Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uark/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uark/@/kern/kern_rmlock.c |
/*- * Copyright (c) 2007 Stephan Uphoff <ups@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Machine independent bits of reader/writer lock implementation. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_rmlock.c 235404 2012-05-13 17:01:32Z avg $"); #include "opt_ddb.h" #include "opt_kdtrace.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/proc.h> #include <sys/rmlock.h> #include <sys/sched.h> #include <sys/smp.h> #include <sys/turnstile.h> #include <sys/lock_profile.h> #include <machine/cpu.h> #ifdef DDB #include <ddb/ddb.h> #endif #define RMPF_ONQUEUE 1 #define RMPF_SIGNAL 2 /* * To support usage of rmlock in CVs and msleep yet another list for the * priority tracker would be needed. Using this lock for cv and msleep also * does not seem very useful */ static __inline void compiler_memory_barrier(void) { __asm __volatile("":::"memory"); } static void assert_rm(struct lock_object *lock, int what); static void lock_rm(struct lock_object *lock, int how); #ifdef KDTRACE_HOOKS static int owner_rm(struct lock_object *lock, struct thread **owner); #endif static int unlock_rm(struct lock_object *lock); struct lock_class lock_class_rm = { .lc_name = "rm", .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE, .lc_assert = assert_rm, #if 0 #ifdef DDB .lc_ddb_show = db_show_rwlock, #endif #endif .lc_lock = lock_rm, .lc_unlock = unlock_rm, #ifdef KDTRACE_HOOKS .lc_owner = owner_rm, #endif }; static void assert_rm(struct lock_object *lock, int what) { panic("assert_rm called"); } static void lock_rm(struct lock_object *lock, int how) { panic("lock_rm called"); } static int unlock_rm(struct lock_object *lock) { panic("unlock_rm called"); } #ifdef KDTRACE_HOOKS static int owner_rm(struct lock_object *lock, struct thread **owner) { panic("owner_rm called"); } #endif static struct mtx rm_spinlock; MTX_SYSINIT(rm_spinlock, &rm_spinlock, "rm_spinlock", MTX_SPIN); /* * Add or remove tracker from per-cpu list. * * The per-cpu list can be traversed at any time in forward direction from an * interrupt on the *local* cpu. */ static void inline rm_tracker_add(struct pcpu *pc, struct rm_priotracker *tracker) { struct rm_queue *next; /* Initialize all tracker pointers */ tracker->rmp_cpuQueue.rmq_prev = &pc->pc_rm_queue; next = pc->pc_rm_queue.rmq_next; tracker->rmp_cpuQueue.rmq_next = next; /* rmq_prev is not used during froward traversal. */ next->rmq_prev = &tracker->rmp_cpuQueue; /* Update pointer to first element. */ pc->pc_rm_queue.rmq_next = &tracker->rmp_cpuQueue; } static void inline rm_tracker_remove(struct pcpu *pc, struct rm_priotracker *tracker) { struct rm_queue *next, *prev; next = tracker->rmp_cpuQueue.rmq_next; prev = tracker->rmp_cpuQueue.rmq_prev; /* Not used during forward traversal. */ next->rmq_prev = prev; /* Remove from list. */ prev->rmq_next = next; } static void rm_cleanIPI(void *arg) { struct pcpu *pc; struct rmlock *rm = arg; struct rm_priotracker *tracker; struct rm_queue *queue; pc = pcpu_find(curcpu); for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue; queue = queue->rmq_next) { tracker = (struct rm_priotracker *)queue; if (tracker->rmp_rmlock == rm && tracker->rmp_flags == 0) { tracker->rmp_flags = RMPF_ONQUEUE; mtx_lock_spin(&rm_spinlock); LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker, rmp_qentry); mtx_unlock_spin(&rm_spinlock); } } } CTASSERT((RM_SLEEPABLE & LO_CLASSFLAGS) == RM_SLEEPABLE); void rm_init_flags(struct rmlock *rm, const char *name, int opts) { int liflags; liflags = 0; if (!(opts & RM_NOWITNESS)) liflags |= LO_WITNESS; if (opts & RM_RECURSE) liflags |= LO_RECURSABLE; rm->rm_writecpus = all_cpus; LIST_INIT(&rm->rm_activeReaders); if (opts & RM_SLEEPABLE) { liflags |= RM_SLEEPABLE; sx_init_flags(&rm->rm_lock_sx, "rmlock_sx", SX_RECURSE); } else mtx_init(&rm->rm_lock_mtx, name, "rmlock_mtx", MTX_NOWITNESS); lock_init(&rm->lock_object, &lock_class_rm, name, NULL, liflags); } void rm_init(struct rmlock *rm, const char *name) { rm_init_flags(rm, name, 0); } void rm_destroy(struct rmlock *rm) { if (rm->lock_object.lo_flags & RM_SLEEPABLE) sx_destroy(&rm->rm_lock_sx); else mtx_destroy(&rm->rm_lock_mtx); lock_destroy(&rm->lock_object); } int rm_wowned(struct rmlock *rm) { if (rm->lock_object.lo_flags & RM_SLEEPABLE) return (sx_xlocked(&rm->rm_lock_sx)); else return (mtx_owned(&rm->rm_lock_mtx)); } void rm_sysinit(void *arg) { struct rm_args *args = arg; rm_init(args->ra_rm, args->ra_desc); } void rm_sysinit_flags(void *arg) { struct rm_args_flags *args = arg; rm_init_flags(args->ra_rm, args->ra_desc, args->ra_opts); } static int _rm_rlock_hard(struct rmlock *rm, struct rm_priotracker *tracker, int trylock) { struct pcpu *pc; struct rm_queue *queue; struct rm_priotracker *atracker; critical_enter(); pc = pcpu_find(curcpu); /* Check if we just need to do a proper critical_exit. */ if (!CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus)) { critical_exit(); return (1); } /* Remove our tracker from the per-cpu list. */ rm_tracker_remove(pc, tracker); /* Check to see if the IPI granted us the lock after all. */ if (tracker->rmp_flags) { /* Just add back tracker - we hold the lock. */ rm_tracker_add(pc, tracker); critical_exit(); return (1); } /* * We allow readers to aquire a lock even if a writer is blocked if * the lock is recursive and the reader already holds the lock. */ if ((rm->lock_object.lo_flags & LO_RECURSABLE) != 0) { /* * Just grant the lock if this thread already has a tracker * for this lock on the per-cpu queue. */ for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue; queue = queue->rmq_next) { atracker = (struct rm_priotracker *)queue; if ((atracker->rmp_rmlock == rm) && (atracker->rmp_thread == tracker->rmp_thread)) { mtx_lock_spin(&rm_spinlock); LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker, rmp_qentry); tracker->rmp_flags = RMPF_ONQUEUE; mtx_unlock_spin(&rm_spinlock); rm_tracker_add(pc, tracker); critical_exit(); return (1); } } } sched_unpin(); critical_exit(); if (trylock) { if (rm->lock_object.lo_flags & RM_SLEEPABLE) { if (!sx_try_xlock(&rm->rm_lock_sx)) return (0); } else { if (!mtx_trylock(&rm->rm_lock_mtx)) return (0); } } else { if (rm->lock_object.lo_flags & RM_SLEEPABLE) sx_xlock(&rm->rm_lock_sx); else mtx_lock(&rm->rm_lock_mtx); } critical_enter(); pc = pcpu_find(curcpu); CPU_CLR(pc->pc_cpuid, &rm->rm_writecpus); rm_tracker_add(pc, tracker); sched_pin(); critical_exit(); if (rm->lock_object.lo_flags & RM_SLEEPABLE) sx_xunlock(&rm->rm_lock_sx); else mtx_unlock(&rm->rm_lock_mtx); return (1); } int _rm_rlock(struct rmlock *rm, struct rm_priotracker *tracker, int trylock) { struct thread *td = curthread; struct pcpu *pc; if (SCHEDULER_STOPPED()) return (1); tracker->rmp_flags = 0; tracker->rmp_thread = td; tracker->rmp_rmlock = rm; td->td_critnest++; /* critical_enter(); */ compiler_memory_barrier(); pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */ rm_tracker_add(pc, tracker); sched_pin(); compiler_memory_barrier(); td->td_critnest--; /* * Fast path to combine two common conditions into a single * conditional jump. */ if (0 == (td->td_owepreempt | CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus))) return (1); /* We do not have a read token and need to acquire one. */ return _rm_rlock_hard(rm, tracker, trylock); } static void _rm_unlock_hard(struct thread *td,struct rm_priotracker *tracker) { if (td->td_owepreempt) { td->td_critnest++; critical_exit(); } if (!tracker->rmp_flags) return; mtx_lock_spin(&rm_spinlock); LIST_REMOVE(tracker, rmp_qentry); if (tracker->rmp_flags & RMPF_SIGNAL) { struct rmlock *rm; struct turnstile *ts; rm = tracker->rmp_rmlock; turnstile_chain_lock(&rm->lock_object); mtx_unlock_spin(&rm_spinlock); ts = turnstile_lookup(&rm->lock_object); turnstile_signal(ts, TS_EXCLUSIVE_QUEUE); turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); turnstile_chain_unlock(&rm->lock_object); } else mtx_unlock_spin(&rm_spinlock); } void _rm_runlock(struct rmlock *rm, struct rm_priotracker *tracker) { struct pcpu *pc; struct thread *td = tracker->rmp_thread; if (SCHEDULER_STOPPED()) return; td->td_critnest++; /* critical_enter(); */ pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */ rm_tracker_remove(pc, tracker); td->td_critnest--; sched_unpin(); if (0 == (td->td_owepreempt | tracker->rmp_flags)) return; _rm_unlock_hard(td, tracker); } void _rm_wlock(struct rmlock *rm) { struct rm_priotracker *prio; struct turnstile *ts; cpuset_t readcpus; if (SCHEDULER_STOPPED()) return; if (rm->lock_object.lo_flags & RM_SLEEPABLE) sx_xlock(&rm->rm_lock_sx); else mtx_lock(&rm->rm_lock_mtx); if (CPU_CMP(&rm->rm_writecpus, &all_cpus)) { /* Get all read tokens back */ readcpus = all_cpus; CPU_NAND(&readcpus, &rm->rm_writecpus); rm->rm_writecpus = all_cpus; /* * Assumes rm->rm_writecpus update is visible on other CPUs * before rm_cleanIPI is called. */ #ifdef SMP smp_rendezvous_cpus(readcpus, smp_no_rendevous_barrier, rm_cleanIPI, smp_no_rendevous_barrier, rm); #else rm_cleanIPI(rm); #endif mtx_lock_spin(&rm_spinlock); while ((prio = LIST_FIRST(&rm->rm_activeReaders)) != NULL) { ts = turnstile_trywait(&rm->lock_object); prio->rmp_flags = RMPF_ONQUEUE | RMPF_SIGNAL; mtx_unlock_spin(&rm_spinlock); turnstile_wait(ts, prio->rmp_thread, TS_EXCLUSIVE_QUEUE); mtx_lock_spin(&rm_spinlock); } mtx_unlock_spin(&rm_spinlock); } } void _rm_wunlock(struct rmlock *rm) { if (rm->lock_object.lo_flags & RM_SLEEPABLE) sx_xunlock(&rm->rm_lock_sx); else mtx_unlock(&rm->rm_lock_mtx); } #ifdef LOCK_DEBUG void _rm_wlock_debug(struct rmlock *rm, const char *file, int line) { if (SCHEDULER_STOPPED()) return; WITNESS_CHECKORDER(&rm->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); _rm_wlock(rm); LOCK_LOG_LOCK("RMWLOCK", &rm->lock_object, 0, 0, file, line); if (rm->lock_object.lo_flags & RM_SLEEPABLE) WITNESS_LOCK(&rm->rm_lock_sx.lock_object, LOP_EXCLUSIVE, file, line); else WITNESS_LOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line); curthread->td_locks++; } void _rm_wunlock_debug(struct rmlock *rm, const char *file, int line) { if (SCHEDULER_STOPPED()) return; curthread->td_locks--; if (rm->lock_object.lo_flags & RM_SLEEPABLE) WITNESS_UNLOCK(&rm->rm_lock_sx.lock_object, LOP_EXCLUSIVE, file, line); else WITNESS_UNLOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line); LOCK_LOG_LOCK("RMWUNLOCK", &rm->lock_object, 0, 0, file, line); _rm_wunlock(rm); } int _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker, int trylock, const char *file, int line) { if (SCHEDULER_STOPPED()) return (1); if (!trylock && (rm->lock_object.lo_flags & RM_SLEEPABLE)) WITNESS_CHECKORDER(&rm->rm_lock_sx.lock_object, LOP_NEWORDER, file, line, NULL); WITNESS_CHECKORDER(&rm->lock_object, LOP_NEWORDER, file, line, NULL); if (_rm_rlock(rm, tracker, trylock)) { LOCK_LOG_LOCK("RMRLOCK", &rm->lock_object, 0, 0, file, line); WITNESS_LOCK(&rm->lock_object, 0, file, line); curthread->td_locks++; return (1); } return (0); } void _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker, const char *file, int line) { if (SCHEDULER_STOPPED()) return; curthread->td_locks--; WITNESS_UNLOCK(&rm->lock_object, 0, file, line); LOCK_LOG_LOCK("RMRUNLOCK", &rm->lock_object, 0, 0, file, line); _rm_runlock(rm, tracker); } #else /* * Just strip out file and line arguments if no lock debugging is enabled in * the kernel - we are called from a kernel module. */ void _rm_wlock_debug(struct rmlock *rm, const char *file, int line) { _rm_wlock(rm); } void _rm_wunlock_debug(struct rmlock *rm, const char *file, int line) { _rm_wunlock(rm); } int _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker, int trylock, const char *file, int line) { return _rm_rlock(rm, tracker, trylock); } void _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker, const char *file, int line) { _rm_runlock(rm, tracker); } #endif