Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rum/@/dev/ath/ath_hal/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/rum/@/dev/ath/ath_hal/ah_eeprom_v1.c |
/* * Copyright (c) 2008 Sam Leffler, Errno Consulting * Copyright (c) 2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ah_eeprom_v1.c 221896 2011-05-14 15:12:02Z adrian $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_eeprom_v1.h" static HAL_STATUS v1EepromGet(struct ath_hal *ah, int param, void *val) { HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; uint32_t sum; uint16_t eeval; uint8_t *macaddr; int i; switch (param) { case AR_EEP_MACADDR: /* Get MAC Address */ sum = 0; macaddr = val; for (i = 0; i < 3; i++) { if (!ath_hal_eepromRead(ah, AR_EEPROM_MAC(i), &eeval)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read EEPROM location %u\n", __func__, i); return HAL_EEREAD; } sum += eeval; macaddr[2*i + 0] = eeval >> 8; macaddr[2*i + 1] = eeval & 0xff; } if (sum == 0 || sum == 0xffff*3) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad mac address %s\n", __func__, ath_hal_ether_sprintf(macaddr)); return HAL_EEBADMAC; } return HAL_OK; case AR_EEP_REGDMN_0: *(uint16_t *) val = ee->ee_regDomain[0]; return HAL_OK; case AR_EEP_RFKILL: HALASSERT(val == AH_NULL); return ee->ee_rfKill ? HAL_OK : HAL_EIO; case AR_EEP_WRITEPROTECT: HALASSERT(val == AH_NULL); return (ee->ee_protect & AR_EEPROM_PROTOTECT_WP_128_191) ? HAL_OK : HAL_EIO; default: HALASSERT(0); return HAL_EINVAL; } } static HAL_STATUS v1EepromSet(struct ath_hal *ah, int param, int v) { return HAL_EINVAL; } static HAL_BOOL v1EepromDiag(struct ath_hal *ah, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize) { HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; switch (request) { case HAL_DIAG_EEPROM: *result = ee; *resultsize = sizeof(*ee); return AH_TRUE; } return AH_FALSE; } static uint16_t v1EepromGetSpurChan(struct ath_hal *ah, int ix, HAL_BOOL is2GHz) { return AR_NO_SPUR; } /* * Reclaim any EEPROM-related storage. */ static void v1EepromDetach(struct ath_hal *ah) { HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; ath_hal_free(ee); AH_PRIVATE(ah)->ah_eeprom = AH_NULL; } HAL_STATUS ath_hal_v1EepromAttach(struct ath_hal *ah) { HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; uint16_t athvals[AR_EEPROM_ATHEROS_MAX]; /* XXX off stack */ uint16_t protect, eeprom_version, eeval; uint32_t sum; int i, loc; HALASSERT(ee == AH_NULL); if (!ath_hal_eepromRead(ah, AR_EEPROM_MAGIC, &eeval)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read EEPROM magic number\n", __func__); return HAL_EEREAD; } if (eeval != 0x5aa5) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid EEPROM magic number 0x%x\n", __func__, eeval); return HAL_EEMAGIC; } if (!ath_hal_eepromRead(ah, AR_EEPROM_PROTECT, &protect)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read EEPROM protection bits; read locked?\n", __func__); return HAL_EEREAD; } HALDEBUG(ah, HAL_DEBUG_ATTACH, "EEPROM protect 0x%x\n", protect); /* XXX check proper access before continuing */ if (!ath_hal_eepromRead(ah, AR_EEPROM_VERSION, &eeprom_version)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to read EEPROM version\n", __func__); return HAL_EEREAD; } if (((eeprom_version>>12) & 0xf) != 1) { /* * This code only groks the version 1 EEPROM layout. */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unsupported EEPROM version 0x%x found\n", __func__, eeprom_version); return HAL_EEVERSION; } /* * Read the Atheros EEPROM entries and calculate the checksum. */ sum = 0; for (i = 0; i < AR_EEPROM_ATHEROS_MAX; i++) { if (!ath_hal_eepromRead(ah, AR_EEPROM_ATHEROS(i), &athvals[i])) return HAL_EEREAD; sum ^= athvals[i]; } if (sum != 0xffff) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad EEPROM checksum 0x%x\n", __func__, sum); return HAL_EEBADSUM; } /* * Valid checksum, fetch the regulatory domain and save values. */ if (!ath_hal_eepromRead(ah, AR_EEPROM_REG_DOMAIN, &eeval)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read regdomain from EEPROM\n", __func__); return HAL_EEREAD; } ee = ath_hal_malloc(sizeof(HAL_EEPROM_v1)); if (ee == AH_NULL) { /* XXX message */ return HAL_ENOMEM; } ee->ee_version = eeprom_version; ee->ee_protect = protect; ee->ee_antenna = athvals[2]; ee->ee_biasCurrents = athvals[3]; ee->ee_thresh62 = athvals[4] & 0xff; ee->ee_xlnaOn = (athvals[4] >> 8) & 0xff; ee->ee_xpaOn = athvals[5] & 0xff; ee->ee_xpaOff = (athvals[5] >> 8) & 0xff; ee->ee_regDomain[0] = (athvals[6] >> 8) & 0xff; ee->ee_regDomain[1] = athvals[6] & 0xff; ee->ee_regDomain[2] = (athvals[7] >> 8) & 0xff; ee->ee_regDomain[3] = athvals[7] & 0xff; ee->ee_rfKill = athvals[8] & 0x1; ee->ee_devType = (athvals[8] >> 1) & 0x7; for (i = 0, loc = AR_EEPROM_ATHEROS_TP_SETTINGS; i < AR_CHANNELS_MAX; i++, loc += AR_TP_SETTINGS_SIZE) { struct tpcMap *chan = &ee->ee_tpc[i]; /* Copy pcdac and gain_f values from EEPROM */ chan->pcdac[0] = (athvals[loc] >> 10) & 0x3F; chan->gainF[0] = (athvals[loc] >> 4) & 0x3F; chan->pcdac[1] = ((athvals[loc] << 2) & 0x3C) | ((athvals[loc+1] >> 14) & 0x03); chan->gainF[1] = (athvals[loc+1] >> 8) & 0x3F; chan->pcdac[2] = (athvals[loc+1] >> 2) & 0x3F; chan->gainF[2] = ((athvals[loc+1] << 4) & 0x30) | ((athvals[loc+2] >> 12) & 0x0F); chan->pcdac[3] = (athvals[loc+2] >> 6) & 0x3F; chan->gainF[3] = athvals[loc+2] & 0x3F; chan->pcdac[4] = (athvals[loc+3] >> 10) & 0x3F; chan->gainF[4] = (athvals[loc+3] >> 4) & 0x3F; chan->pcdac[5] = ((athvals[loc+3] << 2) & 0x3C) | ((athvals[loc+4] >> 14) & 0x03); chan->gainF[5] = (athvals[loc+4] >> 8) & 0x3F; chan->pcdac[6] = (athvals[loc+4] >> 2) & 0x3F; chan->gainF[6] = ((athvals[loc+4] << 4) & 0x30) | ((athvals[loc+5] >> 12) & 0x0F); chan->pcdac[7] = (athvals[loc+5] >> 6) & 0x3F; chan->gainF[7] = athvals[loc+5] & 0x3F; chan->pcdac[8] = (athvals[loc+6] >> 10) & 0x3F; chan->gainF[8] = (athvals[loc+6] >> 4) & 0x3F; chan->pcdac[9] = ((athvals[loc+6] << 2) & 0x3C) | ((athvals[loc+7] >> 14) & 0x03); chan->gainF[9] = (athvals[loc+7] >> 8) & 0x3F; chan->pcdac[10] = (athvals[loc+7] >> 2) & 0x3F; chan->gainF[10] = ((athvals[loc+7] << 4) & 0x30) | ((athvals[loc+8] >> 12) & 0x0F); /* Copy Regulatory Domain and Rate Information from EEPROM */ chan->rate36 = (athvals[loc+8] >> 6) & 0x3F; chan->rate48 = athvals[loc+8] & 0x3F; chan->rate54 = (athvals[loc+9] >> 10) & 0x3F; chan->regdmn[0] = (athvals[loc+9] >> 4) & 0x3F; chan->regdmn[1] = ((athvals[loc+9] << 2) & 0x3C) | ((athvals[loc+10] >> 14) & 0x03); chan->regdmn[2] = (athvals[loc+10] >> 8) & 0x3F; chan->regdmn[3] = (athvals[loc+10] >> 2) & 0x3F; } AH_PRIVATE(ah)->ah_eeprom = ee; AH_PRIVATE(ah)->ah_eeversion = eeprom_version; AH_PRIVATE(ah)->ah_eepromDetach = v1EepromDetach; AH_PRIVATE(ah)->ah_eepromGet = v1EepromGet; AH_PRIVATE(ah)->ah_eepromSet = v1EepromSet; AH_PRIVATE(ah)->ah_getSpurChan = v1EepromGetSpurChan; AH_PRIVATE(ah)->ah_eepromDiag = v1EepromDiag; return HAL_OK; }