Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/u3g/@/dev/isci/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/u3g/@/dev/isci/isci.c |
/*- * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/isci/isci.c 239741 2012-08-27 18:10:25Z jimharris $"); #include <dev/isci/isci.h> #include <sys/sysctl.h> #include <sys/malloc.h> #include <cam/cam_periph.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/isci/scil/scic_logger.h> #include <dev/isci/scil/scic_library.h> #include <dev/isci/scil/scic_user_callback.h> #include <dev/isci/scil/scif_controller.h> #include <dev/isci/scil/scif_library.h> #include <dev/isci/scil/scif_logger.h> #include <dev/isci/scil/scif_user_callback.h> MALLOC_DEFINE(M_ISCI, "isci", "isci driver memory allocations"); struct isci_softc *g_isci; uint32_t g_isci_debug_level = 0; static int isci_probe(device_t); static int isci_attach(device_t); static int isci_detach(device_t); int isci_initialize(struct isci_softc *isci); void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg, int nseg, int error); static devclass_t isci_devclass; static device_method_t isci_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, isci_probe), DEVMETHOD(device_attach, isci_attach), DEVMETHOD(device_detach, isci_detach), { 0, 0 } }; static driver_t isci_pci_driver = { "isci", isci_pci_methods, sizeof(struct isci_softc), }; DRIVER_MODULE(isci, pci, isci_pci_driver, isci_devclass, 0, 0); static struct _pcsid { u_int32_t type; const char *desc; } pci_ids[] = { { 0x1d608086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d618086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, { 0x1d628086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d638086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d648086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d658086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d668086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d678086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d688086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d698086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d6a8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, { 0x1d6b8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, { 0x1d6c8086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d6d8086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d6e8086, "Intel(R) C600 Series Chipset SAS Controller" }, { 0x1d6f8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, { 0x00000000, NULL } }; static int isci_probe (device_t device) { u_int32_t type = pci_get_devid(device); struct _pcsid *ep = pci_ids; while (ep->type && ep->type != type) ++ep; if (ep->desc) { device_set_desc(device, ep->desc); return (BUS_PROBE_DEFAULT); } else return (ENXIO); } static int isci_allocate_pci_memory(struct isci_softc *isci) { int i; for (i = 0; i < ISCI_NUM_PCI_BARS; i++) { struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i]; pci_bar->resource_id = PCIR_BAR(i*2); pci_bar->resource = bus_alloc_resource(isci->device, SYS_RES_MEMORY, &pci_bar->resource_id, 0, ~0, 1, RF_ACTIVE); if(pci_bar->resource == NULL) isci_log_message(0, "ISCI", "unable to allocate pci resource\n"); else { pci_bar->bus_tag = rman_get_bustag(pci_bar->resource); pci_bar->bus_handle = rman_get_bushandle(pci_bar->resource); } } return (0); } static int isci_attach(device_t device) { int error; struct isci_softc *isci = DEVICE2SOFTC(device); g_isci = isci; isci->device = device; isci_allocate_pci_memory(isci); error = isci_initialize(isci); if (error) { isci_detach(device); return (error); } isci_interrupt_setup(isci); isci_sysctl_initialize(isci); return (0); } static int isci_detach(device_t device) { struct isci_softc *isci = DEVICE2SOFTC(device); int i; for (i = 0; i < isci->controller_count; i++) { struct ISCI_CONTROLLER *controller = &isci->controllers[i]; SCI_STATUS status; void *unmap_buffer; if (controller->scif_controller_handle != NULL) { scic_controller_disable_interrupts( scif_controller_get_scic_handle(controller->scif_controller_handle)); mtx_lock(&controller->lock); status = scif_controller_stop(controller->scif_controller_handle, 0); mtx_unlock(&controller->lock); while (controller->is_started == TRUE) { /* Now poll for interrupts until the controller stop complete * callback is received. */ mtx_lock(&controller->lock); isci_interrupt_poll_handler(controller); mtx_unlock(&controller->lock); pause("isci", 1); } if(controller->sim != NULL) { mtx_lock(&controller->lock); xpt_free_path(controller->path); xpt_bus_deregister(cam_sim_path(controller->sim)); cam_sim_free(controller->sim, TRUE); mtx_unlock(&controller->lock); } } if (controller->timer_memory != NULL) free(controller->timer_memory, M_ISCI); if (controller->remote_device_memory != NULL) free(controller->remote_device_memory, M_ISCI); while (1) { sci_pool_get(controller->unmap_buffer_pool, unmap_buffer); if (unmap_buffer == NULL) break; contigfree(unmap_buffer, PAGE_SIZE, M_ISCI); } } /* The SCIF controllers have been stopped, so we can now * free the SCI library memory. */ if (isci->sci_library_memory != NULL) free(isci->sci_library_memory, M_ISCI); for (i = 0; i < ISCI_NUM_PCI_BARS; i++) { struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i]; if (pci_bar->resource != NULL) bus_release_resource(device, SYS_RES_MEMORY, pci_bar->resource_id, pci_bar->resource); } for (i = 0; i < isci->num_interrupts; i++) { struct ISCI_INTERRUPT_INFO *interrupt_info; interrupt_info = &isci->interrupt_info[i]; if(interrupt_info->tag != NULL) bus_teardown_intr(device, interrupt_info->res, interrupt_info->tag); if(interrupt_info->res != NULL) bus_release_resource(device, SYS_RES_IRQ, rman_get_rid(interrupt_info->res), interrupt_info->res); pci_release_msi(device); } return (0); } int isci_initialize(struct isci_softc *isci) { int error; uint32_t status = 0; uint32_t library_object_size; uint32_t verbosity_mask; uint32_t scic_log_object_mask; uint32_t scif_log_object_mask; uint8_t *header_buffer; library_object_size = scif_library_get_object_size(SCI_MAX_CONTROLLERS); isci->sci_library_memory = malloc(library_object_size, M_ISCI, M_NOWAIT | M_ZERO ); isci->sci_library_handle = scif_library_construct( isci->sci_library_memory, SCI_MAX_CONTROLLERS); sci_object_set_association( isci->sci_library_handle, (void *)isci); verbosity_mask = (1<<SCI_LOG_VERBOSITY_ERROR) | (1<<SCI_LOG_VERBOSITY_WARNING) | (1<<SCI_LOG_VERBOSITY_INFO) | (1<<SCI_LOG_VERBOSITY_TRACE); scic_log_object_mask = 0xFFFFFFFF; scic_log_object_mask &= ~SCIC_LOG_OBJECT_COMPLETION_QUEUE; scic_log_object_mask &= ~SCIC_LOG_OBJECT_SSP_IO_REQUEST; scic_log_object_mask &= ~SCIC_LOG_OBJECT_STP_IO_REQUEST; scic_log_object_mask &= ~SCIC_LOG_OBJECT_SMP_IO_REQUEST; scic_log_object_mask &= ~SCIC_LOG_OBJECT_CONTROLLER; scif_log_object_mask = 0xFFFFFFFF; scif_log_object_mask &= ~SCIF_LOG_OBJECT_CONTROLLER; scif_log_object_mask &= ~SCIF_LOG_OBJECT_IO_REQUEST; TUNABLE_INT_FETCH("hw.isci.debug_level", &g_isci_debug_level); sci_logger_enable(sci_object_get_logger(isci->sci_library_handle), scif_log_object_mask, verbosity_mask); sci_logger_enable(sci_object_get_logger( scif_library_get_scic_handle(isci->sci_library_handle)), scic_log_object_mask, verbosity_mask); header_buffer = (uint8_t *)&isci->pci_common_header; for (uint8_t i = 0; i < sizeof(isci->pci_common_header); i++) header_buffer[i] = pci_read_config(isci->device, i, 1); scic_library_set_pci_info( scif_library_get_scic_handle(isci->sci_library_handle), &isci->pci_common_header); isci->oem_parameters_found = FALSE; isci_get_oem_parameters(isci); /* trigger interrupt if 32 completions occur before timeout expires */ isci->coalesce_number = 32; /* trigger interrupt if 2 microseconds elapse after a completion occurs, * regardless if "coalesce_number" completions have occurred */ isci->coalesce_timeout = 2; isci->controller_count = scic_library_get_pci_device_controller_count( scif_library_get_scic_handle(isci->sci_library_handle)); for (int index = 0; index < isci->controller_count; index++) { struct ISCI_CONTROLLER *controller = &isci->controllers[index]; SCI_CONTROLLER_HANDLE_T scif_controller_handle; controller->index = index; isci_controller_construct(controller, isci); scif_controller_handle = controller->scif_controller_handle; status = isci_controller_initialize(controller); if(status != SCI_SUCCESS) { isci_log_message(0, "ISCI", "isci_controller_initialize FAILED: %x\n", status); return (status); } error = isci_controller_allocate_memory(controller); if (error != 0) return (error); scif_controller_set_interrupt_coalescence( scif_controller_handle, isci->coalesce_number, isci->coalesce_timeout); } /* FreeBSD provides us a hook to ensure we get a chance to start * our controllers and complete initial domain discovery before * it searches for the boot device. Once we're done, we'll * disestablish the hook, signaling the kernel that is can proceed * with the boot process. */ isci->config_hook.ich_func = &isci_controller_start; isci->config_hook.ich_arg = &isci->controllers[0]; if (config_intrhook_establish(&isci->config_hook) != 0) isci_log_message(0, "ISCI", "config_intrhook_establish failed!\n"); return (status); } void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg, int nseg, int error) { struct ISCI_MEMORY *memory = (struct ISCI_MEMORY *)arg; memory->error = error; if (nseg != 1 || error != 0) isci_log_message(0, "ISCI", "Failed to allocate physically contiguous memory!\n"); else memory->physical_address = seg->ds_addr; } int isci_allocate_dma_buffer(device_t device, struct ISCI_MEMORY *memory) { uint32_t status; status = bus_dma_tag_create(bus_get_dma_tag(device), 0x40 /* cacheline alignment */, 0x0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, memory->size, 0x1 /* we want physically contiguous */, memory->size, 0, NULL, NULL, &memory->dma_tag); if(status == ENOMEM) { isci_log_message(0, "ISCI", "bus_dma_tag_create failed\n"); return (status); } status = bus_dmamem_alloc(memory->dma_tag, (void **)&memory->virtual_address, BUS_DMA_ZERO, &memory->dma_map); if(status == ENOMEM) { isci_log_message(0, "ISCI", "bus_dmamem_alloc failed\n"); return (status); } status = bus_dmamap_load(memory->dma_tag, memory->dma_map, (void *)memory->virtual_address, memory->size, isci_allocate_dma_buffer_callback, memory, 0); if(status == EINVAL) { isci_log_message(0, "ISCI", "bus_dmamap_load failed\n"); return (status); } return (0); } /** * @brief This callback method asks the user to associate the supplied * lock with an operating environment specific locking construct. * * @param[in] controller This parameter specifies the controller with * which this lock is to be associated. * @param[in] lock This parameter specifies the lock for which the * user should associate an operating environment specific * locking object. * * @see The SCI_LOCK_LEVEL enumeration for more information. * * @return none. */ void scif_cb_lock_associate(SCI_CONTROLLER_HANDLE_T controller, SCI_LOCK_HANDLE_T lock) { } /** * @brief This callback method asks the user to de-associate the supplied * lock with an operating environment specific locking construct. * * @param[in] controller This parameter specifies the controller with * which this lock is to be de-associated. * @param[in] lock This parameter specifies the lock for which the * user should de-associate an operating environment specific * locking object. * * @see The SCI_LOCK_LEVEL enumeration for more information. * * @return none. */ void scif_cb_lock_disassociate(SCI_CONTROLLER_HANDLE_T controller, SCI_LOCK_HANDLE_T lock) { } /** * @brief This callback method asks the user to acquire/get the lock. * This method should pend until the lock has been acquired. * * @param[in] controller This parameter specifies the controller with * which this lock is associated. * @param[in] lock This parameter specifies the lock to be acquired. * * @return none */ void scif_cb_lock_acquire(SCI_CONTROLLER_HANDLE_T controller, SCI_LOCK_HANDLE_T lock) { } /** * @brief This callback method asks the user to release a lock. * * @param[in] controller This parameter specifies the controller with * which this lock is associated. * @param[in] lock This parameter specifies the lock to be released. * * @return none */ void scif_cb_lock_release(SCI_CONTROLLER_HANDLE_T controller, SCI_LOCK_HANDLE_T lock) { } /** * @brief This callback method creates an OS specific deferred task * for internal usage. The handler to deferred task is stored by OS * driver. * * @param[in] controller This parameter specifies the controller object * with which this callback is associated. * * @return none */ void scif_cb_start_internal_io_task_create(SCI_CONTROLLER_HANDLE_T controller) { } /** * @brief This callback method schedules a OS specific deferred task. * * @param[in] controller This parameter specifies the controller * object with which this callback is associated. * @param[in] start_internal_io_task_routine This parameter specifies the * sci start_internal_io routine. * @param[in] context This parameter specifies a handle to a parameter * that will be passed into the "start_internal_io_task_routine" * when it is invoked. * * @return none */ void scif_cb_start_internal_io_task_schedule(SCI_CONTROLLER_HANDLE_T scif_controller, FUNCPTR start_internal_io_task_routine, void *context) { /** @todo Use FreeBSD tasklet to defer this routine to a later time, * rather than calling the routine inline. */ SCI_START_INTERNAL_IO_ROUTINE sci_start_internal_io_routine = (SCI_START_INTERNAL_IO_ROUTINE)start_internal_io_task_routine; sci_start_internal_io_routine(context); } /** * @brief In this method the user must write to PCI memory via access. * This method is used for access to memory space and IO space. * * @param[in] controller The controller for which to read a DWORD. * @param[in] address This parameter depicts the address into * which to write. * @param[out] write_value This parameter depicts the value being written * into the PCI memory location. * * @todo These PCI memory access calls likely needs to be optimized into macros? */ void scic_cb_pci_write_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address, uint32_t write_value) { SCI_CONTROLLER_HANDLE_T scif_controller = (SCI_CONTROLLER_HANDLE_T) sci_object_get_association(scic_controller); struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller); struct isci_softc *isci = isci_controller->isci; uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28); bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF); bus_space_write_4(isci->pci_bar[bar].bus_tag, isci->pci_bar[bar].bus_handle, offset, write_value); } /** * @brief In this method the user must read from PCI memory via access. * This method is used for access to memory space and IO space. * * @param[in] controller The controller for which to read a DWORD. * @param[in] address This parameter depicts the address from * which to read. * * @return The value being returned from the PCI memory location. * * @todo This PCI memory access calls likely need to be optimized into macro? */ uint32_t scic_cb_pci_read_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address) { SCI_CONTROLLER_HANDLE_T scif_controller = (SCI_CONTROLLER_HANDLE_T)sci_object_get_association(scic_controller); struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller); struct isci_softc *isci = isci_controller->isci; uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28); bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF); return (bus_space_read_4(isci->pci_bar[bar].bus_tag, isci->pci_bar[bar].bus_handle, offset)); } /** * @brief This method is called when the core requires the OS driver * to stall execution. This method is utilized during initialization * or non-performance paths only. * * @param[in] microseconds This parameter specifies the number of * microseconds for which to stall. The operating system driver * is allowed to round this value up where necessary. * * @return none. */ void scic_cb_stall_execution(uint32_t microseconds) { DELAY(microseconds); } /** * @brief In this method the user must return the base address register (BAR) * value for the supplied base address register number. * * @param[in] controller The controller for which to retrieve the bar number. * @param[in] bar_number This parameter depicts the BAR index/number to be read. * * @return Return a pointer value indicating the contents of the BAR. * @retval NULL indicates an invalid BAR index/number was specified. * @retval All other values indicate a valid VIRTUAL address from the BAR. */ void * scic_cb_pci_get_bar(SCI_CONTROLLER_HANDLE_T controller, uint16_t bar_number) { return ((void *)(POINTER_UINT)((uint32_t)bar_number << 28)); } /** * @brief This method informs the SCI Core user that a phy/link became * ready, but the phy is not allowed in the port. In some * situations the underlying hardware only allows for certain phy * to port mappings. If these mappings are violated, then this * API is invoked. * * @param[in] controller This parameter represents the controller which * contains the port. * @param[in] port This parameter specifies the SCI port object for which * the callback is being invoked. * @param[in] phy This parameter specifies the phy that came ready, but the * phy can't be a valid member of the port. * * @return none */ void scic_cb_port_invalid_link_up(SCI_CONTROLLER_HANDLE_T controller, SCI_PORT_HANDLE_T port, SCI_PHY_HANDLE_T phy) { }