Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/run/@/net80211/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/run/@/net80211/ieee80211_amrr.c |
/* $OpenBSD: ieee80211_amrr.c,v 1.1 2006/06/17 19:07:19 damien Exp $ */ /*- * Copyright (c) 2010 Rui Paulo <rpaulo@FreeBSD.org> * Copyright (c) 2006 * Damien Bergamini <damien.bergamini@free.fr> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/net80211/ieee80211_amrr.c 217322 2011-01-12 19:53:50Z mdf $"); /*- * Naive implementation of the Adaptive Multi Rate Retry algorithm: * * "IEEE 802.11 Rate Adaptation: A Practical Approach" * Mathieu Lacage, Hossein Manshaei, Thierry Turletti * INRIA Sophia - Projet Planete * http://www-sop.inria.fr/rapports/sophia/RR-5208.html */ #include "opt_wlan.h" #include <sys/param.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/socket.h> #include <sys/sysctl.h> #include <net/if.h> #include <net/if_media.h> #ifdef INET #include <netinet/in.h> #include <netinet/if_ether.h> #endif #include <net80211/ieee80211_var.h> #include <net80211/ieee80211_amrr.h> #include <net80211/ieee80211_ratectl.h> #define is_success(amn) \ ((amn)->amn_retrycnt < (amn)->amn_txcnt / 10) #define is_failure(amn) \ ((amn)->amn_retrycnt > (amn)->amn_txcnt / 3) #define is_enough(amn) \ ((amn)->amn_txcnt > 10) static void amrr_setinterval(const struct ieee80211vap *, int); static void amrr_init(struct ieee80211vap *); static void amrr_deinit(struct ieee80211vap *); static void amrr_node_init(struct ieee80211_node *); static void amrr_node_deinit(struct ieee80211_node *); static int amrr_update(struct ieee80211_amrr *, struct ieee80211_amrr_node *, struct ieee80211_node *); static int amrr_rate(struct ieee80211_node *, void *, uint32_t); static void amrr_tx_complete(const struct ieee80211vap *, const struct ieee80211_node *, int, void *, void *); static void amrr_tx_update(const struct ieee80211vap *vap, const struct ieee80211_node *, void *, void *, void *); static void amrr_sysctlattach(struct ieee80211vap *, struct sysctl_ctx_list *, struct sysctl_oid *); /* number of references from net80211 layer */ static int nrefs = 0; static const struct ieee80211_ratectl amrr = { .ir_name = "amrr", .ir_attach = NULL, .ir_detach = NULL, .ir_init = amrr_init, .ir_deinit = amrr_deinit, .ir_node_init = amrr_node_init, .ir_node_deinit = amrr_node_deinit, .ir_rate = amrr_rate, .ir_tx_complete = amrr_tx_complete, .ir_tx_update = amrr_tx_update, .ir_setinterval = amrr_setinterval, }; IEEE80211_RATECTL_MODULE(amrr, 1); IEEE80211_RATECTL_ALG(amrr, IEEE80211_RATECTL_AMRR, amrr); static void amrr_setinterval(const struct ieee80211vap *vap, int msecs) { struct ieee80211_amrr *amrr = vap->iv_rs; int t; if (msecs < 100) msecs = 100; t = msecs_to_ticks(msecs); amrr->amrr_interval = (t < 1) ? 1 : t; } static void amrr_init(struct ieee80211vap *vap) { struct ieee80211_amrr *amrr; KASSERT(vap->iv_rs == NULL, ("%s called multiple times", __func__)); amrr = vap->iv_rs = malloc(sizeof(struct ieee80211_amrr), M_80211_RATECTL, M_NOWAIT|M_ZERO); if (amrr == NULL) { if_printf(vap->iv_ifp, "couldn't alloc ratectl structure\n"); return; } amrr->amrr_min_success_threshold = IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD; amrr->amrr_max_success_threshold = IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD; amrr_setinterval(vap, 500 /* ms */); amrr_sysctlattach(vap, vap->iv_sysctl, vap->iv_oid); } static void amrr_deinit(struct ieee80211vap *vap) { free(vap->iv_rs, M_80211_RATECTL); } static void amrr_node_init(struct ieee80211_node *ni) { const struct ieee80211_rateset *rs = &ni->ni_rates; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_amrr *amrr = vap->iv_rs; struct ieee80211_amrr_node *amn; if (ni->ni_rctls == NULL) { ni->ni_rctls = amn = malloc(sizeof(struct ieee80211_amrr_node), M_80211_RATECTL, M_NOWAIT|M_ZERO); if (amn == NULL) { if_printf(vap->iv_ifp, "couldn't alloc per-node ratectl " "structure\n"); return; } } else amn = ni->ni_rctls; amn->amn_amrr = amrr; amn->amn_success = 0; amn->amn_recovery = 0; amn->amn_txcnt = amn->amn_retrycnt = 0; amn->amn_success_threshold = amrr->amrr_min_success_threshold; /* pick initial rate */ for (amn->amn_rix = rs->rs_nrates - 1; amn->amn_rix > 0 && (rs->rs_rates[amn->amn_rix] & IEEE80211_RATE_VAL) > 72; amn->amn_rix--) ; ni->ni_txrate = rs->rs_rates[amn->amn_rix] & IEEE80211_RATE_VAL; amn->amn_ticks = ticks; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "AMRR initial rate %d", ni->ni_txrate); } static void amrr_node_deinit(struct ieee80211_node *ni) { free(ni->ni_rctls, M_80211_RATECTL); } static int amrr_update(struct ieee80211_amrr *amrr, struct ieee80211_amrr_node *amn, struct ieee80211_node *ni) { int rix = amn->amn_rix; KASSERT(is_enough(amn), ("txcnt %d", amn->amn_txcnt)); if (is_success(amn)) { amn->amn_success++; if (amn->amn_success >= amn->amn_success_threshold && rix + 1 < ni->ni_rates.rs_nrates) { amn->amn_recovery = 1; amn->amn_success = 0; rix++; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "AMRR increasing rate %d (txcnt=%d retrycnt=%d)", ni->ni_rates.rs_rates[rix] & IEEE80211_RATE_VAL, amn->amn_txcnt, amn->amn_retrycnt); } else { amn->amn_recovery = 0; } } else if (is_failure(amn)) { amn->amn_success = 0; if (rix > 0) { if (amn->amn_recovery) { amn->amn_success_threshold *= 2; if (amn->amn_success_threshold > amrr->amrr_max_success_threshold) amn->amn_success_threshold = amrr->amrr_max_success_threshold; } else { amn->amn_success_threshold = amrr->amrr_min_success_threshold; } rix--; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)", ni->ni_rates.rs_rates[rix] & IEEE80211_RATE_VAL, amn->amn_txcnt, amn->amn_retrycnt); } amn->amn_recovery = 0; } /* reset counters */ amn->amn_txcnt = 0; amn->amn_retrycnt = 0; return rix; } /* * Return the rate index to use in sending a data frame. * Update our internal state if it's been long enough. * If the rate changes we also update ni_txrate to match. */ static int amrr_rate(struct ieee80211_node *ni, void *arg __unused, uint32_t iarg __unused) { struct ieee80211_amrr_node *amn = ni->ni_rctls; struct ieee80211_amrr *amrr = amn->amn_amrr; int rix; if (is_enough(amn) && (ticks - amn->amn_ticks) > amrr->amrr_interval) { rix = amrr_update(amrr, amn, ni); if (rix != amn->amn_rix) { /* update public rate */ ni->ni_txrate = ni->ni_rates.rs_rates[rix] & IEEE80211_RATE_VAL; amn->amn_rix = rix; } amn->amn_ticks = ticks; } else rix = amn->amn_rix; return rix; } /* * Update statistics with tx complete status. Ok is non-zero * if the packet is known to be ACK'd. Retries has the number * retransmissions (i.e. xmit attempts - 1). */ static void amrr_tx_complete(const struct ieee80211vap *vap, const struct ieee80211_node *ni, int ok, void *arg1, void *arg2 __unused) { struct ieee80211_amrr_node *amn = ni->ni_rctls; int retries = *(int *)arg1; amn->amn_txcnt++; if (ok) amn->amn_success++; amn->amn_retrycnt += retries; } /* * Set tx count/retry statistics explicitly. Intended for * drivers that poll the device for statistics maintained * in the device. */ static void amrr_tx_update(const struct ieee80211vap *vap, const struct ieee80211_node *ni, void *arg1, void *arg2, void *arg3) { struct ieee80211_amrr_node *amn = ni->ni_rctls; int txcnt = *(int *)arg1, success = *(int *)arg2, retrycnt = *(int *)arg3; amn->amn_txcnt = txcnt; amn->amn_success = success; amn->amn_retrycnt = retrycnt; } static int amrr_sysctl_interval(SYSCTL_HANDLER_ARGS) { struct ieee80211vap *vap = arg1; struct ieee80211_amrr *amrr = vap->iv_rs; int msecs = ticks_to_msecs(amrr->amrr_interval); int error; error = sysctl_handle_int(oidp, &msecs, 0, req); if (error || !req->newptr) return error; amrr_setinterval(vap, msecs); return 0; } static void amrr_sysctlattach(struct ieee80211vap *vap, struct sysctl_ctx_list *ctx, struct sysctl_oid *tree) { struct ieee80211_amrr *amrr = vap->iv_rs; SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "amrr_rate_interval", CTLTYPE_INT | CTLFLAG_RW, vap, 0, amrr_sysctl_interval, "I", "amrr operation interval (ms)"); /* XXX bounds check values */ SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "amrr_max_sucess_threshold", CTLFLAG_RW, &amrr->amrr_max_success_threshold, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "amrr_min_sucess_threshold", CTLFLAG_RW, &amrr->amrr_min_success_threshold, 0, ""); }