Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uath/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uath/@/kern/sys_pipe.c |
/*- * Copyright (c) 1996 John S. Dyson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Absolutely no warranty of function or purpose is made by the author * John S. Dyson. * 4. Modifications may be freely made to this file if the above conditions * are met. */ /* * This file contains a high-performance replacement for the socket-based * pipes scheme originally used in FreeBSD/4.4Lite. It does not support * all features of sockets, but does do everything that pipes normally * do. */ /* * This code has two modes of operation, a small write mode and a large * write mode. The small write mode acts like conventional pipes with * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT * and PIPE_SIZE in size, the sending process pins the underlying pages in * memory, and the receiving process copies directly from these pinned pages * in the sending process. * * If the sending process receives a signal, it is possible that it will * go away, and certainly its address space can change, because control * is returned back to the user-mode side. In that case, the pipe code * arranges to copy the buffer supplied by the user process, to a pageable * kernel buffer, and the receiving process will grab the data from the * pageable kernel buffer. Since signals don't happen all that often, * the copy operation is normally eliminated. * * The constant PIPE_MINDIRECT is chosen to make sure that buffering will * happen for small transfers so that the system will not spend all of * its time context switching. * * In order to limit the resource use of pipes, two sysctls exist: * * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable * address space available to us in pipe_map. This value is normally * autotuned, but may also be loader tuned. * * kern.ipc.pipekva - This read-only sysctl tracks the current amount of * memory in use by pipes. * * Based on how large pipekva is relative to maxpipekva, the following * will happen: * * 0% - 50%: * New pipes are given 16K of memory backing, pipes may dynamically * grow to as large as 64K where needed. * 50% - 75%: * New pipes are given 4K (or PAGE_SIZE) of memory backing, * existing pipes may NOT grow. * 75% - 100%: * New pipes are given 4K (or PAGE_SIZE) of memory backing, * existing pipes will be shrunk down to 4K whenever possible. * * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE * resize which MUST occur for reverse-direction pipes when they are * first used. * * Additional information about the current state of pipes may be obtained * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail, * and kern.ipc.piperesizefail. * * Locking rules: There are two locks present here: A mutex, used via * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via * the flag, as mutexes can not persist over uiomove. The mutex * exists only to guard access to the flag, and is not in itself a * locking mechanism. Also note that there is only a single mutex for * both directions of a pipe. * * As pipelock() may have to sleep before it can acquire the flag, it * is important to reread all data after a call to pipelock(); everything * in the structure may have changed. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/sys_pipe.c 233353 2012-03-23 11:26:54Z kib $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/conf.h> #include <sys/fcntl.h> #include <sys/file.h> #include <sys/filedesc.h> #include <sys/filio.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/ttycom.h> #include <sys/stat.h> #include <sys/malloc.h> #include <sys/poll.h> #include <sys/selinfo.h> #include <sys/signalvar.h> #include <sys/syscallsubr.h> #include <sys/sysctl.h> #include <sys/sysproto.h> #include <sys/pipe.h> #include <sys/proc.h> #include <sys/vnode.h> #include <sys/uio.h> #include <sys/event.h> #include <security/mac/mac_framework.h> #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/vm_object.h> #include <vm/vm_kern.h> #include <vm/vm_extern.h> #include <vm/pmap.h> #include <vm/vm_map.h> #include <vm/vm_page.h> #include <vm/uma.h> /* * Use this define if you want to disable *fancy* VM things. Expect an * approx 30% decrease in transfer rate. This could be useful for * NetBSD or OpenBSD. */ /* #define PIPE_NODIRECT */ /* * interfaces to the outside world */ static fo_rdwr_t pipe_read; static fo_rdwr_t pipe_write; static fo_truncate_t pipe_truncate; static fo_ioctl_t pipe_ioctl; static fo_poll_t pipe_poll; static fo_kqfilter_t pipe_kqfilter; static fo_stat_t pipe_stat; static fo_close_t pipe_close; static struct fileops pipeops = { .fo_read = pipe_read, .fo_write = pipe_write, .fo_truncate = pipe_truncate, .fo_ioctl = pipe_ioctl, .fo_poll = pipe_poll, .fo_kqfilter = pipe_kqfilter, .fo_stat = pipe_stat, .fo_close = pipe_close, .fo_chmod = invfo_chmod, .fo_chown = invfo_chown, .fo_flags = DFLAG_PASSABLE }; static void filt_pipedetach(struct knote *kn); static int filt_piperead(struct knote *kn, long hint); static int filt_pipewrite(struct knote *kn, long hint); static struct filterops pipe_rfiltops = { .f_isfd = 1, .f_detach = filt_pipedetach, .f_event = filt_piperead }; static struct filterops pipe_wfiltops = { .f_isfd = 1, .f_detach = filt_pipedetach, .f_event = filt_pipewrite }; /* * Default pipe buffer size(s), this can be kind-of large now because pipe * space is pageable. The pipe code will try to maintain locality of * reference for performance reasons, so small amounts of outstanding I/O * will not wipe the cache. */ #define MINPIPESIZE (PIPE_SIZE/3) #define MAXPIPESIZE (2*PIPE_SIZE/3) static long amountpipekva; static int pipefragretry; static int pipeallocfail; static int piperesizefail; static int piperesizeallowed = 1; SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN, &maxpipekva, 0, "Pipe KVA limit"); SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD, &amountpipekva, 0, "Pipe KVA usage"); SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, &pipefragretry, 0, "Pipe allocation retries due to fragmentation"); SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD, &pipeallocfail, 0, "Pipe allocation failures"); SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD, &piperesizefail, 0, "Pipe resize failures"); SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW, &piperesizeallowed, 0, "Pipe resizing allowed"); static void pipeinit(void *dummy __unused); static void pipeclose(struct pipe *cpipe); static void pipe_free_kmem(struct pipe *cpipe); static int pipe_create(struct pipe *pipe, int backing); static __inline int pipelock(struct pipe *cpipe, int catch); static __inline void pipeunlock(struct pipe *cpipe); static __inline void pipeselwakeup(struct pipe *cpipe); #ifndef PIPE_NODIRECT static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio); static void pipe_destroy_write_buffer(struct pipe *wpipe); static int pipe_direct_write(struct pipe *wpipe, struct uio *uio); static void pipe_clone_write_buffer(struct pipe *wpipe); #endif static int pipespace(struct pipe *cpipe, int size); static int pipespace_new(struct pipe *cpipe, int size); static int pipe_zone_ctor(void *mem, int size, void *arg, int flags); static int pipe_zone_init(void *mem, int size, int flags); static void pipe_zone_fini(void *mem, int size); static uma_zone_t pipe_zone; static struct unrhdr *pipeino_unr; static dev_t pipedev_ino; SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); static void pipeinit(void *dummy __unused) { pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair), pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini, UMA_ALIGN_PTR, 0); KASSERT(pipe_zone != NULL, ("pipe_zone not initialized")); pipeino_unr = new_unrhdr(1, INT32_MAX, NULL); KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized")); pipedev_ino = devfs_alloc_cdp_inode(); KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized")); } static int pipe_zone_ctor(void *mem, int size, void *arg, int flags) { struct pipepair *pp; struct pipe *rpipe, *wpipe; KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size")); pp = (struct pipepair *)mem; /* * We zero both pipe endpoints to make sure all the kmem pointers * are NULL, flag fields are zero'd, etc. We timestamp both * endpoints with the same time. */ rpipe = &pp->pp_rpipe; bzero(rpipe, sizeof(*rpipe)); vfs_timestamp(&rpipe->pipe_ctime); rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime; wpipe = &pp->pp_wpipe; bzero(wpipe, sizeof(*wpipe)); wpipe->pipe_ctime = rpipe->pipe_ctime; wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime; rpipe->pipe_peer = wpipe; rpipe->pipe_pair = pp; wpipe->pipe_peer = rpipe; wpipe->pipe_pair = pp; /* * Mark both endpoints as present; they will later get free'd * one at a time. When both are free'd, then the whole pair * is released. */ rpipe->pipe_present = PIPE_ACTIVE; wpipe->pipe_present = PIPE_ACTIVE; /* * Eventually, the MAC Framework may initialize the label * in ctor or init, but for now we do it elswhere to avoid * blocking in ctor or init. */ pp->pp_label = NULL; return (0); } static int pipe_zone_init(void *mem, int size, int flags) { struct pipepair *pp; KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size")); pp = (struct pipepair *)mem; mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE); return (0); } static void pipe_zone_fini(void *mem, int size) { struct pipepair *pp; KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size")); pp = (struct pipepair *)mem; mtx_destroy(&pp->pp_mtx); } /* * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let * the zone pick up the pieces via pipeclose(). */ int kern_pipe(struct thread *td, int fildes[2]) { struct filedesc *fdp = td->td_proc->p_fd; struct file *rf, *wf; struct pipepair *pp; struct pipe *rpipe, *wpipe; int fd, error; pp = uma_zalloc(pipe_zone, M_WAITOK); #ifdef MAC /* * The MAC label is shared between the connected endpoints. As a * result mac_pipe_init() and mac_pipe_create() are called once * for the pair, and not on the endpoints. */ mac_pipe_init(pp); mac_pipe_create(td->td_ucred, pp); #endif rpipe = &pp->pp_rpipe; wpipe = &pp->pp_wpipe; knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe)); knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe)); /* Only the forward direction pipe is backed by default */ if ((error = pipe_create(rpipe, 1)) != 0 || (error = pipe_create(wpipe, 0)) != 0) { pipeclose(rpipe); pipeclose(wpipe); return (error); } rpipe->pipe_state |= PIPE_DIRECTOK; wpipe->pipe_state |= PIPE_DIRECTOK; error = falloc(td, &rf, &fd, 0); if (error) { pipeclose(rpipe); pipeclose(wpipe); return (error); } /* An extra reference on `rf' has been held for us by falloc(). */ fildes[0] = fd; /* * Warning: once we've gotten past allocation of the fd for the * read-side, we can only drop the read side via fdrop() in order * to avoid races against processes which manage to dup() the read * side while we are blocked trying to allocate the write side. */ finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops); error = falloc(td, &wf, &fd, 0); if (error) { fdclose(fdp, rf, fildes[0], td); fdrop(rf, td); /* rpipe has been closed by fdrop(). */ pipeclose(wpipe); return (error); } /* An extra reference on `wf' has been held for us by falloc(). */ finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops); fdrop(wf, td); fildes[1] = fd; fdrop(rf, td); return (0); } /* ARGSUSED */ int sys_pipe(struct thread *td, struct pipe_args *uap) { int error; int fildes[2]; error = kern_pipe(td, fildes); if (error) return (error); td->td_retval[0] = fildes[0]; td->td_retval[1] = fildes[1]; return (0); } /* * Allocate kva for pipe circular buffer, the space is pageable * This routine will 'realloc' the size of a pipe safely, if it fails * it will retain the old buffer. * If it fails it will return ENOMEM. */ static int pipespace_new(cpipe, size) struct pipe *cpipe; int size; { caddr_t buffer; int error, cnt, firstseg; static int curfail = 0; static struct timeval lastfail; KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked")); KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW), ("pipespace: resize of direct writes not allowed")); retry: cnt = cpipe->pipe_buffer.cnt; if (cnt > size) size = cnt; size = round_page(size); buffer = (caddr_t) vm_map_min(pipe_map); error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *) &buffer, size, 1, VM_PROT_ALL, VM_PROT_ALL, 0); if (error != KERN_SUCCESS) { if ((cpipe->pipe_buffer.buffer == NULL) && (size > SMALL_PIPE_SIZE)) { size = SMALL_PIPE_SIZE; pipefragretry++; goto retry; } if (cpipe->pipe_buffer.buffer == NULL) { pipeallocfail++; if (ppsratecheck(&lastfail, &curfail, 1)) printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n"); } else { piperesizefail++; } return (ENOMEM); } /* copy data, then free old resources if we're resizing */ if (cnt > 0) { if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) { firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out; bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], buffer, firstseg); if ((cnt - firstseg) > 0) bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg], cpipe->pipe_buffer.in); } else { bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out], buffer, cnt); } } pipe_free_kmem(cpipe); cpipe->pipe_buffer.buffer = buffer; cpipe->pipe_buffer.size = size; cpipe->pipe_buffer.in = cnt; cpipe->pipe_buffer.out = 0; cpipe->pipe_buffer.cnt = cnt; atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size); return (0); } /* * Wrapper for pipespace_new() that performs locking assertions. */ static int pipespace(cpipe, size) struct pipe *cpipe; int size; { KASSERT(cpipe->pipe_state & PIPE_LOCKFL, ("Unlocked pipe passed to pipespace")); return (pipespace_new(cpipe, size)); } /* * lock a pipe for I/O, blocking other access */ static __inline int pipelock(cpipe, catch) struct pipe *cpipe; int catch; { int error; PIPE_LOCK_ASSERT(cpipe, MA_OWNED); while (cpipe->pipe_state & PIPE_LOCKFL) { cpipe->pipe_state |= PIPE_LWANT; error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO, "pipelk", 0); if (error != 0) return (error); } cpipe->pipe_state |= PIPE_LOCKFL; return (0); } /* * unlock a pipe I/O lock */ static __inline void pipeunlock(cpipe) struct pipe *cpipe; { PIPE_LOCK_ASSERT(cpipe, MA_OWNED); KASSERT(cpipe->pipe_state & PIPE_LOCKFL, ("Unlocked pipe passed to pipeunlock")); cpipe->pipe_state &= ~PIPE_LOCKFL; if (cpipe->pipe_state & PIPE_LWANT) { cpipe->pipe_state &= ~PIPE_LWANT; wakeup(cpipe); } } static __inline void pipeselwakeup(cpipe) struct pipe *cpipe; { PIPE_LOCK_ASSERT(cpipe, MA_OWNED); if (cpipe->pipe_state & PIPE_SEL) { selwakeuppri(&cpipe->pipe_sel, PSOCK); if (!SEL_WAITING(&cpipe->pipe_sel)) cpipe->pipe_state &= ~PIPE_SEL; } if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) pgsigio(&cpipe->pipe_sigio, SIGIO, 0); KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0); } /* * Initialize and allocate VM and memory for pipe. The structure * will start out zero'd from the ctor, so we just manage the kmem. */ static int pipe_create(pipe, backing) struct pipe *pipe; int backing; { int error; if (backing) { if (amountpipekva > maxpipekva / 2) error = pipespace_new(pipe, SMALL_PIPE_SIZE); else error = pipespace_new(pipe, PIPE_SIZE); } else { /* If we're not backing this pipe, no need to do anything. */ error = 0; } pipe->pipe_ino = -1; return (error); } /* ARGSUSED */ static int pipe_read(fp, uio, active_cred, flags, td) struct file *fp; struct uio *uio; struct ucred *active_cred; struct thread *td; int flags; { struct pipe *rpipe = fp->f_data; int error; int nread = 0; int size; PIPE_LOCK(rpipe); ++rpipe->pipe_busy; error = pipelock(rpipe, 1); if (error) goto unlocked_error; #ifdef MAC error = mac_pipe_check_read(active_cred, rpipe->pipe_pair); if (error) goto locked_error; #endif if (amountpipekva > (3 * maxpipekva) / 4) { if (!(rpipe->pipe_state & PIPE_DIRECTW) && (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && (piperesizeallowed == 1)) { PIPE_UNLOCK(rpipe); pipespace(rpipe, SMALL_PIPE_SIZE); PIPE_LOCK(rpipe); } } while (uio->uio_resid) { /* * normal pipe buffer receive */ if (rpipe->pipe_buffer.cnt > 0) { size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; if (size > rpipe->pipe_buffer.cnt) size = rpipe->pipe_buffer.cnt; if (size > uio->uio_resid) size = uio->uio_resid; PIPE_UNLOCK(rpipe); error = uiomove( &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], size, uio); PIPE_LOCK(rpipe); if (error) break; rpipe->pipe_buffer.out += size; if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) rpipe->pipe_buffer.out = 0; rpipe->pipe_buffer.cnt -= size; /* * If there is no more to read in the pipe, reset * its pointers to the beginning. This improves * cache hit stats. */ if (rpipe->pipe_buffer.cnt == 0) { rpipe->pipe_buffer.in = 0; rpipe->pipe_buffer.out = 0; } nread += size; #ifndef PIPE_NODIRECT /* * Direct copy, bypassing a kernel buffer. */ } else if ((size = rpipe->pipe_map.cnt) && (rpipe->pipe_state & PIPE_DIRECTW)) { if (size > uio->uio_resid) size = (u_int) uio->uio_resid; PIPE_UNLOCK(rpipe); error = uiomove_fromphys(rpipe->pipe_map.ms, rpipe->pipe_map.pos, size, uio); PIPE_LOCK(rpipe); if (error) break; nread += size; rpipe->pipe_map.pos += size; rpipe->pipe_map.cnt -= size; if (rpipe->pipe_map.cnt == 0) { rpipe->pipe_state &= ~PIPE_DIRECTW; wakeup(rpipe); } #endif } else { /* * detect EOF condition * read returns 0 on EOF, no need to set error */ if (rpipe->pipe_state & PIPE_EOF) break; /* * If the "write-side" has been blocked, wake it up now. */ if (rpipe->pipe_state & PIPE_WANTW) { rpipe->pipe_state &= ~PIPE_WANTW; wakeup(rpipe); } /* * Break if some data was read. */ if (nread > 0) break; /* * Unlock the pipe buffer for our remaining processing. * We will either break out with an error or we will * sleep and relock to loop. */ pipeunlock(rpipe); /* * Handle non-blocking mode operation or * wait for more data. */ if (fp->f_flag & FNONBLOCK) { error = EAGAIN; } else { rpipe->pipe_state |= PIPE_WANTR; if ((error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd", 0)) == 0) error = pipelock(rpipe, 1); } if (error) goto unlocked_error; } } #ifdef MAC locked_error: #endif pipeunlock(rpipe); /* XXX: should probably do this before getting any locks. */ if (error == 0) vfs_timestamp(&rpipe->pipe_atime); unlocked_error: --rpipe->pipe_busy; /* * PIPE_WANT processing only makes sense if pipe_busy is 0. */ if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); wakeup(rpipe); } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) { /* * Handle write blocking hysteresis. */ if (rpipe->pipe_state & PIPE_WANTW) { rpipe->pipe_state &= ~PIPE_WANTW; wakeup(rpipe); } } if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF) pipeselwakeup(rpipe); PIPE_UNLOCK(rpipe); return (error); } #ifndef PIPE_NODIRECT /* * Map the sending processes' buffer into kernel space and wire it. * This is similar to a physical write operation. */ static int pipe_build_write_buffer(wpipe, uio) struct pipe *wpipe; struct uio *uio; { u_int size; int i; PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED); KASSERT(wpipe->pipe_state & PIPE_DIRECTW, ("Clone attempt on non-direct write pipe!")); if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size) size = wpipe->pipe_buffer.size; else size = uio->uio_iov->iov_len; if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ, wpipe->pipe_map.ms, PIPENPAGES)) < 0) return (EFAULT); /* * set up the control block */ wpipe->pipe_map.npages = i; wpipe->pipe_map.pos = ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK; wpipe->pipe_map.cnt = size; /* * and update the uio data */ uio->uio_iov->iov_len -= size; uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size; if (uio->uio_iov->iov_len == 0) uio->uio_iov++; uio->uio_resid -= size; uio->uio_offset += size; return (0); } /* * unmap and unwire the process buffer */ static void pipe_destroy_write_buffer(wpipe) struct pipe *wpipe; { PIPE_LOCK_ASSERT(wpipe, MA_OWNED); vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages); wpipe->pipe_map.npages = 0; } /* * In the case of a signal, the writing process might go away. This * code copies the data into the circular buffer so that the source * pages can be freed without loss of data. */ static void pipe_clone_write_buffer(wpipe) struct pipe *wpipe; { struct uio uio; struct iovec iov; int size; int pos; PIPE_LOCK_ASSERT(wpipe, MA_OWNED); size = wpipe->pipe_map.cnt; pos = wpipe->pipe_map.pos; wpipe->pipe_buffer.in = size; wpipe->pipe_buffer.out = 0; wpipe->pipe_buffer.cnt = size; wpipe->pipe_state &= ~PIPE_DIRECTW; PIPE_UNLOCK(wpipe); iov.iov_base = wpipe->pipe_buffer.buffer; iov.iov_len = size; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = size; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = curthread; uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio); PIPE_LOCK(wpipe); pipe_destroy_write_buffer(wpipe); } /* * This implements the pipe buffer write mechanism. Note that only * a direct write OR a normal pipe write can be pending at any given time. * If there are any characters in the pipe buffer, the direct write will * be deferred until the receiving process grabs all of the bytes from * the pipe buffer. Then the direct mapping write is set-up. */ static int pipe_direct_write(wpipe, uio) struct pipe *wpipe; struct uio *uio; { int error; retry: PIPE_LOCK_ASSERT(wpipe, MA_OWNED); error = pipelock(wpipe, 1); if (wpipe->pipe_state & PIPE_EOF) error = EPIPE; if (error) { pipeunlock(wpipe); goto error1; } while (wpipe->pipe_state & PIPE_DIRECTW) { if (wpipe->pipe_state & PIPE_WANTR) { wpipe->pipe_state &= ~PIPE_WANTR; wakeup(wpipe); } pipeselwakeup(wpipe); wpipe->pipe_state |= PIPE_WANTW; pipeunlock(wpipe); error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipdww", 0); if (error) goto error1; else goto retry; } wpipe->pipe_map.cnt = 0; /* transfer not ready yet */ if (wpipe->pipe_buffer.cnt > 0) { if (wpipe->pipe_state & PIPE_WANTR) { wpipe->pipe_state &= ~PIPE_WANTR; wakeup(wpipe); } pipeselwakeup(wpipe); wpipe->pipe_state |= PIPE_WANTW; pipeunlock(wpipe); error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipdwc", 0); if (error) goto error1; else goto retry; } wpipe->pipe_state |= PIPE_DIRECTW; PIPE_UNLOCK(wpipe); error = pipe_build_write_buffer(wpipe, uio); PIPE_LOCK(wpipe); if (error) { wpipe->pipe_state &= ~PIPE_DIRECTW; pipeunlock(wpipe); goto error1; } error = 0; while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) { if (wpipe->pipe_state & PIPE_EOF) { pipe_destroy_write_buffer(wpipe); pipeselwakeup(wpipe); pipeunlock(wpipe); error = EPIPE; goto error1; } if (wpipe->pipe_state & PIPE_WANTR) { wpipe->pipe_state &= ~PIPE_WANTR; wakeup(wpipe); } pipeselwakeup(wpipe); pipeunlock(wpipe); error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipdwt", 0); pipelock(wpipe, 0); } if (wpipe->pipe_state & PIPE_EOF) error = EPIPE; if (wpipe->pipe_state & PIPE_DIRECTW) { /* * this bit of trickery substitutes a kernel buffer for * the process that might be going away. */ pipe_clone_write_buffer(wpipe); } else { pipe_destroy_write_buffer(wpipe); } pipeunlock(wpipe); return (error); error1: wakeup(wpipe); return (error); } #endif static int pipe_write(fp, uio, active_cred, flags, td) struct file *fp; struct uio *uio; struct ucred *active_cred; struct thread *td; int flags; { int error = 0; int desiredsize; ssize_t orig_resid; struct pipe *wpipe, *rpipe; rpipe = fp->f_data; wpipe = rpipe->pipe_peer; PIPE_LOCK(rpipe); error = pipelock(wpipe, 1); if (error) { PIPE_UNLOCK(rpipe); return (error); } /* * detect loss of pipe read side, issue SIGPIPE if lost. */ if (wpipe->pipe_present != PIPE_ACTIVE || (wpipe->pipe_state & PIPE_EOF)) { pipeunlock(wpipe); PIPE_UNLOCK(rpipe); return (EPIPE); } #ifdef MAC error = mac_pipe_check_write(active_cred, wpipe->pipe_pair); if (error) { pipeunlock(wpipe); PIPE_UNLOCK(rpipe); return (error); } #endif ++wpipe->pipe_busy; /* Choose a larger size if it's advantageous */ desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size); while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) { if (piperesizeallowed != 1) break; if (amountpipekva > maxpipekva / 2) break; if (desiredsize == BIG_PIPE_SIZE) break; desiredsize = desiredsize * 2; } /* Choose a smaller size if we're in a OOM situation */ if ((amountpipekva > (3 * maxpipekva) / 4) && (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) && (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) && (piperesizeallowed == 1)) desiredsize = SMALL_PIPE_SIZE; /* Resize if the above determined that a new size was necessary */ if ((desiredsize != wpipe->pipe_buffer.size) && ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) { PIPE_UNLOCK(wpipe); pipespace(wpipe, desiredsize); PIPE_LOCK(wpipe); } if (wpipe->pipe_buffer.size == 0) { /* * This can only happen for reverse direction use of pipes * in a complete OOM situation. */ error = ENOMEM; --wpipe->pipe_busy; pipeunlock(wpipe); PIPE_UNLOCK(wpipe); return (error); } pipeunlock(wpipe); orig_resid = uio->uio_resid; while (uio->uio_resid) { int space; pipelock(wpipe, 0); if (wpipe->pipe_state & PIPE_EOF) { pipeunlock(wpipe); error = EPIPE; break; } #ifndef PIPE_NODIRECT /* * If the transfer is large, we can gain performance if * we do process-to-process copies directly. * If the write is non-blocking, we don't use the * direct write mechanism. * * The direct write mechanism will detect the reader going * away on us. */ if (uio->uio_segflg == UIO_USERSPACE && uio->uio_iov->iov_len >= PIPE_MINDIRECT && wpipe->pipe_buffer.size >= PIPE_MINDIRECT && (fp->f_flag & FNONBLOCK) == 0) { pipeunlock(wpipe); error = pipe_direct_write(wpipe, uio); if (error) break; continue; } #endif /* * Pipe buffered writes cannot be coincidental with * direct writes. We wait until the currently executing * direct write is completed before we start filling the * pipe buffer. We break out if a signal occurs or the * reader goes away. */ if (wpipe->pipe_state & PIPE_DIRECTW) { if (wpipe->pipe_state & PIPE_WANTR) { wpipe->pipe_state &= ~PIPE_WANTR; wakeup(wpipe); } pipeselwakeup(wpipe); wpipe->pipe_state |= PIPE_WANTW; pipeunlock(wpipe); error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "pipbww", 0); if (error) break; else continue; } space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; /* Writes of size <= PIPE_BUF must be atomic. */ if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF)) space = 0; if (space > 0) { int size; /* Transfer size */ int segsize; /* first segment to transfer */ /* * Transfer size is minimum of uio transfer * and free space in pipe buffer. */ if (space > uio->uio_resid) size = uio->uio_resid; else size = space; /* * First segment to transfer is minimum of * transfer size and contiguous space in * pipe buffer. If first segment to transfer * is less than the transfer size, we've got * a wraparound in the buffer. */ segsize = wpipe->pipe_buffer.size - wpipe->pipe_buffer.in; if (segsize > size) segsize = size; /* Transfer first segment */ PIPE_UNLOCK(rpipe); error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], segsize, uio); PIPE_LOCK(rpipe); if (error == 0 && segsize < size) { KASSERT(wpipe->pipe_buffer.in + segsize == wpipe->pipe_buffer.size, ("Pipe buffer wraparound disappeared")); /* * Transfer remaining part now, to * support atomic writes. Wraparound * happened. */ PIPE_UNLOCK(rpipe); error = uiomove( &wpipe->pipe_buffer.buffer[0], size - segsize, uio); PIPE_LOCK(rpipe); } if (error == 0) { wpipe->pipe_buffer.in += size; if (wpipe->pipe_buffer.in >= wpipe->pipe_buffer.size) { KASSERT(wpipe->pipe_buffer.in == size - segsize + wpipe->pipe_buffer.size, ("Expected wraparound bad")); wpipe->pipe_buffer.in = size - segsize; } wpipe->pipe_buffer.cnt += size; KASSERT(wpipe->pipe_buffer.cnt <= wpipe->pipe_buffer.size, ("Pipe buffer overflow")); } pipeunlock(wpipe); if (error != 0) break; } else { /* * If the "read-side" has been blocked, wake it up now. */ if (wpipe->pipe_state & PIPE_WANTR) { wpipe->pipe_state &= ~PIPE_WANTR; wakeup(wpipe); } /* * don't block on non-blocking I/O */ if (fp->f_flag & FNONBLOCK) { error = EAGAIN; pipeunlock(wpipe); break; } /* * We have no more space and have something to offer, * wake up select/poll. */ pipeselwakeup(wpipe); wpipe->pipe_state |= PIPE_WANTW; pipeunlock(wpipe); error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "pipewr", 0); if (error != 0) break; } } pipelock(wpipe, 0); --wpipe->pipe_busy; if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); wakeup(wpipe); } else if (wpipe->pipe_buffer.cnt > 0) { /* * If we have put any characters in the buffer, we wake up * the reader. */ if (wpipe->pipe_state & PIPE_WANTR) { wpipe->pipe_state &= ~PIPE_WANTR; wakeup(wpipe); } } /* * Don't return EPIPE if I/O was successful */ if ((wpipe->pipe_buffer.cnt == 0) && (uio->uio_resid == 0) && (error == EPIPE)) { error = 0; } if (error == 0) vfs_timestamp(&wpipe->pipe_mtime); /* * We have something to offer, * wake up select/poll. */ if (wpipe->pipe_buffer.cnt) pipeselwakeup(wpipe); pipeunlock(wpipe); PIPE_UNLOCK(rpipe); return (error); } /* ARGSUSED */ static int pipe_truncate(fp, length, active_cred, td) struct file *fp; off_t length; struct ucred *active_cred; struct thread *td; { return (EINVAL); } /* * we implement a very minimal set of ioctls for compatibility with sockets. */ static int pipe_ioctl(fp, cmd, data, active_cred, td) struct file *fp; u_long cmd; void *data; struct ucred *active_cred; struct thread *td; { struct pipe *mpipe = fp->f_data; int error; PIPE_LOCK(mpipe); #ifdef MAC error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data); if (error) { PIPE_UNLOCK(mpipe); return (error); } #endif error = 0; switch (cmd) { case FIONBIO: break; case FIOASYNC: if (*(int *)data) { mpipe->pipe_state |= PIPE_ASYNC; } else { mpipe->pipe_state &= ~PIPE_ASYNC; } break; case FIONREAD: if (mpipe->pipe_state & PIPE_DIRECTW) *(int *)data = mpipe->pipe_map.cnt; else *(int *)data = mpipe->pipe_buffer.cnt; break; case FIOSETOWN: PIPE_UNLOCK(mpipe); error = fsetown(*(int *)data, &mpipe->pipe_sigio); goto out_unlocked; case FIOGETOWN: *(int *)data = fgetown(&mpipe->pipe_sigio); break; /* This is deprecated, FIOSETOWN should be used instead. */ case TIOCSPGRP: PIPE_UNLOCK(mpipe); error = fsetown(-(*(int *)data), &mpipe->pipe_sigio); goto out_unlocked; /* This is deprecated, FIOGETOWN should be used instead. */ case TIOCGPGRP: *(int *)data = -fgetown(&mpipe->pipe_sigio); break; default: error = ENOTTY; break; } PIPE_UNLOCK(mpipe); out_unlocked: return (error); } static int pipe_poll(fp, events, active_cred, td) struct file *fp; int events; struct ucred *active_cred; struct thread *td; { struct pipe *rpipe = fp->f_data; struct pipe *wpipe; int revents = 0; #ifdef MAC int error; #endif wpipe = rpipe->pipe_peer; PIPE_LOCK(rpipe); #ifdef MAC error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair); if (error) goto locked_error; #endif if (events & (POLLIN | POLLRDNORM)) if ((rpipe->pipe_state & PIPE_DIRECTW) || (rpipe->pipe_buffer.cnt > 0)) revents |= events & (POLLIN | POLLRDNORM); if (events & (POLLOUT | POLLWRNORM)) if (wpipe->pipe_present != PIPE_ACTIVE || (wpipe->pipe_state & PIPE_EOF) || (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF || wpipe->pipe_buffer.size == 0))) revents |= events & (POLLOUT | POLLWRNORM); if ((events & POLLINIGNEOF) == 0) { if (rpipe->pipe_state & PIPE_EOF) { revents |= (events & (POLLIN | POLLRDNORM)); if (wpipe->pipe_present != PIPE_ACTIVE || (wpipe->pipe_state & PIPE_EOF)) revents |= POLLHUP; } } if (revents == 0) { if (events & (POLLIN | POLLRDNORM)) { selrecord(td, &rpipe->pipe_sel); if (SEL_WAITING(&rpipe->pipe_sel)) rpipe->pipe_state |= PIPE_SEL; } if (events & (POLLOUT | POLLWRNORM)) { selrecord(td, &wpipe->pipe_sel); if (SEL_WAITING(&wpipe->pipe_sel)) wpipe->pipe_state |= PIPE_SEL; } } #ifdef MAC locked_error: #endif PIPE_UNLOCK(rpipe); return (revents); } /* * We shouldn't need locks here as we're doing a read and this should * be a natural race. */ static int pipe_stat(fp, ub, active_cred, td) struct file *fp; struct stat *ub; struct ucred *active_cred; struct thread *td; { struct pipe *pipe; int new_unr; #ifdef MAC int error; #endif pipe = fp->f_data; PIPE_LOCK(pipe); #ifdef MAC error = mac_pipe_check_stat(active_cred, pipe->pipe_pair); if (error) { PIPE_UNLOCK(pipe); return (error); } #endif /* * Lazily allocate an inode number for the pipe. Most pipe * users do not call fstat(2) on the pipe, which means that * postponing the inode allocation until it is must be * returned to userland is useful. If alloc_unr failed, * assign st_ino zero instead of returning an error. * Special pipe_ino values: * -1 - not yet initialized; * 0 - alloc_unr failed, return 0 as st_ino forever. */ if (pipe->pipe_ino == (ino_t)-1) { new_unr = alloc_unr(pipeino_unr); if (new_unr != -1) pipe->pipe_ino = new_unr; else pipe->pipe_ino = 0; } PIPE_UNLOCK(pipe); bzero(ub, sizeof(*ub)); ub->st_mode = S_IFIFO; ub->st_blksize = PAGE_SIZE; if (pipe->pipe_state & PIPE_DIRECTW) ub->st_size = pipe->pipe_map.cnt; else ub->st_size = pipe->pipe_buffer.cnt; ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; ub->st_atim = pipe->pipe_atime; ub->st_mtim = pipe->pipe_mtime; ub->st_ctim = pipe->pipe_ctime; ub->st_uid = fp->f_cred->cr_uid; ub->st_gid = fp->f_cred->cr_gid; ub->st_dev = pipedev_ino; ub->st_ino = pipe->pipe_ino; /* * Left as 0: st_nlink, st_rdev, st_flags, st_gen. */ return (0); } /* ARGSUSED */ static int pipe_close(fp, td) struct file *fp; struct thread *td; { struct pipe *cpipe = fp->f_data; fp->f_ops = &badfileops; fp->f_data = NULL; funsetown(&cpipe->pipe_sigio); pipeclose(cpipe); return (0); } static void pipe_free_kmem(cpipe) struct pipe *cpipe; { KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipe_free_kmem: pipe mutex locked")); if (cpipe->pipe_buffer.buffer != NULL) { atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size); vm_map_remove(pipe_map, (vm_offset_t)cpipe->pipe_buffer.buffer, (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size); cpipe->pipe_buffer.buffer = NULL; } #ifndef PIPE_NODIRECT { cpipe->pipe_map.cnt = 0; cpipe->pipe_map.pos = 0; cpipe->pipe_map.npages = 0; } #endif } /* * shutdown the pipe */ static void pipeclose(cpipe) struct pipe *cpipe; { struct pipepair *pp; struct pipe *ppipe; ino_t ino; KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL")); PIPE_LOCK(cpipe); pipelock(cpipe, 0); pp = cpipe->pipe_pair; pipeselwakeup(cpipe); /* * If the other side is blocked, wake it up saying that * we want to close it down. */ cpipe->pipe_state |= PIPE_EOF; while (cpipe->pipe_busy) { wakeup(cpipe); cpipe->pipe_state |= PIPE_WANT; pipeunlock(cpipe); msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0); pipelock(cpipe, 0); } /* * Disconnect from peer, if any. */ ppipe = cpipe->pipe_peer; if (ppipe->pipe_present == PIPE_ACTIVE) { pipeselwakeup(ppipe); ppipe->pipe_state |= PIPE_EOF; wakeup(ppipe); KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0); } /* * Mark this endpoint as free. Release kmem resources. We * don't mark this endpoint as unused until we've finished * doing that, or the pipe might disappear out from under * us. */ PIPE_UNLOCK(cpipe); pipe_free_kmem(cpipe); PIPE_LOCK(cpipe); cpipe->pipe_present = PIPE_CLOSING; pipeunlock(cpipe); /* * knlist_clear() may sleep dropping the PIPE_MTX. Set the * PIPE_FINALIZED, that allows other end to free the * pipe_pair, only after the knotes are completely dismantled. */ knlist_clear(&cpipe->pipe_sel.si_note, 1); cpipe->pipe_present = PIPE_FINALIZED; seldrain(&cpipe->pipe_sel); knlist_destroy(&cpipe->pipe_sel.si_note); /* * Postpone the destroy of the fake inode number allocated for * our end, until pipe mtx is unlocked. */ ino = cpipe->pipe_ino; /* * If both endpoints are now closed, release the memory for the * pipe pair. If not, unlock. */ if (ppipe->pipe_present == PIPE_FINALIZED) { PIPE_UNLOCK(cpipe); #ifdef MAC mac_pipe_destroy(pp); #endif uma_zfree(pipe_zone, cpipe->pipe_pair); } else PIPE_UNLOCK(cpipe); if (ino != 0 && ino != (ino_t)-1) free_unr(pipeino_unr, ino); } /*ARGSUSED*/ static int pipe_kqfilter(struct file *fp, struct knote *kn) { struct pipe *cpipe; cpipe = kn->kn_fp->f_data; PIPE_LOCK(cpipe); switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &pipe_rfiltops; break; case EVFILT_WRITE: kn->kn_fop = &pipe_wfiltops; if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) { /* other end of pipe has been closed */ PIPE_UNLOCK(cpipe); return (EPIPE); } cpipe = cpipe->pipe_peer; break; default: PIPE_UNLOCK(cpipe); return (EINVAL); } knlist_add(&cpipe->pipe_sel.si_note, kn, 1); PIPE_UNLOCK(cpipe); return (0); } static void filt_pipedetach(struct knote *kn) { struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; PIPE_LOCK(cpipe); if (kn->kn_filter == EVFILT_WRITE) cpipe = cpipe->pipe_peer; knlist_remove(&cpipe->pipe_sel.si_note, kn, 1); PIPE_UNLOCK(cpipe); } /*ARGSUSED*/ static int filt_piperead(struct knote *kn, long hint) { struct pipe *rpipe = kn->kn_fp->f_data; struct pipe *wpipe = rpipe->pipe_peer; int ret; PIPE_LOCK(rpipe); kn->kn_data = rpipe->pipe_buffer.cnt; if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW)) kn->kn_data = rpipe->pipe_map.cnt; if ((rpipe->pipe_state & PIPE_EOF) || wpipe->pipe_present != PIPE_ACTIVE || (wpipe->pipe_state & PIPE_EOF)) { kn->kn_flags |= EV_EOF; PIPE_UNLOCK(rpipe); return (1); } ret = kn->kn_data > 0; PIPE_UNLOCK(rpipe); return ret; } /*ARGSUSED*/ static int filt_pipewrite(struct knote *kn, long hint) { struct pipe *rpipe = kn->kn_fp->f_data; struct pipe *wpipe = rpipe->pipe_peer; PIPE_LOCK(rpipe); if (wpipe->pipe_present != PIPE_ACTIVE || (wpipe->pipe_state & PIPE_EOF)) { kn->kn_data = 0; kn->kn_flags |= EV_EOF; PIPE_UNLOCK(rpipe); return (1); } kn->kn_data = (wpipe->pipe_buffer.size > 0) ? (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF; if (wpipe->pipe_state & PIPE_DIRECTW) kn->kn_data = 0; PIPE_UNLOCK(rpipe); return (kn->kn_data >= PIPE_BUF); }