIT_0 + i; goto wait_done; } else { w--; wcnt--; w->wb_object = NULL; RemoveEntryList(&w->wb_waitlist); } } } /* * If this is a WAITTYPE_ALL wait and all objects are * already signalled, satisfy the waits and exit now. */ if (wtype == WAITTYPE_ALL && wcnt == 0) { for (i = 0; i < cnt; i++) ntoskrnl_satisfy_wait(obj[i], td); status = STATUS_SUCCESS; goto wait_done; } /* * Create a circular waitblock list. The waitcount * must always be non-zero when we get here. */ (w - 1)->wb_next = whead; /* Wait on any objects that aren't yet signalled. */ /* Calculate timeout, if any. */ if (duetime != NULL) { if (*duetime < 0) { tv.tv_sec = - (*duetime) / 10000000; tv.tv_usec = (- (*duetime) / 10) - (tv.tv_sec * 1000000); } else { ntoskrnl_time(&curtime); if (*duetime < curtime) tv.tv_sec = tv.tv_usec = 0; else { tv.tv_sec = ((*duetime) - curtime) / 10000000; tv.tv_usec = ((*duetime) - curtime) / 10 - (tv.tv_sec * 1000000); } } } while (wcnt) { nanotime(&t1); if (duetime == NULL) cv_wait(&we.we_cv, &ntoskrnl_dispatchlock); else error = cv_timedwait(&we.we_cv, &ntoskrnl_dispatchlock, tvtohz(&tv)); /* Wait with timeout expired. */ if (error) { status = STATUS_TIMEOUT; goto wait_done; } nanotime(&t2); /* See what's been signalled. */ w = whead; do { cur = w->wb_object; if (ntoskrnl_is_signalled(cur, td) == TRUE || w->wb_awakened == TRUE) { /* Sanity check the signal state value. */ if (cur->dh_sigstate == INT32_MIN && cur->dh_type == DISP_TYPE_MUTANT) { mtx_unlock(&ntoskrnl_dispatchlock); panic("mutant limit exceeded"); } wcnt--; if (wtype == WAITTYPE_ANY) { status = w->wb_waitkey & STATUS_WAIT_0; goto wait_done; } } w = w->wb_next; } while (w != whead); /* * If all objects have been signalled, or if this * is a WAITTYPE_ANY wait and we were woke up by * someone, we can bail. */ if (wcnt == 0) { status = STATUS_SUCCESS; goto wait_done; } /* * If this is WAITTYPE_ALL wait, and there's still * objects that haven't been signalled, deduct the * time that's elapsed so far from the timeout and * wait again (or continue waiting indefinitely if * there's no timeout). */ if (duetime != NULL) { tv.tv_sec -= (t2.tv_sec - t1.tv_sec); tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000; } } wait_done: cv_destroy(&we.we_cv); for (i = 0; i < cnt; i++) { if (whead[i].wb_object != NULL) RemoveEntryList(&whead[i].wb_waitlist); } mtx_unlock(&ntoskrnl_dispatchlock); return (status); } static void WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val) { bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val); } static uint16_t READ_REGISTER_USHORT(reg) uint16_t *reg; { return (bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg)); } static void WRITE_REGISTER_ULONG(reg, val) uint32_t *reg; uint32_t val; { bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val); } static uint32_t READ_REGISTER_ULONG(reg) uint32_t *reg; { return (bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg)); } static uint8_t READ_REGISTER_UCHAR(uint8_t *reg) { return (bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg)); } static void WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val) { bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val); } static int64_t _allmul(a, b) int64_t a; int64_t b; { return (a * b); } static int64_t _alldiv(a, b) int64_t a; int64_t b; { return (a / b); } static int64_t _allrem(a, b) int64_t a; int64_t b; { return (a % b); } static uint64_t _aullmul(a, b) uint64_t a; uint64_t b; { return (a * b); } static uint64_t _aulldiv(a, b) uint64_t a; uint64_t b; { return (a / b); } static uint64_t _aullrem(a, b) uint64_t a; uint64_t b; { return (a % b); } static int64_t _allshl(int64_t a, uint8_t b) { return (a << b); } static uint64_t _aullshl(uint64_t a, uint8_t b) { return (a << b); } static int64_t _allshr(int64_t a, uint8_t b) { return (a >> b); } static uint64_t _aullshr(uint64_t a, uint8_t b) { return (a >> b); } static slist_entry * ntoskrnl_pushsl(head, entry) slist_header *head; slist_entry *entry; { slist_entry *oldhead; oldhead = head->slh_list.slh_next; entry->sl_next = head->slh_list.slh_next; head->slh_list.slh_next = entry; head->slh_list.slh_depth++; head->slh_list.slh_seq++; return (oldhead); } static void InitializeSListHead(head) slist_header *head; { memset(head, 0, sizeof(*head)); } static slist_entry * ntoskrnl_popsl(head) slist_header *head; { slist_entry *first; first = head->slh_list.slh_next; if (first != NULL) { head->slh_list.slh_next = first->sl_next; head->slh_list.slh_depth--; head->slh_list.slh_seq++; } return (first); } /* * We need this to make lookaside lists work for amd64. * We pass a pointer to ExAllocatePoolWithTag() the lookaside * list structure. For amd64 to work right, this has to be a * pointer to the wrapped version of the routine, not the * original. Letting the Windows driver invoke the original * function directly will result in a convention calling * mismatch and a pretty crash. On x86, this effectively * becomes a no-op since ipt_func and ipt_wrap are the same. */ static funcptr ntoskrnl_findwrap(func) funcptr func; { image_patch_table *patch; patch = ntoskrnl_functbl; while (patch->ipt_func != NULL) { if ((funcptr)patch->ipt_func == func) return ((funcptr)patch->ipt_wrap); patch++; } return (NULL); } static void ExInitializePagedLookasideList(paged_lookaside_list *lookaside, lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc, uint32_t flags, size_t size, uint32_t tag, uint16_t depth) { bzero((char *)lookaside, sizeof(paged_lookaside_list)); if (size < sizeof(slist_entry)) lookaside->nll_l.gl_size = sizeof(slist_entry); else lookaside->nll_l.gl_size = size; lookaside->nll_l.gl_tag = tag; if (allocfunc == NULL) lookaside->nll_l.gl_allocfunc = ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag); else lookaside->nll_l.gl_allocfunc = allocfunc; if (freefunc == NULL) lookaside->nll_l.gl_freefunc = ntoskrnl_findwrap((funcptr)ExFreePool); else lookaside->nll_l.gl_freefunc = freefunc; #ifdef __i386__ KeInitializeSpinLock(&lookaside->nll_obsoletelock); #endif lookaside->nll_l.gl_type = NonPagedPool; lookaside->nll_l.gl_depth = depth; lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH; } static void ExDeletePagedLookasideList(lookaside) paged_lookaside_list *lookaside; { void *buf; void (*freefunc)(void *); freefunc = lookaside->nll_l.gl_freefunc; while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL) MSCALL1(freefunc, buf); } static void ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside, lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc, uint32_t flags, size_t size, uint32_t tag, uint16_t depth) { bzero((char *)lookaside, sizeof(npaged_lookaside_list)); if (size < sizeof(slist_entry)) lookaside->nll_l.gl_size = sizeof(slist_entry); else lookaside->nll_l.gl_size = size; lookaside->nll_l.gl_tag = tag; if (allocfunc == NULL) lookaside->nll_l.gl_allocfunc = ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag); else lookaside->nll_l.gl_allocfunc = allocfunc; if (freefunc == NULL) lookaside->nll_l.gl_freefunc = ntoskrnl_findwrap((funcptr)ExFreePool); else lookaside->nll_l.gl_freefunc = freefunc; #ifdef __i386__ KeInitializeSpinLock(&lookaside->nll_obsoletelock); #endif lookaside->nll_l.gl_type = NonPagedPool; lookaside->nll_l.gl_depth = depth; lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH; } static void ExDeleteNPagedLookasideList(lookaside) npaged_lookaside_list *lookaside; { void *buf; void (*freefunc)(void *); freefunc = lookaside->nll_l.gl_freefunc; while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL) MSCALL1(freefunc, buf); } slist_entry * InterlockedPushEntrySList(head, entry) slist_header *head; slist_entry *entry; { slist_entry *oldhead; mtx_lock_spin(&ntoskrnl_interlock); oldhead = ntoskrnl_pushsl(head, entry); mtx_unlock_spin(&ntoskrnl_interlock); return (oldhead); } slist_entry * InterlockedPopEntrySList(head) slist_header *head; { slist_entry *first; mtx_lock_spin(&ntoskrnl_interlock); first = ntoskrnl_popsl(head); mtx_unlock_spin(&ntoskrnl_interlock); return (first); } static slist_entry * ExInterlockedPushEntrySList(head, entry, lock) slist_header *head; slist_entry *entry; kspin_lock *lock; { return (InterlockedPushEntrySList(head, entry)); } static slist_entry * ExInterlockedPopEntrySList(head, lock) slist_header *head; kspin_lock *lock; { return (InterlockedPopEntrySList(head)); } uint16_t ExQueryDepthSList(head) slist_header *head; { uint16_t depth; mtx_lock_spin(&ntoskrnl_interlock); depth = head->slh_list.slh_depth; mtx_unlock_spin(&ntoskrnl_interlock); return (depth); } void KeInitializeSpinLock(lock) kspin_lock *lock; { *lock = 0; } #ifdef __i386__ void KefAcquireSpinLockAtDpcLevel(lock) kspin_lock *lock; { #ifdef NTOSKRNL_DEBUG_SPINLOCKS int i = 0; #endif while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) { /* sit and spin */; #ifdef NTOSKRNL_DEBUG_SPINLOCKS i++; if (i > 200000000) panic("DEADLOCK!"); #endif } } void KefReleaseSpinLockFromDpcLevel(lock) kspin_lock *lock; { atomic_store_rel_int((volatile u_int *)lock, 0); } uint8_t KeAcquireSpinLockRaiseToDpc(kspin_lock *lock) { uint8_t oldirql; if (KeGetCurrentIrql() > DISPATCH_LEVEL) panic("IRQL_NOT_LESS_THAN_OR_EQUAL"); KeRaiseIrql(DISPATCH_LEVEL, &oldirql); KeAcquireSpinLockAtDpcLevel(lock); return (oldirql); } #else void KeAcquireSpinLockAtDpcLevel(kspin_lock *lock) { while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) /* sit and spin */; } void KeReleaseSpinLockFromDpcLevel(kspin_lock *lock) { atomic_store_rel_int((volatile u_int *)lock, 0); } #endif /* __i386__ */ uintptr_t InterlockedExchange(dst, val) volatile uint32_t *dst; uintptr_t val; { uintptr_t r; mtx_lock_spin(&ntoskrnl_interlock); r = *dst; *dst = val; mtx_unlock_spin(&ntoskrnl_interlock); return (r); } static uint32_t InterlockedIncrement(addend) volatile uint32_t *addend; { atomic_add_long((volatile u_long *)addend, 1); return (*addend); } static uint32_t InterlockedDecrement(addend) volatile uint32_t *addend; { atomic_subtract_long((volatile u_long *)addend, 1); return (*addend); } static void ExInterlockedAddLargeStatistic(addend, inc) uint64_t *addend; uint32_t inc; { mtx_lock_spin(&ntoskrnl_interlock); *addend += inc; mtx_unlock_spin(&ntoskrnl_interlock); }; mdl * IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf, uint8_t chargequota, irp *iopkt) { mdl *m; int zone = 0; if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE) m = ExAllocatePoolWithTag(NonPagedPool, MmSizeOfMdl(vaddr, len), 0); else { m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO); zone++; } if (m == NULL) return (NULL); MmInitializeMdl(m, vaddr, len); /* * MmInitializMdl() clears the flags field, so we * have to set this here. If the MDL came from the * MDL UMA zone, tag it so we can release it to * the right place later. */ if (zone) m->mdl_flags = MDL_ZONE_ALLOCED; if (iopkt != NULL) { if (secondarybuf == TRUE) { mdl *last; last = iopkt->irp_mdl; while (last->mdl_next != NULL) last = last->mdl_next; last->mdl_next = m; } else { if (iopkt->irp_mdl != NULL) panic("leaking an MDL in IoAllocateMdl()"); iopkt->irp_mdl = m; } } return (m); } void IoFreeMdl(m) mdl *m; { if (m == NULL) return; if (m->mdl_flags & MDL_ZONE_ALLOCED) uma_zfree(mdl_zone, m); else ExFreePool(m); } static void * MmAllocateContiguousMemory(size, highest) uint32_t size; uint64_t highest; { void *addr; size_t pagelength = roundup(size, PAGE_SIZE); addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0); return (addr); } static void * MmAllocateContiguousMemorySpecifyCache(size, lowest, highest, boundary, cachetype) uint32_t size; uint64_t lowest; uint64_t highest; uint64_t boundary; enum nt_caching_type cachetype; { vm_memattr_t memattr; void *ret; switch (cachetype) { case MmNonCached: memattr = VM_MEMATTR_UNCACHEABLE; break; case MmWriteCombined: memattr = VM_MEMATTR_WRITE_COMBINING; break; case MmNonCachedUnordered: memattr = VM_MEMATTR_UNCACHEABLE; break; case MmCached: case MmHardwareCoherentCached: case MmUSWCCached: default: memattr = VM_MEMATTR_DEFAULT; break; } ret = (void *)kmem_alloc_contig(kernel_map, size, M_ZERO | M_NOWAIT, lowest, highest, PAGE_SIZE, boundary, memattr); if (ret != NULL) malloc_type_allocated(M_DEVBUF, round_page(size)); return (ret); } static void MmFreeContiguousMemory(base) void *base; { ExFreePool(base); } static void MmFreeContiguousMemorySpecifyCache(base, size, cachetype) void *base; uint32_t size; enum nt_caching_type cachetype; { contigfree(base, size, M_DEVBUF); } static uint32_t MmSizeOfMdl(vaddr, len) void *vaddr; size_t len; { uint32_t l; l = sizeof(struct mdl) + (sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len)); return (l); } /* * The Microsoft documentation says this routine fills in the * page array of an MDL with the _physical_ page addresses that * comprise the buffer, but we don't really want to do that here. * Instead, we just fill in the page array with the kernel virtual * addresses of the buffers. */ void MmBuildMdlForNonPagedPool(m) mdl *m; { vm_offset_t *mdl_pages; int pagecnt, i; pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount); if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *)) panic("not enough pages in MDL to describe buffer"); mdl_pages = MmGetMdlPfnArray(m); for (i = 0; i < pagecnt; i++) *mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE); m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL; m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m); } static void * MmMapLockedPages(mdl *buf, uint8_t accessmode) { buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA; return (MmGetMdlVirtualAddress(buf)); } static void * MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype, void *vaddr, uint32_t bugcheck, uint32_t prio) { return (MmMapLockedPages(buf, accessmode)); } static void MmUnmapLockedPages(vaddr, buf) void *vaddr; mdl *buf; { buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA; } /* * This function has a problem in that it will break if you * compile this module without PAE and try to use it on a PAE * kernel. Unfortunately, there's no way around this at the * moment. It's slightly less broken that using pmap_kextract(). * You'd think the virtual memory subsystem would help us out * here, but it doesn't. */ static uint64_t MmGetPhysicalAddress(void *base) { return (pmap_extract(kernel_map->pmap, (vm_offset_t)base)); } void * MmGetSystemRoutineAddress(ustr) unicode_string *ustr; { ansi_string astr; if (RtlUnicodeStringToAnsiString(&astr, ustr, TRUE)) return (NULL); return (ndis_get_routine_address(ntoskrnl_functbl, astr.as_buf)); } uint8_t MmIsAddressValid(vaddr) void *vaddr; { if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr)) return (TRUE); return (FALSE); } void * MmMapIoSpace(paddr, len, cachetype) uint64_t paddr; uint32_t len; uint32_t cachetype; { devclass_t nexus_class; device_t *nexus_devs, devp; int nexus_count = 0; device_t matching_dev = NULL; struct resource *res; int i; vm_offset_t v; /* There will always be at least one nexus. */ nexus_class = devclass_find("nexus"); devclass_get_devices(nexus_class, &nexus_devs, &nexus_count); for (i = 0; i < nexus_count; i++) { devp = nexus_devs[i]; matching_dev = ntoskrnl_finddev(devp, paddr, &res); if (matching_dev) break; } free(nexus_devs, M_TEMP); if (matching_dev == NULL) return (NULL); v = (vm_offset_t)rman_get_virtual(res); if (paddr > rman_get_start(res)) v += paddr - rman_get_start(res); return ((void *)v); } void MmUnmapIoSpace(vaddr, len) void *vaddr; size_t len; { } static device_t ntoskrnl_finddev(dev, paddr, res) device_t dev; uint64_t paddr; struct resource **res; { device_t *children = NULL; device_t matching_dev; int childcnt; struct resource *r; struct resource_list *rl; struct resource_list_entry *rle; uint32_t flags; int i; /* We only want devices that have been successfully probed. */ if (device_is_alive(dev) == FALSE) return (NULL); rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); if (rl != NULL) { STAILQ_FOREACH(rle, rl, link) { r = rle->res; if (r == NULL) continue; flags = rman_get_flags(r); if (rle->type == SYS_RES_MEMORY && paddr >= rman_get_start(r) && paddr <= rman_get_end(r)) { if (!(flags & RF_ACTIVE)) bus_activate_resource(dev, SYS_RES_MEMORY, 0, r); *res = r; return (dev); } } } /* * If this device has children, do another * level of recursion to inspect them. */ device_get_children(dev, &children, &childcnt); for (i = 0; i < childcnt; i++) { matching_dev = ntoskrnl_finddev(children[i], paddr, res); if (matching_dev != NULL) { free(children, M_TEMP); return (matching_dev); } } /* Won't somebody please think of the children! */ if (children != NULL) free(children, M_TEMP); return (NULL); } /* * Workitems are unlike DPCs, in that they run in a user-mode thread * context rather than at DISPATCH_LEVEL in kernel context. In our * case we run them in kernel context anyway. */ static void ntoskrnl_workitem_thread(arg) void *arg; { kdpc_queue *kq; list_entry *l; io_workitem *iw; uint8_t irql; kq = arg; InitializeListHead(&kq->kq_disp); kq->kq_td = curthread; kq->kq_exit = 0; KeInitializeSpinLock(&kq->kq_lock); KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE); while (1) { KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL); KeAcquireSpinLock(&kq->kq_lock, &irql); if (kq->kq_exit) { kq->kq_exit = 0; KeReleaseSpinLock(&kq->kq_lock, irql); break; } while (!IsListEmpty(&kq->kq_disp)) { l = RemoveHeadList(&kq->kq_disp); iw = CONTAINING_RECORD(l, io_workitem, iw_listentry); InitializeListHead((&iw->iw_listentry)); if (iw->iw_func == NULL) continue; KeReleaseSpinLock(&kq->kq_lock, irql); MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx); KeAcquireSpinLock(&kq->kq_lock, &irql); } KeReleaseSpinLock(&kq->kq_lock, irql); } kproc_exit(0); return; /* notreached */ } static ndis_status RtlCharToInteger(src, base, val) const char *src; uint32_t base; uint32_t *val; { int negative = 0; uint32_t res; if (!src || !val) return (STATUS_ACCESS_VIOLATION); while (*src != '\0' && *src <= ' ') src++; if (*src == '+') src++; else if (*src == '-') { src++; negative = 1; } if (base == 0) { base = 10; if (*src == '0') { src++; if (*src == 'b') { base = 2; src++; } else if (*src == 'o') { base = 8; src++; } else if (*src == 'x') { base = 16; src++; } } } else if (!(base == 2 || base == 8 || base == 10 || base == 16)) return (STATUS_INVALID_PARAMETER); for (res = 0; *src; src++) { int v; if (isdigit(*src)) v = *src - '0'; else if (isxdigit(*src)) v = tolower(*src) - 'a' + 10; else v = base; if (v >= base) return (STATUS_INVALID_PARAMETER); res = res * base + v; } *val = negative ? -res : res; return (STATUS_SUCCESS); } static void ntoskrnl_destroy_workitem_threads(void) { kdpc_queue *kq; int i; for (i = 0; i < WORKITEM_THREADS; i++) { kq = wq_queues + i; kq->kq_exit = 1; KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE); while (kq->kq_exit) tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10); } } io_workitem * IoAllocateWorkItem(dobj) device_object *dobj; { io_workitem *iw; iw = uma_zalloc(iw_zone, M_NOWAIT); if (iw == NULL) return (NULL); InitializeListHead(&iw->iw_listentry); iw->iw_dobj = dobj; mtx_lock(&ntoskrnl_dispatchlock); iw->iw_idx = wq_idx; WORKIDX_INC(wq_idx); mtx_unlock(&ntoskrnl_dispatchlock); return (iw); } void IoFreeWorkItem(iw) io_workitem *iw; { uma_zfree(iw_zone, iw); } void IoQueueWorkItem(iw, iw_func, qtype, ctx) io_workitem *iw; io_workitem_func iw_func; uint32_t qtype; void *ctx; { kdpc_queue *kq; list_entry *l; io_workitem *cur; uint8_t irql; kq = wq_queues + iw->iw_idx; KeAcquireSpinLock(&kq->kq_lock, &irql); /* * Traverse the list and make sure this workitem hasn't * already been inserted. Queuing the same workitem * twice will hose the list but good. */ l = kq->kq_disp.nle_flink; while (l != &kq->kq_disp) { cur = CONTAINING_RECORD(l, io_workitem, iw_listentry); if (cur == iw) { /* Already queued -- do nothing. */ KeReleaseSpinLock(&kq->kq_lock, irql); return; } l = l->nle_flink; } iw->iw_func = iw_func; iw->iw_ctx = ctx; InsertTailList((&kq->kq_disp), (&iw->iw_listentry)); KeReleaseSpinLock(&kq->kq_lock, irql); KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE); } static void ntoskrnl_workitem(dobj, arg) device_object *dobj; void *arg; { io_workitem *iw; work_queue_item *w; work_item_func f; iw = arg; w = (work_queue_item *)dobj; f = (work_item_func)w->wqi_func; uma_zfree(iw_zone, iw); MSCALL2(f, w, w->wqi_ctx); } /* * The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft * warns that it's unsafe and to use IoQueueWorkItem() instead. The * problem with ExQueueWorkItem() is that it can't guard against * the condition where a driver submits a job to the work queue and * is then unloaded before the job is able to run. IoQueueWorkItem() * acquires a reference to the device's device_object via the * object manager and retains it until after the job has completed, * which prevents the driver from being unloaded before the job * runs. (We don't currently support this behavior, though hopefully * that will change once the object manager API is fleshed out a bit.) * * Having said all that, the ExQueueWorkItem() API remains, because * there are still other parts of Windows that use it, including * NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem(). * We fake up the ExQueueWorkItem() API on top of our implementation * of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively * for ExQueueWorkItem() jobs, and we pass a pointer to the work * queue item (provided by the caller) in to IoAllocateWorkItem() * instead of the device_object. We need to save this pointer so * we can apply a sanity check: as with the DPC queue and other * workitem queues, we can't allow the same work queue item to * be queued twice. If it's already pending, we silently return */ void ExQueueWorkItem(w, qtype) work_queue_item *w; uint32_t qtype; { io_workitem *iw; io_workitem_func iwf; kdpc_queue *kq; list_entry *l; io_workitem *cur; uint8_t irql; /* * We need to do a special sanity test to make sure * the ExQueueWorkItem() API isn't used to queue * the same workitem twice. Rather than checking the * io_workitem pointer itself, we test the attached * device object, which is really a pointer to the * legacy work queue item structure. */ kq = wq_queues + WORKITEM_LEGACY_THREAD; KeAcquireSpinLock(&kq->kq_lock, &irql); l = kq->kq_disp.nle_flink; while (l != &kq->kq_disp) { cur = CONTAINING_RECORD(l, io_workitem, iw_listentry); if (cur->iw_dobj == (device_object *)w) { /* Already queued -- do nothing. */ KeReleaseSpinLock(&kq->kq_lock, irql); return; } l = l->nle_flink; } KeReleaseSpinLock(&kq->kq_lock, irql); iw = IoAllocateWorkItem((device_object *)w); if (iw == NULL) return; iw->iw_idx = WORKITEM_LEGACY_THREAD; iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem); IoQueueWorkItem(iw, iwf, qtype, iw); } static void RtlZeroMemory(dst, len) void *dst; size_t len; { bzero(dst, len); } static void RtlSecureZeroMemory(dst, len) void *dst; size_t len; { memset(dst, 0, len); } static void RtlFillMemory(void *dst, size_t len, uint8_t c) { memset(dst, c, len); } static void RtlMoveMemory(dst, src, len) void *dst; const void *src; size_t len; { memmove(dst, src, len); } static void RtlCopyMemory(dst, src, len) void *dst; const void *src; size_t len; { bcopy(src, dst, len); } static size_t RtlCompareMemory(s1, s2, len) const void *s1; const void *s2; size_t len; { size_t i; uint8_t *m1, *m2; m1 = __DECONST(char *, s1); m2 = __DECONST(char *, s2); for (i = 0; i < len && m1[i] == m2[i]; i++); return (i); } void RtlInitAnsiString(dst, src) ansi_string *dst; char *src; { ansi_string *a; a = dst; if (a == NULL) return; if (src == NULL) { a->as_len = a->as_maxlen = 0; a->as_buf = NULL; } else { a->as_buf = src; a->as_len = a->as_maxlen = strlen(src); } } void RtlInitUnicodeString(dst, src) unicode_string *dst; uint16_t *src; { unicode_string *u; int i; u = dst; if (u == NULL) return; if (src == NULL) { u->us_len = u->us_maxlen = 0; u->us_buf = NULL; } else { i = 0; while(src[i] != 0) i++; u->us_buf = src; u->us_len = u->us_maxlen = i * 2; } } ndis_status RtlUnicodeStringToInteger(ustr, base, val) unicode_string *ustr; uint32_t base; uint32_t *val; { uint16_t *uchr; int len, neg = 0; char abuf[64]; char *astr; uchr = ustr->us_buf; len = ustr->us_len; bzero(abuf, sizeof(abuf)); if ((char)((*uchr) & 0xFF) == '-') { neg = 1; uchr++; len -= 2; } else if ((char)((*uchr) & 0xFF) == '+') { neg = 0; uchr++; len -= 2; } if (base == 0) { if ((char)((*uchr) & 0xFF) == 'b') { base = 2; uchr++; len -= 2; } else if ((char)((*uchr) & 0xFF) == 'o') { base = 8; uchr++; len -= 2; } else if ((char)((*uchr) & 0xFF) == 'x') { base = 16; uchr++; len -= 2; } else base = 10; } astr = abuf; if (neg) { strcpy(astr, "-"); astr++; } ntoskrnl_unicode_to_ascii(uchr, astr, len); *val = strtoul(abuf, NULL, base); return (STATUS_SUCCESS); } void RtlFreeUnicodeString(ustr) unicode_string *ustr; { if (ustr->us_buf == NULL) return; ExFreePool(ustr->us_buf); ustr->us_buf = NULL; } void RtlFreeAnsiString(astr) ansi_string *astr; { if (astr->as_buf == NULL) return; ExFreePool(astr->as_buf); astr->as_buf = NULL; } static int atoi(str) const char *str; { return (int)strtol(str, (char **)NULL, 10); } static long atol(str) const char *str; { return strtol(str, (char **)NULL, 10); } static int rand(void) { struct timeval tv; microtime(&tv); srandom(tv.tv_usec); return ((int)random()); } static void srand(seed) unsigned int seed; { srandom(seed); } static uint8_t IoIsWdmVersionAvailable(uint8_t major, uint8_t minor) { if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP) return (TRUE); return (FALSE); } static int32_t IoOpenDeviceRegistryKey(struct device_object *devobj, uint32_t type, uint32_t mask, void **key) { return (NDIS_STATUS_INVALID_DEVICE_REQUEST); } static ndis_status IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj) unicode_string *name; uint32_t reqaccess; void *fileobj; device_object *devobj; { return (STATUS_SUCCESS); } static ndis_status IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen) device_object *devobj; uint32_t regprop; uint32_t buflen; void *prop; uint32_t *reslen; { driver_object *drv; uint16_t **name; drv = devobj->do_drvobj; switch (regprop) { case DEVPROP_DRIVER_KEYNAME: name = prop; *name = drv->dro_drivername.us_buf; *reslen = drv->dro_drivername.us_len; break; default: return (STATUS_INVALID_PARAMETER_2); break; } return (STATUS_SUCCESS); } static void KeInitializeMutex(kmutex, level) kmutant *kmutex; uint32_t level; { InitializeListHead((&kmutex->km_header.dh_waitlisthead)); kmutex->km_abandoned = FALSE; kmutex->km_apcdisable = 1; kmutex->km_header.dh_sigstate = 1; kmutex->km_header.dh_type = DISP_TYPE_MUTANT; kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t); kmutex->km_ownerthread = NULL; } static uint32_t KeReleaseMutex(kmutant *kmutex, uint8_t kwait) { uint32_t prevstate; mtx_lock(&ntoskrnl_dispatchlock); prevstate = kmutex->km_header.dh_sigstate; if (kmutex->km_ownerthread != curthread) { mtx_unlock(&ntoskrnl_dispatchlock); return (STATUS_MUTANT_NOT_OWNED); } kmutex->km_header.dh_sigstate++; kmutex->km_abandoned = FALSE; if (kmutex->km_header.dh_sigstate == 1) { kmutex->km_ownerthread = NULL; ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT); } mtx_unlock(&ntoskrnl_dispatchlock); return (prevstate); } static uint32_t KeReadStateMutex(kmutex) kmutant *kmutex; { return (kmutex->km_header.dh_sigstate); } void KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state) { InitializeListHead((&kevent->k_header.dh_waitlisthead)); kevent->k_header.dh_sigstate = state; if (type == EVENT_TYPE_NOTIFY) kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT; else kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT; kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t); } uint32_t KeResetEvent(kevent) nt_kevent *kevent; { uint32_t prevstate; mtx_lock(&ntoskrnl_dispatchlock); prevstate = kevent->k_header.dh_sigstate; kevent->k_header.dh_sigstate = FALSE; mtx_unlock(&ntoskrnl_dispatchlock); return (prevstate); } uint32_t KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait) { uint32_t prevstate; wait_block *w; nt_dispatch_header *dh; struct thread *td; wb_ext *we; mtx_lock(&ntoskrnl_dispatchlock); prevstate = kevent->k_header.dh_sigstate; dh = &kevent->k_header; if (IsListEmpty(&dh->dh_waitlisthead)) /* * If there's nobody in the waitlist, just set * the state to signalled. */ dh->dh_sigstate = 1; else { /* * Get the first waiter. If this is a synchronization * event, just wake up that one thread (don't bother * setting the state to signalled since we're supposed * to automatically clear synchronization events anyway). * * If it's a notification event, or the first * waiter is doing a WAITTYPE_ALL wait, go through * the full wait satisfaction process. */ w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink, wait_block, wb_waitlist); we = w->wb_ext; td = we->we_td; if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT || w->wb_waittype == WAITTYPE_ALL) { if (prevstate == 0) { dh->dh_sigstate = 1; ntoskrnl_waittest(dh, increment); } } else { w->wb_awakened |= TRUE; cv_broadcastpri(&we->we_cv, (w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ? w->wb_oldpri - (increment * 4) : PRI_MIN_KERN); } } mtx_unlock(&ntoskrnl_dispatchlock); return (prevstate); } void KeClearEvent(kevent) nt_kevent *kevent; { kevent->k_header.dh_sigstate = FALSE; } uint32_t KeReadStateEvent(kevent) nt_kevent *kevent; { return (kevent->k_header.dh_sigstate); } /* * The object manager in Windows is responsible for managing * references and access to various types of objects, including * device_objects, events, threads, timers and so on. However, * there's a difference in the way objects are handled in user * mode versus kernel mode. * * In user mode (i.e. Win32 applications), all objects are * managed by the object manager. For example, when you create * a timer or event object, you actually end up with an * object_header (for the object manager's bookkeeping * purposes) and an object body (which contains the actual object * structure, e.g. ktimer, kevent, etc...). This allows Windows * to manage resource quotas and to enforce access restrictions * on basically every kind of system object handled by the kernel. * * However, in kernel mode, you only end up using the object * manager some of the time. For example, in a driver, you create * a timer object by simply allocating the memory for a ktimer * structure and initializing it with KeInitializeTimer(). Hence, * the timer has no object_header and no reference counting or * security/resource checks are done on it. The assumption in * this case is that if you're running in kernel mode, you know * what you're doing, and you're already at an elevated privilege * anyway. * * There are some exceptions to this. The two most important ones * for our purposes are device_objects and threads. We need to use * the object manager to do reference counting on device_objects, * and for threads, you can only get a pointer to a thread's * dispatch header by using ObReferenceObjectByHandle() on the * handle returned by PsCreateSystemThread(). */ static ndis_status ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype, uint8_t accessmode, void **object, void **handleinfo) { nt_objref *nr; nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO); if (nr == NULL) return (STATUS_INSUFFICIENT_RESOURCES); InitializeListHead((&nr->no_dh.dh_waitlisthead)); nr->no_obj = handle; nr->no_dh.dh_type = DISP_TYPE_THREAD; nr->no_dh.dh_sigstate = 0; nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) / sizeof(uint32_t)); TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link); *object = nr; return (STATUS_SUCCESS); } static void ObfDereferenceObject(object) void *object; { nt_objref *nr; nr = object; TAILQ_REMOVE(&ntoskrnl_reflist, nr, link); free(nr, M_DEVBUF); } static uint32_t ZwClose(handle) ndis_handle handle; { return (STATUS_SUCCESS); } static uint32_t WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf) uint32_t traceclass; void *traceinfo; uint32_t infolen; uint32_t reqlen; void *buf; { return (STATUS_NOT_FOUND); } static uint32_t WmiTraceMessage(uint64_t loghandle, uint32_t messageflags, void *guid, uint16_t messagenum, ...) { return (STATUS_SUCCESS); } static uint32_t IoWMIRegistrationControl(dobj, action) device_object *dobj; uint32_t action; { return (STATUS_SUCCESS); } /* * This is here just in case the thread returns without calling * PsTerminateSystemThread(). */ static void ntoskrnl_thrfunc(arg) void *arg; { thread_context *thrctx; uint32_t (*tfunc)(void *); void *tctx; uint32_t rval; thrctx = arg; tfunc = thrctx->tc_thrfunc; tctx = thrctx->tc_thrctx; free(thrctx, M_TEMP); rval = MSCALL1(tfunc, tctx); PsTerminateSystemThread(rval); return; /* notreached */ } static ndis_status PsCreateSystemThread(handle, reqaccess, objattrs, phandle, clientid, thrfunc, thrctx) ndis_handle *handle; uint32_t reqaccess; void *objattrs; ndis_handle phandle; void *clientid; void *thrfunc; void *thrctx; { int error; thread_context *tc; struct proc *p; tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT); if (tc == NULL) return (STATUS_INSUFFICIENT_RESOURCES); tc->tc_thrctx = thrctx; tc->tc_thrfunc = thrfunc; error = kproc_create(ntoskrnl_thrfunc, tc, &p, RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Kthread %d", ntoskrnl_kth); if (error) { free(tc, M_TEMP); return (STATUS_INSUFFICIENT_RESOURCES); } *handle = p; ntoskrnl_kth++; return (STATUS_SUCCESS); } /* * In Windows, the exit of a thread is an event that you're allowed * to wait on, assuming you've obtained a reference to the thread using * ObReferenceObjectByHandle(). Unfortunately, the only way we can * simulate this behavior is to register each thread we create in a * reference list, and if someone holds a reference to us, we poke * them. */ static ndis_status PsTerminateSystemThread(status) ndis_status status; { struct nt_objref *nr; mtx_lock(&ntoskrnl_dispatchlock); TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) { if (nr->no_obj != curthread->td_proc) continue; nr->no_dh.dh_sigstate = 1; ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT); break; } mtx_unlock(&ntoskrnl_dispatchlock); ntoskrnl_kth--; kproc_exit(0); return (0); /* notreached */ } static uint32_t DbgPrint(char *fmt, ...) { va_list ap; if (bootverbose) { va_start(ap, fmt); vprintf(fmt, ap); } return (STATUS_SUCCESS); } static void DbgBreakPoint(void) { kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint"); } static void KeBugCheckEx(code, param1, param2, param3, param4) uint32_t code; u_long param1; u_long param2; u_long param3; u_long param4; { panic("KeBugCheckEx: STOP 0x%X", code); } static void ntoskrnl_timercall(arg) void *arg; { ktimer *timer; struct timeval tv; kdpc *dpc; mtx_lock(&ntoskrnl_dispatchlock); timer = arg; #ifdef NTOSKRNL_DEBUG_TIMERS ntoskrnl_timer_fires++; #endif ntoskrnl_remove_timer(timer); /* * This should never happen, but complain * if it does. */ if (timer->k_header.dh_inserted == FALSE) { mtx_unlock(&ntoskrnl_dispatchlock); printf("NTOS: timer %p fired even though " "it was canceled\n", timer); return; } /* Mark the timer as no longer being on the timer queue. */ timer->k_header.dh_inserted = FALSE; /* Now signal the object and satisfy any waits on it. */ timer->k_header.dh_sigstate = 1; ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT); /* * If this is a periodic timer, re-arm it * so it will fire again. We do this before * calling any deferred procedure calls because * it's possible the DPC might cancel the timer, * in which case it would be wrong for us to * re-arm it again afterwards. */ if (timer->k_period) { tv.tv_sec = 0; tv.tv_usec = timer->k_period * 1000; timer->k_header.dh_inserted = TRUE; ntoskrnl_insert_timer(timer, tvtohz(&tv)); #ifdef NTOSKRNL_DEBUG_TIMERS ntoskrnl_timer_reloads++; #endif } dpc = timer->k_dpc; mtx_unlock(&ntoskrnl_dispatchlock); /* If there's a DPC associated with the timer, queue it up. */ if (dpc != NULL) KeInsertQueueDpc(dpc, NULL, NULL); } #ifdef NTOSKRNL_DEBUG_TIMERS static int sysctl_show_timers(SYSCTL_HANDLER_ARGS) { int ret; ret = 0; ntoskrnl_show_timers(); return (sysctl_handle_int(oidp, &ret, 0, req)); } static void ntoskrnl_show_timers() { int i = 0; list_entry *l; mtx_lock_spin(&ntoskrnl_calllock); l = ntoskrnl_calllist.nle_flink; while(l != &ntoskrnl_calllist) { i++; l = l->nle_flink; } mtx_unlock_spin(&ntoskrnl_calllock); printf("\n"); printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS); printf("timer sets: %qu\n", ntoskrnl_timer_sets); printf("timer reloads: %qu\n", ntoskrnl_timer_reloads); printf("timer cancels: %qu\n", ntoskrnl_timer_cancels); printf("timer fires: %qu\n", ntoskrnl_timer_fires); printf("\n"); } #endif /* * Must be called with dispatcher lock held. */ static void ntoskrnl_insert_timer(timer, ticks) ktimer *timer; int ticks; { callout_entry *e; list_entry *l; struct callout *c; /* * Try and allocate a timer. */ mtx_lock_spin(&ntoskrnl_calllock); if (IsListEmpty(&ntoskrnl_calllist)) { mtx_unlock_spin(&ntoskrnl_calllock); #ifdef NTOSKRNL_DEBUG_TIMERS ntoskrnl_show_timers(); #endif panic("out of timers!"); } l = RemoveHeadList(&ntoskrnl_calllist); mtx_unlock_spin(&ntoskrnl_calllock); e = CONTAINING_RECORD(l, callout_entry, ce_list); c = &e->ce_callout; timer->k_callout = c; callout_init(c, CALLOUT_MPSAFE); callout_reset(c, ticks, ntoskrnl_timercall, timer); } static void ntoskrnl_remove_timer(timer) ktimer *timer; { callout_entry *e; e = (callout_entry *)timer->k_callout; callout_stop(timer->k_callout); mtx_lock_spin(&ntoskrnl_calllock); InsertHeadList((&ntoskrnl_calllist), (&e->ce_list)); mtx_unlock_spin(&ntoskrnl_calllock); } void KeInitializeTimer(timer) ktimer *timer; { if (timer == NULL) return; KeInitializeTimerEx(timer, EVENT_TYPE_NOTIFY); } void KeInitializeTimerEx(timer, type) ktimer *timer; uint32_t type; { if (timer == NULL) return; bzero((char *)timer, sizeof(ktimer)); InitializeListHead((&timer->k_header.dh_waitlisthead)); timer->k_header.dh_sigstate = FALSE; timer->k_header.dh_inserted = FALSE; if (type == EVENT_TYPE_NOTIFY) timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER; else timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER; timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t); } /* * DPC subsystem. A Windows Defered Procedure Call has the following * properties: * - It runs at DISPATCH_LEVEL. * - It can have one of 3 importance values that control when it * runs relative to other DPCs in the queue. * - On SMP systems, it can be set to run on a specific processor. * In order to satisfy the last property, we create a DPC thread for * each CPU in the system and bind it to that CPU. Each thread * maintains three queues with different importance levels, which * will be processed in order from lowest to highest. * * In Windows, interrupt handlers run as DPCs. (Not to be confused * with ISRs, which run in interrupt context and can preempt DPCs.) * ISRs are given the highest importance so that they'll take * precedence over timers and other things. */ static void ntoskrnl_dpc_thread(arg) void *arg; { kdpc_queue *kq; kdpc *d; list_entry *l; uint8_t irql; kq = arg; InitializeListHead(&kq->kq_disp); kq->kq_td = curthread; kq->kq_exit = 0; kq->kq_running = FALSE; KeInitializeSpinLock(&kq->kq_lock); KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE); KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE); /* * Elevate our priority. DPCs are used to run interrupt * handlers, and they should trigger as soon as possible * once scheduled by an ISR. */ thread_lock(curthread); #ifdef NTOSKRNL_MULTIPLE_DPCS sched_bind(curthread, kq->kq_cpu); #endif sched_prio(curthread, PRI_MIN_KERN); thread_unlock(curthread); while (1) { KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL); KeAcquireSpinLock(&kq->kq_lock, &irql); if (kq->kq_exit) { kq->kq_exit = 0; KeReleaseSpinLock(&kq->kq_lock, irql); break; } kq->kq_running = TRUE; while (!IsListEmpty(&kq->kq_disp)) { l = RemoveHeadList((&kq->kq_disp)); d = CONTAINING_RECORD(l, kdpc, k_dpclistentry); InitializeListHead((&d->k_dpclistentry)); KeReleaseSpinLockFromDpcLevel(&kq->kq_lock); MSCALL4(d->k_deferedfunc, d, d->k_deferredctx, d->k_sysarg1, d->k_sysarg2); KeAcquireSpinLockAtDpcLevel(&kq->kq_lock); } kq->kq_running = FALSE; KeReleaseSpinLock(&kq->kq_lock, irql); KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE); } kproc_exit(0); return; /* notreached */ } static void ntoskrnl_destroy_dpc_threads(void) { kdpc_queue *kq; kdpc dpc; int i; kq = kq_queues; #ifdef NTOSKRNL_MULTIPLE_DPCS for (i = 0; i < mp_ncpus; i++) { #else for (i = 0; i < 1; i++) { #endif kq += i; kq->kq_exit = 1; KeInitializeDpc(&dpc, NULL, NULL); KeSetTargetProcessorDpc(&dpc, i); KeInsertQueueDpc(&dpc, NULL, NULL); while (kq->kq_exit) tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10); } } static uint8_t ntoskrnl_insert_dpc(head, dpc) list_entry *head; kdpc *dpc; { list_entry *l; kdpc *d; l = head->nle_flink; while (l != head) { d = CONTAINING_RECORD(l, kdpc, k_dpclistentry); if (d == dpc) return (FALSE); l = l->nle_flink; } if (dpc->k_importance == KDPC_IMPORTANCE_LOW) InsertTailList((head), (&dpc->k_dpclistentry)); else InsertHeadList((head), (&dpc->k_dpclistentry)); return (TRUE); } void KeInitializeDpc(dpc, dpcfunc, dpcctx) kdpc *dpc; void *dpcfunc; void *dpcctx; { if (dpc == NULL) return; dpc->k_deferedfunc = dpcfunc; dpc->k_deferredctx = dpcctx; dpc->k_num = KDPC_CPU_DEFAULT; dpc->k_importance = KDPC_IMPORTANCE_MEDIUM; InitializeListHead((&dpc->k_dpclistentry)); } uint8_t KeInsertQueueDpc(dpc, sysarg1, sysarg2) kdpc *dpc; void *sysarg1; void *sysarg2; { kdpc_queue *kq; uint8_t r; uint8_t irql; if (dpc == NULL) return (FALSE); kq = kq_queues; #ifdef NTOSKRNL_MULTIPLE_DPCS KeRaiseIrql(DISPATCH_LEVEL, &irql); /* * By default, the DPC is queued to run on the same CPU * that scheduled it. */ if (dpc->k_num == KDPC_CPU_DEFAULT) kq += curthread->td_oncpu; else kq += dpc->k_num; KeAcquireSpinLockAtDpcLevel(&kq->kq_lock); #else KeAcquireSpinLock(&kq->kq_lock, &irql); #endif r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc); if (r == TRUE) { dpc->k_sysarg1 = sysarg1; dpc->k_sysarg2 = sysarg2; } KeReleaseSpinLock(&kq->kq_lock, irql); if (r == FALSE) return (r); KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE); return (r); } uint8_t KeRemoveQueueDpc(dpc) kdpc *dpc; { kdpc_queue *kq; uint8_t irql; if (dpc == NULL) return (FALSE); #ifdef NTOSKRNL_MULTIPLE_DPCS KeRaiseIrql(DISPATCH_LEVEL, &irql); kq = kq_queues + dpc->k_num; KeAcquireSpinLockAtDpcLevel(&kq->kq_lock); #else kq = kq_queues; KeAcquireSpinLock(&kq->kq_lock, &irql); #endif if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) { KeReleaseSpinLockFromDpcLevel(&kq->kq_lock); KeLowerIrql(irql); return (FALSE); } RemoveEntryList((&dpc->k_dpclistentry)); InitializeListHead((&dpc->k_dpclistentry)); KeReleaseSpinLock(&kq->kq_lock, irql); return (TRUE); } void KeSetImportanceDpc(dpc, imp) kdpc *dpc; uint32_t imp; { if (imp != KDPC_IMPORTANCE_LOW && imp != KDPC_IMPORTANCE_MEDIUM && imp != KDPC_IMPORTANCE_HIGH) return; dpc->k_importance = (uint8_t)imp; } void KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu) { if (cpu > mp_ncpus) return; dpc->k_num = cpu; } void KeFlushQueuedDpcs(void) { kdpc_queue *kq; int i; /* * Poke each DPC queue and wait * for them to drain. */ #ifdef NTOSKRNL_MULTIPLE_DPCS for (i = 0; i < mp_ncpus; i++) { #else for (i = 0; i < 1; i++) { #endif kq = kq_queues + i; KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE); KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL); } } uint32_t KeGetCurrentProcessorNumber(void) { return ((uint32_t)curthread->td_oncpu); } uint8_t KeSetTimerEx(timer, duetime, period, dpc) ktimer *timer; int64_t duetime; uint32_t period; kdpc *dpc; { struct timeval tv; uint64_t curtime; uint8_t pending; if (timer == NULL) return (FALSE); mtx_lock(&ntoskrnl_dispatchlock); if (timer->k_header.dh_inserted == TRUE) { ntoskrnl_remove_timer(timer); #ifdef NTOSKRNL_DEBUG_TIMERS ntoskrnl_timer_cancels++; #endif timer->k_header.dh_inserted = FALSE; pending = TRUE; } else pending = FALSE; timer->k_duetime = duetime; timer->k_period = period; timer->k_header.dh_sigstate = FALSE; timer->k_dpc = dpc; if (duetime < 0) { tv.tv_sec = - (duetime) / 10000000; tv.tv_usec = (- (duetime) / 10) - (tv.tv_sec * 1000000); } else { ntoskrnl_time(&curtime); if (duetime < curtime) tv.tv_sec = tv.tv_usec = 0; else { tv.tv_sec = ((duetime) - curtime) / 10000000; tv.tv_usec = ((duetime) - curtime) / 10 - (tv.tv_sec * 1000000); } } timer->k_header.dh_inserted = TRUE; ntoskrnl_insert_timer(timer, tvtohz(&tv)); #ifdef NTOSKRNL_DEBUG_TIMERS ntoskrnl_timer_sets++; #endif mtx_unlock(&ntoskrnl_dispatchlock); return (pending); } uint8_t KeSetTimer(timer, duetime, dpc) ktimer *timer; int64_t duetime; kdpc *dpc; { return (KeSetTimerEx(timer, duetime, 0, dpc)); } /* * The Windows DDK documentation seems to say that cancelling * a timer that has a DPC will result in the DPC also being * cancelled, but this isn't really the case. */ uint8_t KeCancelTimer(timer) ktimer *timer; { uint8_t pending; if (timer == NULL) return (FALSE); mtx_lock(&ntoskrnl_dispatchlock); pending = timer->k_header.dh_inserted; if (timer->k_header.dh_inserted == TRUE) { timer->k_header.dh_inserted = FALSE; ntoskrnl_remove_timer(timer); #ifdef NTOSKRNL_DEBUG_TIMERS ntoskrnl_timer_cancels++; #endif } mtx_unlock(&ntoskrnl_dispatchlock); return (pending); } uint8_t KeReadStateTimer(timer) ktimer *timer; { return (timer->k_header.dh_sigstate); } static int32_t KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval) { ktimer timer; if (wait_mode != 0) panic("invalid wait_mode %d", wait_mode); KeInitializeTimer(&timer); KeSetTimer(&timer, *interval, NULL); KeWaitForSingleObject(&timer, 0, 0, alertable, NULL); return STATUS_SUCCESS; } static uint64_t KeQueryInterruptTime(void) { int ticks; struct timeval tv; getmicrouptime(&tv); ticks = tvtohz(&tv); return ticks * ((10000000 + hz - 1) / hz); } static struct thread * KeGetCurrentThread(void) { return curthread; } static int32_t KeSetPriorityThread(td, pri) struct thread *td; int32_t pri; { int32_t old; if (td == NULL) return LOW_REALTIME_PRIORITY; if (td->td_priority <= PRI_MIN_KERN) old = HIGH_PRIORITY; else if (td->td_priority >= PRI_MAX_KERN) old = LOW_PRIORITY; else old = LOW_REALTIME_PRIORITY; thread_lock(td); if (pri == HIGH_PRIORITY) sched_prio(td, PRI_MIN_KERN); if (pri == LOW_REALTIME_PRIORITY) sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2); if (pri == LOW_PRIORITY) sched_prio(td, PRI_MAX_KERN); thread_unlock(td); return old; } static void dummy() { printf("ntoskrnl dummy called...\n"); } image_patch_table ntoskrnl_functbl[] = { IMPORT_SFUNC(RtlZeroMemory, 2), IMPORT_SFUNC(RtlSecureZeroMemory, 2), IMPORT_SFUNC(RtlFillMemory, 3), IMPORT_SFUNC(RtlMoveMemory, 3), IMPORT_SFUNC(RtlCharToInteger, 3), IMPORT_SFUNC(RtlCopyMemory, 3), IMPORT_SFUNC(RtlCopyString, 2), IMPORT_SFUNC(RtlCompareMemory, 3), IMPORT_SFUNC(RtlEqualUnicodeString, 3), IMPORT_SFUNC(RtlCopyUnicodeString, 2), IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3), IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3), IMPORT_SFUNC(RtlInitAnsiString, 2), IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2), IMPORT_SFUNC(RtlInitUnicodeString, 2), IMPORT_SFUNC(RtlFreeAnsiString, 1), IMPORT_SFUNC(RtlFreeUnicodeString, 1), IMPORT_SFUNC(RtlUnicodeStringToInteger, 3), IMPORT_CFUNC(sprintf, 0), IMPORT_CFUNC(vsprintf, 0), IMPORT_CFUNC_MAP(_snprintf, snprintf, 0), IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0), IMPORT_CFUNC(DbgPrint, 0), IMPORT_SFUNC(DbgBreakPoint, 0), IMPORT_SFUNC(KeBugCheckEx, 5), IMPORT_CFUNC(strncmp, 0), IMPORT_CFUNC(strcmp, 0), IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0), IMPORT_CFUNC(strncpy, 0), IMPORT_CFUNC(strcpy, 0), IMPORT_CFUNC(strlen, 0), IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0), IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0), IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0), IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0), IMPORT_CFUNC_MAP(strchr, index, 0), IMPORT_CFUNC_MAP(strrchr, rindex, 0), IMPORT_CFUNC(memcpy, 0), IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0), IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0), IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0), IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4), IMPORT_SFUNC(IoGetDriverObjectExtension, 2), IMPORT_FFUNC(IofCallDriver, 2), IMPORT_FFUNC(IofCompleteRequest, 2), IMPORT_SFUNC(IoAcquireCancelSpinLock, 1), IMPORT_SFUNC(IoReleaseCancelSpinLock, 1), IMPORT_SFUNC(IoCancelIrp, 1), IMPORT_SFUNC(IoConnectInterrupt, 11), IMPORT_SFUNC(IoDisconnectInterrupt, 1), IMPORT_SFUNC(IoCreateDevice, 7), IMPORT_SFUNC(IoDeleteDevice, 1), IMPORT_SFUNC(IoGetAttachedDevice, 1), IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2), IMPORT_SFUNC(IoDetachDevice, 1), IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7), IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6), IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9), IMPORT_SFUNC(IoAllocateIrp, 2), IMPORT_SFUNC(IoReuseIrp, 2), IMPORT_SFUNC(IoMakeAssociatedIrp, 2), IMPORT_SFUNC(IoFreeIrp, 1), IMPORT_SFUNC(IoInitializeIrp, 3), IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1), IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2), IMPORT_SFUNC(KeSynchronizeExecution, 3), IMPORT_SFUNC(KeWaitForSingleObject, 5), IMPORT_SFUNC(KeWaitForMultipleObjects, 8), IMPORT_SFUNC(_allmul, 4), IMPORT_SFUNC(_alldiv, 4), IMPORT_SFUNC(_allrem, 4), IMPORT_RFUNC(_allshr, 0), IMPORT_RFUNC(_allshl, 0), IMPORT_SFUNC(_aullmul, 4), IMPORT_SFUNC(_aulldiv, 4), IMPORT_SFUNC(_aullrem, 4), IMPORT_RFUNC(_aullshr, 0), IMPORT_RFUNC(_aullshl, 0), IMPORT_CFUNC(atoi, 0), IMPORT_CFUNC(atol, 0), IMPORT_CFUNC(rand, 0), IMPORT_CFUNC(srand, 0), IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2), IMPORT_SFUNC(READ_REGISTER_USHORT, 1), IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2), IMPORT_SFUNC(READ_REGISTER_ULONG, 1), IMPORT_SFUNC(READ_REGISTER_UCHAR, 1), IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2), IMPORT_SFUNC(ExInitializePagedLookasideList, 7), IMPORT_SFUNC(ExDeletePagedLookasideList, 1), IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7), IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1), IMPORT_FFUNC(InterlockedPopEntrySList, 1), IMPORT_FFUNC(InitializeSListHead, 1), IMPORT_FFUNC(InterlockedPushEntrySList, 2), IMPORT_SFUNC(ExQueryDepthSList, 1), IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList, InterlockedPopEntrySList, 1), IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList, InterlockedPushEntrySList, 2), IMPORT_FFUNC(ExInterlockedPopEntrySList, 2), IMPORT_FFUNC(ExInterlockedPushEntrySList, 3), IMPORT_SFUNC(ExAllocatePoolWithTag, 3), IMPORT_SFUNC(ExFreePoolWithTag, 2), IMPORT_SFUNC(ExFreePool, 1), #ifdef __i386__ IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1), IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1), IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1), #else /* * For AMD64, we can get away with just mapping * KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock() * because the calling conventions end up being the same. * On i386, we have to be careful because KfAcquireSpinLock() * is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't. */ IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1), IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1), IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1), #endif IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1), IMPORT_FFUNC(InterlockedIncrement, 1), IMPORT_FFUNC(InterlockedDecrement, 1), IMPORT_FFUNC(InterlockedExchange, 2), IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2), IMPORT_SFUNC(IoAllocateMdl, 5), IMPORT_SFUNC(IoFreeMdl, 1), IMPORT_SFUNC(MmAllocateContiguousMemory, 2 + 1), IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5 + 3), IMPORT_SFUNC(MmFreeContiguousMemory, 1), IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3), IMPORT_SFUNC(MmSizeOfMdl, 1), IMPORT_SFUNC(MmMapLockedPages, 2), IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6), IMPORT_SFUNC(MmUnmapLockedPages, 2), IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1), IMPORT_SFUNC(MmGetPhysicalAddress, 1), IMPORT_SFUNC(MmGetSystemRoutineAddress, 1), IMPORT_SFUNC(MmIsAddressValid, 1), IMPORT_SFUNC(MmMapIoSpace, 3 + 1), IMPORT_SFUNC(MmUnmapIoSpace, 2), IMPORT_SFUNC(KeInitializeSpinLock, 1), IMPORT_SFUNC(IoIsWdmVersionAvailable, 2), IMPORT_SFUNC(IoOpenDeviceRegistryKey, 4), IMPORT_SFUNC(IoGetDeviceObjectPointer, 4), IMPORT_SFUNC(IoGetDeviceProperty, 5), IMPORT_SFUNC(IoAllocateWorkItem, 1), IMPORT_SFUNC(IoFreeWorkItem, 1), IMPORT_SFUNC(IoQueueWorkItem, 4), IMPORT_SFUNC(ExQueueWorkItem, 2), IMPORT_SFUNC(ntoskrnl_workitem, 2), IMPORT_SFUNC(KeInitializeMutex, 2), IMPORT_SFUNC(KeReleaseMutex, 2), IMPORT_SFUNC(KeReadStateMutex, 1), IMPORT_SFUNC(KeInitializeEvent, 3), IMPORT_SFUNC(KeSetEvent, 3), IMPORT_SFUNC(KeResetEvent, 1), IMPORT_SFUNC(KeClearEvent, 1), IMPORT_SFUNC(KeReadStateEvent, 1), IMPORT_SFUNC(KeInitializeTimer, 1), IMPORT_SFUNC(KeInitializeTimerEx, 2), IMPORT_SFUNC(KeSetTimer, 3), IMPORT_SFUNC(KeSetTimerEx, 4), IMPORT_SFUNC(KeCancelTimer, 1), IMPORT_SFUNC(KeReadStateTimer, 1), IMPORT_SFUNC(KeInitializeDpc, 3), IMPORT_SFUNC(KeInsertQueueDpc, 3), IMPORT_SFUNC(KeRemoveQueueDpc, 1), IMPORT_SFUNC(KeSetImportanceDpc, 2), IMPORT_SFUNC(KeSetTargetProcessorDpc, 2), IMPORT_SFUNC(KeFlushQueuedDpcs, 0), IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1), IMPORT_SFUNC(ObReferenceObjectByHandle, 6), IMPORT_FFUNC(ObfDereferenceObject, 1), IMPORT_SFUNC(ZwClose, 1), IMPORT_SFUNC(PsCreateSystemThread, 7), IMPORT_SFUNC(PsTerminateSystemThread, 1), IMPORT_SFUNC(IoWMIRegistrationControl, 2), IMPORT_SFUNC(WmiQueryTraceInformation, 5), IMPORT_CFUNC(WmiTraceMessage, 0), IMPORT_SFUNC(KeQuerySystemTime, 1), IMPORT_CFUNC(KeTickCount, 0), IMPORT_SFUNC(KeDelayExecutionThread, 3), IMPORT_SFUNC(KeQueryInterruptTime, 0), IMPORT_SFUNC(KeGetCurrentThread, 0), IMPORT_SFUNC(KeSetPriorityThread, 2), /* * This last entry is a catch-all for any function we haven't * implemented yet. The PE import list patching routine will * use it for any function that doesn't have an explicit match * in this table. */ { NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL }, /* End of list. */ { NULL, NULL, NULL } };