Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uchcom/@/dev/ale/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uchcom/@/dev/ale/if_ale.c |
/*- * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/ale/if_ale.c 234240 2012-04-13 22:04:26Z marius $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/rman.h> #include <sys/queue.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <sys/taskqueue.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_llc.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/ip.h> #include <netinet/tcp.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <machine/in_cksum.h> #include <dev/ale/if_alereg.h> #include <dev/ale/if_alevar.h> /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* For more information about Tx checksum offload issues see ale_encap(). */ #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) MODULE_DEPEND(ale, pci, 1, 1, 1); MODULE_DEPEND(ale, ether, 1, 1, 1); MODULE_DEPEND(ale, miibus, 1, 1, 1); /* Tunables. */ static int msi_disable = 0; static int msix_disable = 0; TUNABLE_INT("hw.ale.msi_disable", &msi_disable); TUNABLE_INT("hw.ale.msix_disable", &msix_disable); /* * Devices supported by this driver. */ static const struct ale_dev { uint16_t ale_vendorid; uint16_t ale_deviceid; const char *ale_name; } const ale_devs[] = { { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX, "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" }, }; static int ale_attach(device_t); static int ale_check_boundary(struct ale_softc *); static int ale_detach(device_t); static int ale_dma_alloc(struct ale_softc *); static void ale_dma_free(struct ale_softc *); static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int ale_encap(struct ale_softc *, struct mbuf **); static void ale_get_macaddr(struct ale_softc *); static void ale_init(void *); static void ale_init_locked(struct ale_softc *); static void ale_init_rx_pages(struct ale_softc *); static void ale_init_tx_ring(struct ale_softc *); static void ale_int_task(void *, int); static int ale_intr(void *); static int ale_ioctl(struct ifnet *, u_long, caddr_t); static void ale_mac_config(struct ale_softc *); static int ale_miibus_readreg(device_t, int, int); static void ale_miibus_statchg(device_t); static int ale_miibus_writereg(device_t, int, int, int); static int ale_mediachange(struct ifnet *); static void ale_mediastatus(struct ifnet *, struct ifmediareq *); static void ale_phy_reset(struct ale_softc *); static int ale_probe(device_t); static void ale_reset(struct ale_softc *); static int ale_resume(device_t); static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, uint32_t, uint32_t *); static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); static int ale_rxeof(struct ale_softc *sc, int); static void ale_rxfilter(struct ale_softc *); static void ale_rxvlan(struct ale_softc *); static void ale_setlinkspeed(struct ale_softc *); static void ale_setwol(struct ale_softc *); static int ale_shutdown(device_t); static void ale_start(struct ifnet *); static void ale_start_locked(struct ifnet *); static void ale_stats_clear(struct ale_softc *); static void ale_stats_update(struct ale_softc *); static void ale_stop(struct ale_softc *); static void ale_stop_mac(struct ale_softc *); static int ale_suspend(device_t); static void ale_sysctl_node(struct ale_softc *); static void ale_tick(void *); static void ale_txeof(struct ale_softc *); static void ale_watchdog(struct ale_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS); static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS); static device_method_t ale_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, ale_probe), DEVMETHOD(device_attach, ale_attach), DEVMETHOD(device_detach, ale_detach), DEVMETHOD(device_shutdown, ale_shutdown), DEVMETHOD(device_suspend, ale_suspend), DEVMETHOD(device_resume, ale_resume), /* MII interface. */ DEVMETHOD(miibus_readreg, ale_miibus_readreg), DEVMETHOD(miibus_writereg, ale_miibus_writereg), DEVMETHOD(miibus_statchg, ale_miibus_statchg), DEVMETHOD_END }; static driver_t ale_driver = { "ale", ale_methods, sizeof(struct ale_softc) }; static devclass_t ale_devclass; DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL); DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL); static struct resource_spec ale_res_spec_mem[] = { { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec ale_irq_spec_legacy[] = { { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; static struct resource_spec ale_irq_spec_msi[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec ale_irq_spec_msix[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; static int ale_miibus_readreg(device_t dev, int phy, int reg) { struct ale_softc *sc; uint32_t v; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALE_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { device_printf(sc->ale_dev, "phy read timeout : %d\n", reg); return (0); } return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); } static int ale_miibus_writereg(device_t dev, int phy, int reg, int val) { struct ale_softc *sc; uint32_t v; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALE_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) device_printf(sc->ale_dev, "phy write timeout : %d\n", reg); return (0); } static void ale_miibus_statchg(device_t dev) { struct ale_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t reg; sc = device_get_softc(dev); mii = device_get_softc(sc->ale_miibus); ifp = sc->ale_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->ale_flags &= ~ALE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->ale_flags |= ALE_FLAG_LINK; break; case IFM_1000_T: if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) sc->ale_flags |= ALE_FLAG_LINK; break; default: break; } } /* Stop Rx/Tx MACs. */ ale_stop_mac(sc); /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { ale_mac_config(sc); /* Reenable Tx/Rx MACs. */ reg = CSR_READ_4(sc, ALE_MAC_CFG); reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } } static void ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ale_softc *sc; struct mii_data *mii; sc = ifp->if_softc; ALE_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { ALE_UNLOCK(sc); return; } mii = device_get_softc(sc->ale_miibus); mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; ALE_UNLOCK(sc); } static int ale_mediachange(struct ifnet *ifp) { struct ale_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; ALE_LOCK(sc); mii = device_get_softc(sc->ale_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); ALE_UNLOCK(sc); return (error); } static int ale_probe(device_t dev) { const struct ale_dev *sp; int i; uint16_t vendor, devid; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); sp = ale_devs; for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) { if (vendor == sp->ale_vendorid && devid == sp->ale_deviceid) { device_set_desc(dev, sp->ale_name); return (BUS_PROBE_DEFAULT); } sp++; } return (ENXIO); } static void ale_get_macaddr(struct ale_softc *sc) { uint32_t ea[2], reg; int i, vpdc; reg = CSR_READ_4(sc, ALE_SPI_CTRL); if ((reg & SPI_VPD_ENB) != 0) { reg &= ~SPI_VPD_ENB; CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); } if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) { /* * PCI VPD capability found, let TWSI reload EEPROM. * This will set ethernet address of controller. */ CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | TWSI_CTRL_SW_LD_START); for (i = 100; i > 0; i--) { DELAY(1000); reg = CSR_READ_4(sc, ALE_TWSI_CTRL); if ((reg & TWSI_CTRL_SW_LD_START) == 0) break; } if (i == 0) device_printf(sc->ale_dev, "reloading EEPROM timeout!\n"); } else { if (bootverbose) device_printf(sc->ale_dev, "PCI VPD capability not found!\n"); } ea[0] = CSR_READ_4(sc, ALE_PAR0); ea[1] = CSR_READ_4(sc, ALE_PAR1); sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; } static void ale_phy_reset(struct ale_softc *sc) { /* Reset magic from Linux. */ CSR_WRITE_2(sc, ALE_GPHY_CTRL, GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); DELAY(1000); CSR_WRITE_2(sc, ALE_GPHY_CTRL, GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); DELAY(1000); #define ATPHY_DBG_ADDR 0x1D #define ATPHY_DBG_DATA 0x1E /* Enable hibernation mode. */ ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x0B); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_DATA, 0xBC00); /* Set Class A/B for all modes. */ ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x00); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_DATA, 0x02EF); /* Enable 10BT power saving. */ ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x12); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_DATA, 0x4C04); /* Adjust 1000T power. */ ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x04); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x8BBB); /* 10BT center tap voltage. */ ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x05); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x2C46); #undef ATPHY_DBG_ADDR #undef ATPHY_DBG_DATA DELAY(1000); } static int ale_attach(device_t dev) { struct ale_softc *sc; struct ifnet *ifp; uint16_t burst; int error, i, msic, msixc, pmc; uint32_t rxf_len, txf_len; error = 0; sc = device_get_softc(dev); sc->ale_dev = dev; mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0); TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc); /* Map the device. */ pci_enable_busmaster(dev); sc->ale_res_spec = ale_res_spec_mem; sc->ale_irq_spec = ale_irq_spec_legacy; error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res); if (error != 0) { device_printf(dev, "cannot allocate memory resources.\n"); goto fail; } /* Set PHY address. */ sc->ale_phyaddr = ALE_PHY_ADDR; /* Reset PHY. */ ale_phy_reset(sc); /* Reset the ethernet controller. */ ale_reset(sc); /* Get PCI and chip id/revision. */ sc->ale_rev = pci_get_revid(dev); if (sc->ale_rev >= 0xF0) { /* L2E Rev. B. AR8114 */ sc->ale_flags |= ALE_FLAG_FASTETHER; } else { if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { /* L1E AR8121 */ sc->ale_flags |= ALE_FLAG_JUMBO; } else { /* L2E Rev. A. AR8113 */ sc->ale_flags |= ALE_FLAG_FASTETHER; } } /* * All known controllers seems to require 4 bytes alignment * of Tx buffers to make Tx checksum offload with custom * checksum generation method work. */ sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; /* * All known controllers seems to have issues on Rx checksum * offload for fragmented IP datagrams. */ sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; /* * Don't use Tx CMB. It is known to cause RRS update failure * under certain circumstances. Typical phenomenon of the * issue would be unexpected sequence number encountered in * Rx handler. */ sc->ale_flags |= ALE_FLAG_TXCMB_BUG; sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> MASTER_CHIP_REV_SHIFT; if (bootverbose) { device_printf(dev, "PCI device revision : 0x%04x\n", sc->ale_rev); device_printf(dev, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev); } txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); /* * Uninitialized hardware returns an invalid chip id/revision * as well as 0xFFFFFFFF for Tx/Rx fifo length. */ if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || rxf_len == 0xFFFFFFF) { device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO " "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev, txf_len, rxf_len); error = ENXIO; goto fail; } device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len); /* Allocate IRQ resources. */ msixc = pci_msix_count(dev); msic = pci_msi_count(dev); if (bootverbose) { device_printf(dev, "MSIX count : %d\n", msixc); device_printf(dev, "MSI count : %d\n", msic); } /* Prefer MSIX over MSI. */ if (msix_disable == 0 || msi_disable == 0) { if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES && pci_alloc_msix(dev, &msixc) == 0) { if (msic == ALE_MSIX_MESSAGES) { device_printf(dev, "Using %d MSIX messages.\n", msixc); sc->ale_flags |= ALE_FLAG_MSIX; sc->ale_irq_spec = ale_irq_spec_msix; } else pci_release_msi(dev); } if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 && msic == ALE_MSI_MESSAGES && pci_alloc_msi(dev, &msic) == 0) { if (msic == ALE_MSI_MESSAGES) { device_printf(dev, "Using %d MSI messages.\n", msic); sc->ale_flags |= ALE_FLAG_MSI; sc->ale_irq_spec = ale_irq_spec_msi; } else pci_release_msi(dev); } } error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq); if (error != 0) { device_printf(dev, "cannot allocate IRQ resources.\n"); goto fail; } /* Get DMA parameters from PCIe device control register. */ if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { sc->ale_flags |= ALE_FLAG_PCIE; burst = pci_read_config(dev, i + 0x08, 2); /* Max read request size. */ sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) << DMA_CFG_RD_BURST_SHIFT; /* Max payload size. */ sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) << DMA_CFG_WR_BURST_SHIFT; if (bootverbose) { device_printf(dev, "Read request size : %d bytes.\n", 128 << ((burst >> 12) & 0x07)); device_printf(dev, "TLP payload size : %d bytes.\n", 128 << ((burst >> 5) & 0x07)); } } else { sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; } /* Create device sysctl node. */ ale_sysctl_node(sc); if ((error = ale_dma_alloc(sc) != 0)) goto fail; /* Load station address. */ ale_get_macaddr(sc); ifp = sc->ale_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure.\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = ale_ioctl; ifp->if_start = ale_start; ifp->if_init = ale_init; ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4; ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO; if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { sc->ale_flags |= ALE_FLAG_PMCAP; ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; } ifp->if_capenable = ifp->if_capabilities; /* Set up MII bus. */ error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange, ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY, MIIF_DOPAUSE); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ether_ifattach(ifp, sc->ale_eaddr); /* VLAN capability setup. */ ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; ifp->if_capenable = ifp->if_capabilities; /* * Even though controllers supported by ale(3) have Rx checksum * offload bug the workaround for fragmented frames seemed to * work so far. However it seems Rx checksum offload does not * work under certain conditions. So disable Rx checksum offload * until I find more clue about it but allow users to override it. */ ifp->if_capenable &= ~IFCAP_RXCSUM; /* Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* Create local taskq. */ sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->ale_tq); if (sc->ale_tq == NULL) { device_printf(dev, "could not create taskqueue.\n"); ether_ifdetach(ifp); error = ENXIO; goto fail; } taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->ale_dev)); if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) msic = ALE_MSIX_MESSAGES; else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) msic = ALE_MSI_MESSAGES; else msic = 1; for (i = 0; i < msic; i++) { error = bus_setup_intr(dev, sc->ale_irq[i], INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc, &sc->ale_intrhand[i]); if (error != 0) break; } if (error != 0) { device_printf(dev, "could not set up interrupt handler.\n"); taskqueue_free(sc->ale_tq); sc->ale_tq = NULL; ether_ifdetach(ifp); goto fail; } fail: if (error != 0) ale_detach(dev); return (error); } static int ale_detach(device_t dev) { struct ale_softc *sc; struct ifnet *ifp; int i, msic; sc = device_get_softc(dev); ifp = sc->ale_ifp; if (device_is_attached(dev)) { ether_ifdetach(ifp); ALE_LOCK(sc); ale_stop(sc); ALE_UNLOCK(sc); callout_drain(&sc->ale_tick_ch); taskqueue_drain(sc->ale_tq, &sc->ale_int_task); } if (sc->ale_tq != NULL) { taskqueue_drain(sc->ale_tq, &sc->ale_int_task); taskqueue_free(sc->ale_tq); sc->ale_tq = NULL; } if (sc->ale_miibus != NULL) { device_delete_child(dev, sc->ale_miibus); sc->ale_miibus = NULL; } bus_generic_detach(dev); ale_dma_free(sc); if (ifp != NULL) { if_free(ifp); sc->ale_ifp = NULL; } if ((sc->ale_flags & ALE_FLAG_MSIX) != 0) msic = ALE_MSIX_MESSAGES; else if ((sc->ale_flags & ALE_FLAG_MSI) != 0) msic = ALE_MSI_MESSAGES; else msic = 1; for (i = 0; i < msic; i++) { if (sc->ale_intrhand[i] != NULL) { bus_teardown_intr(dev, sc->ale_irq[i], sc->ale_intrhand[i]); sc->ale_intrhand[i] = NULL; } } bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq); if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0) pci_release_msi(dev); bus_release_resources(dev, sc->ale_res_spec, sc->ale_res); mtx_destroy(&sc->ale_mtx); return (0); } #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) #if __FreeBSD_version >= 900030 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) #elif __FreeBSD_version > 800000 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) #else #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) #endif static void ale_sysctl_node(struct ale_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct ale_hw_stats *stats; int error; stats = &sc->ale_stats; ctx = device_get_sysctl_ctx(sc->ale_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation"); /* Pull in device tunables. */ sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; error = resource_int_value(device_get_name(sc->ale_dev), device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod); if (error == 0) { if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN || sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) { device_printf(sc->ale_dev, "int_rx_mod value out of " "range; using default: %d\n", ALE_IM_RX_TIMER_DEFAULT); sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; } } sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; error = resource_int_value(device_get_name(sc->ale_dev), device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod); if (error == 0) { if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN || sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) { device_printf(sc->ale_dev, "int_tx_mod value out of " "range; using default: %d\n", ALE_IM_TX_TIMER_DEFAULT); sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; } } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I", "max number of Rx events to process"); /* Pull in device tunables. */ sc->ale_process_limit = ALE_PROC_DEFAULT; error = resource_int_value(device_get_name(sc->ale_dev), device_get_unit(sc->ale_dev), "process_limit", &sc->ale_process_limit); if (error == 0) { if (sc->ale_process_limit < ALE_PROC_MIN || sc->ale_process_limit > ALE_PROC_MAX) { device_printf(sc->ale_dev, "process_limit value out of range; " "using default: %d\n", ALE_PROC_DEFAULT); sc->ale_process_limit = ALE_PROC_DEFAULT; } } /* Misc statistics. */ ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq", &stats->reset_brk_seq, "Controller resets due to broken Rx sequnce number"); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "ATE statistics"); parent = SYSCTL_CHILDREN(tree); /* Rx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, NULL, "Rx MAC statistics"); child = SYSCTL_CHILDREN(tree); ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->rx_frames, "Good frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->rx_bcast_frames, "Good broadcast frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->rx_mcast_frames, "Good multicast frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->rx_pause_frames, "Pause control frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", &stats->rx_control_frames, "Control frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", &stats->rx_crcerrs, "CRC errors"); ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", &stats->rx_lenerrs, "Frames with length mismatched"); ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", &stats->rx_bytes, "Good octets"); ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", &stats->rx_bcast_bytes, "Good broadcast octets"); ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", &stats->rx_mcast_bytes, "Good multicast octets"); ALE_SYSCTL_STAT_ADD32(ctx, child, "runts", &stats->rx_runts, "Too short frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments", &stats->rx_fragments, "Fragmented frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", &stats->rx_pkts_64, "64 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", &stats->rx_pkts_65_127, "65 to 127 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", &stats->rx_pkts_128_255, "128 to 255 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", &stats->rx_pkts_256_511, "256 to 511 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", &stats->rx_pkts_1519_max, "1519 to max frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", &stats->rx_fifo_oflows, "FIFO overflows"); ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", &stats->rx_rrs_errs, "Return status write-back errors"); ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", &stats->rx_alignerrs, "Alignment errors"); ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered", &stats->rx_pkts_filtered, "Frames dropped due to address filtering"); /* Tx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "Tx MAC statistics"); child = SYSCTL_CHILDREN(tree); ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->tx_frames, "Good frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->tx_bcast_frames, "Good broadcast frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->tx_mcast_frames, "Good multicast frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->tx_pause_frames, "Pause control frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames", &stats->tx_control_frames, "Control frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", &stats->tx_excess_defer, "Frames with excessive derferrals"); ALE_SYSCTL_STAT_ADD32(ctx, child, "defers", &stats->tx_excess_defer, "Frames with derferrals"); ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", &stats->tx_bytes, "Good octets"); ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", &stats->tx_bcast_bytes, "Good broadcast octets"); ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", &stats->tx_mcast_bytes, "Good multicast octets"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", &stats->tx_pkts_64, "64 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", &stats->tx_pkts_65_127, "65 to 127 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", &stats->tx_pkts_128_255, "128 to 255 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", &stats->tx_pkts_256_511, "256 to 511 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", &stats->tx_pkts_1519_max, "1519 to max frames"); ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", &stats->tx_single_colls, "Single collisions"); ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", &stats->tx_multi_colls, "Multiple collisions"); ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", &stats->tx_late_colls, "Late collisions"); ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", &stats->tx_excess_colls, "Excessive collisions"); ALE_SYSCTL_STAT_ADD32(ctx, child, "abort", &stats->tx_abort, "Aborted frames due to Excessive collisions"); ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns", &stats->tx_underrun, "FIFO underruns"); ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", &stats->tx_desc_underrun, "Descriptor write-back errors"); ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", &stats->tx_lenerrs, "Frames with length mismatched"); ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); } #undef ALE_SYSCTL_STAT_ADD32 #undef ALE_SYSCTL_STAT_ADD64 struct ale_dmamap_arg { bus_addr_t ale_busaddr; }; static void ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct ale_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct ale_dmamap_arg *)arg; ctx->ale_busaddr = segs[0].ds_addr; } /* * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register * which specifies high address region of DMA blocks. Therefore these * blocks should have the same high address of given 4GB address * space(i.e. crossing 4GB boundary is not allowed). */ static int ale_check_boundary(struct ale_softc *sc) { bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end; bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end; rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr + sc->ale_pagesize; rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr + sc->ale_pagesize; tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ; tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ; rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ; rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ; if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) || (ALE_ADDR_HI(rx_page_end[0]) != ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) || (ALE_ADDR_HI(rx_page_end[1]) != ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) || (ALE_ADDR_HI(tx_cmb_end) != ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) || (ALE_ADDR_HI(rx_cmb_end[0]) != ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) || (ALE_ADDR_HI(rx_cmb_end[1]) != ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr))) return (EFBIG); if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) || (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) || (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) || (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) || (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end))) return (EFBIG); return (0); } static int ale_dma_alloc(struct ale_softc *sc) { struct ale_txdesc *txd; bus_addr_t lowaddr; struct ale_dmamap_arg ctx; int error, guard_size, i; if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) guard_size = ALE_JUMBO_FRAMELEN; else guard_size = ALE_MAX_FRAMELEN; sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, ALE_RX_PAGE_ALIGN); lowaddr = BUS_SPACE_MAXADDR; again: /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->ale_dev), /* parent */ 1, 0, /* alignment, boundary */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_parent_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create parent DMA tag.\n"); goto fail; } /* Create DMA tag for Tx descriptor ring. */ error = bus_dma_tag_create( sc->ale_cdata.ale_parent_tag, /* parent */ ALE_TX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALE_TX_RING_SZ, /* maxsize */ 1, /* nsegments */ ALE_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_tx_ring_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create Tx ring DMA tag.\n"); goto fail; } /* Create DMA tag for Rx pages. */ for (i = 0; i < ALE_RX_PAGES; i++) { error = bus_dma_tag_create( sc->ale_cdata.ale_parent_tag, /* parent */ ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sc->ale_pagesize, /* maxsize */ 1, /* nsegments */ sc->ale_pagesize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_rx_page[i].page_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create Rx page %d DMA tag.\n", i); goto fail; } } /* Create DMA tag for Tx coalescing message block. */ error = bus_dma_tag_create( sc->ale_cdata.ale_parent_tag, /* parent */ ALE_CMB_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALE_TX_CMB_SZ, /* maxsize */ 1, /* nsegments */ ALE_TX_CMB_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_tx_cmb_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create Tx CMB DMA tag.\n"); goto fail; } /* Create DMA tag for Rx coalescing message block. */ for (i = 0; i < ALE_RX_PAGES; i++) { error = bus_dma_tag_create( sc->ale_cdata.ale_parent_tag, /* parent */ ALE_CMB_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALE_RX_CMB_SZ, /* maxsize */ 1, /* nsegments */ ALE_RX_CMB_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_rx_page[i].cmb_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create Rx page %d CMB DMA tag.\n", i); goto fail; } } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag, (void **)&sc->ale_cdata.ale_tx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ale_cdata.ale_tx_ring_map); if (error != 0) { device_printf(sc->ale_dev, "could not allocate DMA'able memory for Tx ring.\n"); goto fail; } ctx.ale_busaddr = 0; error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag, sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0); if (error != 0 || ctx.ale_busaddr == 0) { device_printf(sc->ale_dev, "could not load DMA'able memory for Tx ring.\n"); goto fail; } sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr; /* Rx pages. */ for (i = 0; i < ALE_RX_PAGES; i++) { error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag, (void **)&sc->ale_cdata.ale_rx_page[i].page_addr, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ale_cdata.ale_rx_page[i].page_map); if (error != 0) { device_printf(sc->ale_dev, "could not allocate DMA'able memory for " "Rx page %d.\n", i); goto fail; } ctx.ale_busaddr = 0; error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag, sc->ale_cdata.ale_rx_page[i].page_map, sc->ale_cdata.ale_rx_page[i].page_addr, sc->ale_pagesize, ale_dmamap_cb, &ctx, 0); if (error != 0 || ctx.ale_busaddr == 0) { device_printf(sc->ale_dev, "could not load DMA'able memory for " "Rx page %d.\n", i); goto fail; } sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr; } /* Tx CMB. */ error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag, (void **)&sc->ale_cdata.ale_tx_cmb, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ale_cdata.ale_tx_cmb_map); if (error != 0) { device_printf(sc->ale_dev, "could not allocate DMA'able memory for Tx CMB.\n"); goto fail; } ctx.ale_busaddr = 0; error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag, sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0); if (error != 0 || ctx.ale_busaddr == 0) { device_printf(sc->ale_dev, "could not load DMA'able memory for Tx CMB.\n"); goto fail; } sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr; /* Rx CMB. */ for (i = 0; i < ALE_RX_PAGES; i++) { error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag, (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ale_cdata.ale_rx_page[i].cmb_map); if (error != 0) { device_printf(sc->ale_dev, "could not allocate " "DMA'able memory for Rx page %d CMB.\n", i); goto fail; } ctx.ale_busaddr = 0; error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag, sc->ale_cdata.ale_rx_page[i].cmb_map, sc->ale_cdata.ale_rx_page[i].cmb_addr, ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0); if (error != 0 || ctx.ale_busaddr == 0) { device_printf(sc->ale_dev, "could not load DMA'able " "memory for Rx page %d CMB.\n", i); goto fail; } sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr; } /* * Tx descriptors/RXF0/CMB DMA blocks share the same * high address region of 64bit DMA address space. */ if (lowaddr != BUS_SPACE_MAXADDR_32BIT && (error = ale_check_boundary(sc)) != 0) { device_printf(sc->ale_dev, "4GB boundary crossed, " "switching to 32bit DMA addressing mode.\n"); ale_dma_free(sc); /* * Limit max allowable DMA address space to 32bit * and try again. */ lowaddr = BUS_SPACE_MAXADDR_32BIT; goto again; } /* * Create Tx buffer parent tag. * AR81xx allows 64bit DMA addressing of Tx buffers so it * needs separate parent DMA tag as parent DMA address space * could be restricted to be within 32bit address space by * 4GB boundary crossing. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->ale_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_buffer_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create parent buffer DMA tag.\n"); goto fail; } /* Create DMA tag for Tx buffers. */ error = bus_dma_tag_create( sc->ale_cdata.ale_buffer_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ALE_TSO_MAXSIZE, /* maxsize */ ALE_MAXTXSEGS, /* nsegments */ ALE_TSO_MAXSEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ale_cdata.ale_tx_tag); if (error != 0) { device_printf(sc->ale_dev, "could not create Tx DMA tag.\n"); goto fail; } /* Create DMA maps for Tx buffers. */ for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->ale_dev, "could not create Tx dmamap.\n"); goto fail; } } fail: return (error); } static void ale_dma_free(struct ale_softc *sc) { struct ale_txdesc *txd; int i; /* Tx buffers. */ if (sc->ale_cdata.ale_tx_tag != NULL) { for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag); sc->ale_cdata.ale_tx_tag = NULL; } /* Tx descriptor ring. */ if (sc->ale_cdata.ale_tx_ring_tag != NULL) { if (sc->ale_cdata.ale_tx_ring_map != NULL) bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag, sc->ale_cdata.ale_tx_ring_map); if (sc->ale_cdata.ale_tx_ring_map != NULL && sc->ale_cdata.ale_tx_ring != NULL) bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag, sc->ale_cdata.ale_tx_ring, sc->ale_cdata.ale_tx_ring_map); sc->ale_cdata.ale_tx_ring = NULL; sc->ale_cdata.ale_tx_ring_map = NULL; bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag); sc->ale_cdata.ale_tx_ring_tag = NULL; } /* Rx page block. */ for (i = 0; i < ALE_RX_PAGES; i++) { if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) { if (sc->ale_cdata.ale_rx_page[i].page_map != NULL) bus_dmamap_unload( sc->ale_cdata.ale_rx_page[i].page_tag, sc->ale_cdata.ale_rx_page[i].page_map); if (sc->ale_cdata.ale_rx_page[i].page_map != NULL && sc->ale_cdata.ale_rx_page[i].page_addr != NULL) bus_dmamem_free( sc->ale_cdata.ale_rx_page[i].page_tag, sc->ale_cdata.ale_rx_page[i].page_addr, sc->ale_cdata.ale_rx_page[i].page_map); sc->ale_cdata.ale_rx_page[i].page_addr = NULL; sc->ale_cdata.ale_rx_page[i].page_map = NULL; bus_dma_tag_destroy( sc->ale_cdata.ale_rx_page[i].page_tag); sc->ale_cdata.ale_rx_page[i].page_tag = NULL; } } /* Rx CMB. */ for (i = 0; i < ALE_RX_PAGES; i++) { if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) { if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL) bus_dmamap_unload( sc->ale_cdata.ale_rx_page[i].cmb_tag, sc->ale_cdata.ale_rx_page[i].cmb_map); if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL && sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) bus_dmamem_free( sc->ale_cdata.ale_rx_page[i].cmb_tag, sc->ale_cdata.ale_rx_page[i].cmb_addr, sc->ale_cdata.ale_rx_page[i].cmb_map); sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; sc->ale_cdata.ale_rx_page[i].cmb_map = NULL; bus_dma_tag_destroy( sc->ale_cdata.ale_rx_page[i].cmb_tag); sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL; } } /* Tx CMB. */ if (sc->ale_cdata.ale_tx_cmb_tag != NULL) { if (sc->ale_cdata.ale_tx_cmb_map != NULL) bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag, sc->ale_cdata.ale_tx_cmb_map); if (sc->ale_cdata.ale_tx_cmb_map != NULL && sc->ale_cdata.ale_tx_cmb != NULL) bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag, sc->ale_cdata.ale_tx_cmb, sc->ale_cdata.ale_tx_cmb_map); sc->ale_cdata.ale_tx_cmb = NULL; sc->ale_cdata.ale_tx_cmb_map = NULL; bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag); sc->ale_cdata.ale_tx_cmb_tag = NULL; } if (sc->ale_cdata.ale_buffer_tag != NULL) { bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag); sc->ale_cdata.ale_buffer_tag = NULL; } if (sc->ale_cdata.ale_parent_tag != NULL) { bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag); sc->ale_cdata.ale_parent_tag = NULL; } } static int ale_shutdown(device_t dev) { return (ale_suspend(dev)); } /* * Note, this driver resets the link speed to 10/100Mbps by * restarting auto-negotiation in suspend/shutdown phase but we * don't know whether that auto-negotiation would succeed or not * as driver has no control after powering off/suspend operation. * If the renegotiation fail WOL may not work. Running at 1Gbps * will draw more power than 375mA at 3.3V which is specified in * PCI specification and that would result in complete * shutdowning power to ethernet controller. * * TODO * Save current negotiated media speed/duplex/flow-control to * softc and restore the same link again after resuming. PHY * handling such as power down/resetting to 100Mbps may be better * handled in suspend method in phy driver. */ static void ale_setlinkspeed(struct ale_softc *sc) { struct mii_data *mii; int aneg, i; mii = device_get_softc(sc->ale_miibus); mii_pollstat(mii); aneg = 0; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch IFM_SUBTYPE(mii->mii_media_active) { case IFM_10_T: case IFM_100_TX: return; case IFM_1000_T: aneg++; break; default: break; } } ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); DELAY(1000); if (aneg != 0) { /* * Poll link state until ale(4) get a 10/100Mbps link. */ for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { mii_pollstat(mii); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE( mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: ale_mac_config(sc); return; default: break; } } ALE_UNLOCK(sc); pause("alelnk", hz); ALE_LOCK(sc); } if (i == MII_ANEGTICKS_GIGE) device_printf(sc->ale_dev, "establishing a link failed, WOL may not work!"); } /* * No link, force MAC to have 100Mbps, full-duplex link. * This is the last resort and may/may not work. */ mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; ale_mac_config(sc); } static void ale_setwol(struct ale_softc *sc) { struct ifnet *ifp; uint32_t reg, pmcs; uint16_t pmstat; int pmc; ALE_LOCK_ASSERT(sc); if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) { /* Disable WOL. */ CSR_WRITE_4(sc, ALE_WOL_CFG, 0); reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); reg |= PCIE_PHYMISC_FORCE_RCV_DET; CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); /* Force PHY power down. */ CSR_WRITE_2(sc, ALE_GPHY_CTRL, GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON | GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); return; } ifp = sc->ale_ifp; if ((ifp->if_capenable & IFCAP_WOL) != 0) { if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) ale_setlinkspeed(sc); } pmcs = 0; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs); reg = CSR_READ_4(sc, ALE_MAC_CFG); reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | MAC_CFG_BCAST); if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; if ((ifp->if_capenable & IFCAP_WOL) != 0) reg |= MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); if ((ifp->if_capenable & IFCAP_WOL) == 0) { /* WOL disabled, PHY power down. */ reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC); reg |= PCIE_PHYMISC_FORCE_RCV_DET; CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg); CSR_WRITE_2(sc, ALE_GPHY_CTRL, GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW); } /* Request PME. */ pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } static int ale_suspend(device_t dev) { struct ale_softc *sc; sc = device_get_softc(dev); ALE_LOCK(sc); ale_stop(sc); ale_setwol(sc); ALE_UNLOCK(sc); return (0); } static int ale_resume(device_t dev) { struct ale_softc *sc; struct ifnet *ifp; int pmc; uint16_t pmstat; sc = device_get_softc(dev); ALE_LOCK(sc); if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) { /* Disable PME and clear PME status. */ pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2); if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } } /* Reset PHY. */ ale_phy_reset(sc); ifp = sc->ale_ifp; if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ale_init_locked(sc); } ALE_UNLOCK(sc); return (0); } static int ale_encap(struct ale_softc *sc, struct mbuf **m_head) { struct ale_txdesc *txd, *txd_last; struct tx_desc *desc; struct mbuf *m; struct ip *ip; struct tcphdr *tcp; bus_dma_segment_t txsegs[ALE_MAXTXSEGS]; bus_dmamap_t map; uint32_t cflags, hdrlen, ip_off, poff, vtag; int error, i, nsegs, prod, si; ALE_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); m = *m_head; ip = NULL; tcp = NULL; cflags = vtag = 0; ip_off = poff = 0; if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) { /* * AR81xx requires offset of TCP/UDP payload in its Tx * descriptor to perform hardware Tx checksum offload. * Additionally, TSO requires IP/TCP header size and * modification of IP/TCP header in order to make TSO * engine work. This kind of operation takes many CPU * cycles on FreeBSD so fast host CPU is required to * get smooth TSO performance. */ struct ether_header *eh; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_DONTWAIT); /* Release original mbufs. */ m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } /* * Buggy-controller requires 4 byte aligned Tx buffer * to make custom checksum offload work. */ if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 && (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 && (mtod(m, intptr_t) & 3) != 0) { m = m_defrag(*m_head, M_DONTWAIT); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } ip_off = sizeof(struct ether_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } eh = mtod(m, struct ether_header *); /* * Check if hardware VLAN insertion is off. * Additional check for LLC/SNAP frame? */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ip_off = sizeof(struct ether_vlan_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } } m = m_pullup(m, ip_off + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + ip_off); poff = ip_off + (ip->ip_hl << 2); if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { /* * XXX * AR81xx requires the first descriptor should * not include any TCP playload for TSO case. * (i.e. ethernet header + IP + TCP header only) * m_pullup(9) above will ensure this too. * However it's not correct if the first mbuf * of the chain does not use cluster. */ m = m_pullup(m, poff + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + ip_off); tcp = (struct tcphdr *)(mtod(m, char *) + poff); m = m_pullup(m, poff + (tcp->th_off << 2)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } /* * AR81xx requires IP/TCP header size and offset as * well as TCP pseudo checksum which complicates * TSO configuration. I guess this comes from the * adherence to Microsoft NDIS Large Send * specification which requires insertion of * pseudo checksum by upper stack. The pseudo * checksum that NDIS refers to doesn't include * TCP payload length so ale(4) should recompute * the pseudo checksum here. Hopefully this wouldn't * be much burden on modern CPUs. * Reset IP checksum and recompute TCP pseudo * checksum as NDIS specification said. */ ip->ip_sum = 0; tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } *m_head = m; } si = prod = sc->ale_cdata.ale_tx_prod; txd = &sc->ale_cdata.ale_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check descriptor overrun. */ if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) { bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map); return (ENOBUFS); } bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE); m = *m_head; if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { /* Request TSO and set MSS. */ cflags |= ALE_TD_TSO; cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT); /* Set IP/TCP header size. */ cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT; cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT; } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { /* * AR81xx supports Tx custom checksum offload feature * that offloads single 16bit checksum computation. * So you can choose one among IP, TCP and UDP. * Normally driver sets checksum start/insertion * position from the information of TCP/UDP frame as * TCP/UDP checksum takes more time than that of IP. * However it seems that custom checksum offload * requires 4 bytes aligned Tx buffers due to hardware * bug. * AR81xx also supports explicit Tx checksum computation * if it is told that the size of IP header and TCP * header(for UDP, the header size does not matter * because it's fixed length). However with this scheme * TSO does not work so you have to choose one either * TSO or explicit Tx checksum offload. I chosen TSO * plus custom checksum offload with work-around which * will cover most common usage for this consumer * ethernet controller. The work-around takes a lot of * CPU cycles if Tx buffer is not aligned on 4 bytes * boundary, though. */ cflags |= ALE_TD_CXSUM; /* Set checksum start offset. */ cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); /* Set checksum insertion position of TCP/UDP. */ cflags |= ((poff + m->m_pkthdr.csum_data) << ALE_TD_CSUM_XSUMOFFSET_SHIFT); } /* Configure VLAN hardware tag insertion. */ if ((m->m_flags & M_VLANTAG) != 0) { vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); cflags |= ALE_TD_INSERT_VLAN_TAG; } i = 0; if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { /* * Make sure the first fragment contains * only ethernet and IP/TCP header with options. */ hdrlen = poff + (tcp->th_off << 2); desc = &sc->ale_cdata.ale_tx_ring[prod]; desc->addr = htole64(txsegs[i].ds_addr); desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag); desc->flags = htole32(cflags); sc->ale_cdata.ale_tx_cnt++; ALE_DESC_INC(prod, ALE_TX_RING_CNT); if (m->m_len - hdrlen > 0) { /* Handle remaining payload of the first fragment. */ desc = &sc->ale_cdata.ale_tx_ring[prod]; desc->addr = htole64(txsegs[i].ds_addr + hdrlen); desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) | vtag); desc->flags = htole32(cflags); sc->ale_cdata.ale_tx_cnt++; ALE_DESC_INC(prod, ALE_TX_RING_CNT); } i = 1; } for (; i < nsegs; i++) { desc = &sc->ale_cdata.ale_tx_ring[prod]; desc->addr = htole64(txsegs[i].ds_addr); desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag); desc->flags = htole32(cflags); sc->ale_cdata.ale_tx_cnt++; ALE_DESC_INC(prod, ALE_TX_RING_CNT); } /* Update producer index. */ sc->ale_cdata.ale_tx_prod = prod; /* Set TSO header on the first descriptor. */ if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { desc = &sc->ale_cdata.ale_tx_ring[si]; desc->flags |= htole32(ALE_TD_TSO_HDR); } /* Finally set EOP on the last descriptor. */ prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; desc = &sc->ale_cdata.ale_tx_ring[prod]; desc->flags |= htole32(ALE_TD_EOP); /* Swap dmamap of the first and the last. */ txd = &sc->ale_cdata.ale_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; /* Sync descriptors. */ bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void ale_start(struct ifnet *ifp) { struct ale_softc *sc; sc = ifp->if_softc; ALE_LOCK(sc); ale_start_locked(ifp); ALE_UNLOCK(sc); } static void ale_start_locked(struct ifnet *ifp) { struct ale_softc *sc; struct mbuf *m_head; int enq; sc = ifp->if_softc; ALE_LOCK_ASSERT(sc); /* Reclaim transmitted frames. */ if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) ale_txeof(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (ale_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { /* Kick. */ CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, sc->ale_cdata.ale_tx_prod); /* Set a timeout in case the chip goes out to lunch. */ sc->ale_watchdog_timer = ALE_TX_TIMEOUT; } } static void ale_watchdog(struct ale_softc *sc) { struct ifnet *ifp; ALE_LOCK_ASSERT(sc); if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer) return; ifp = sc->ale_ifp; if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ale_init_locked(sc); return; } if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ale_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) ale_start_locked(ifp); } static int ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ale_softc *sc; struct ifreq *ifr; struct mii_data *mii; int error, mask; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU || ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 && ifr->ifr_mtu > ETHERMTU)) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { ALE_LOCK(sc); ifp->if_mtu = ifr->ifr_mtu; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ale_init_locked(sc); } ALE_UNLOCK(sc); } break; case SIOCSIFFLAGS: ALE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (((ifp->if_flags ^ sc->ale_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) ale_rxfilter(sc); } else { ale_init_locked(sc); } } else { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) ale_stop(sc); } sc->ale_if_flags = ifp->if_flags; ALE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: ALE_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) ale_rxfilter(sc); ALE_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->ale_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: ALE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= ALE_CSUM_FEATURES; else ifp->if_hwassist &= ~ALE_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) ifp->if_capenable ^= IFCAP_RXCSUM; if ((mask & IFCAP_TSO4) != 0 && (ifp->if_capabilities & IFCAP_TSO4) != 0) { ifp->if_capenable ^= IFCAP_TSO4; if ((ifp->if_capenable & IFCAP_TSO4) != 0) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if ((mask & IFCAP_WOL_MCAST) != 0 && (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0 && (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_VLAN_HWTSO) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; ale_rxvlan(sc); } ALE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void ale_mac_config(struct ale_softc *sc) { struct mii_data *mii; uint32_t reg; ALE_LOCK_ASSERT(sc); mii = device_get_softc(sc->ale_miibus); reg = CSR_READ_4(sc, ALE_MAC_CFG); reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | MAC_CFG_SPEED_MASK); /* Reprogram MAC with resolved speed/duplex. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: reg |= MAC_CFG_SPEED_10_100; break; case IFM_1000_T: reg |= MAC_CFG_SPEED_1000; break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { reg |= MAC_CFG_FULL_DUPLEX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) reg |= MAC_CFG_TX_FC; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) reg |= MAC_CFG_RX_FC; } CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } static void ale_stats_clear(struct ale_softc *sc) { struct smb sb; uint32_t *reg; int i; for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { CSR_READ_4(sc, ALE_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { CSR_READ_4(sc, ALE_TX_MIB_BASE + i); i += sizeof(uint32_t); } } static void ale_stats_update(struct ale_softc *sc) { struct ale_hw_stats *stat; struct smb sb, *smb; struct ifnet *ifp; uint32_t *reg; int i; ALE_LOCK_ASSERT(sc); ifp = sc->ale_ifp; stat = &sc->ale_stats; smb = &sb; /* Read Rx statistics. */ for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); i += sizeof(uint32_t); } /* Rx stats. */ stat->rx_frames += smb->rx_frames; stat->rx_bcast_frames += smb->rx_bcast_frames; stat->rx_mcast_frames += smb->rx_mcast_frames; stat->rx_pause_frames += smb->rx_pause_frames; stat->rx_control_frames += smb->rx_control_frames; stat->rx_crcerrs += smb->rx_crcerrs; stat->rx_lenerrs += smb->rx_lenerrs; stat->rx_bytes += smb->rx_bytes; stat->rx_runts += smb->rx_runts; stat->rx_fragments += smb->rx_fragments; stat->rx_pkts_64 += smb->rx_pkts_64; stat->rx_pkts_65_127 += smb->rx_pkts_65_127; stat->rx_pkts_128_255 += smb->rx_pkts_128_255; stat->rx_pkts_256_511 += smb->rx_pkts_256_511; stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; stat->rx_pkts_truncated += smb->rx_pkts_truncated; stat->rx_fifo_oflows += smb->rx_fifo_oflows; stat->rx_rrs_errs += smb->rx_rrs_errs; stat->rx_alignerrs += smb->rx_alignerrs; stat->rx_bcast_bytes += smb->rx_bcast_bytes; stat->rx_mcast_bytes += smb->rx_mcast_bytes; stat->rx_pkts_filtered += smb->rx_pkts_filtered; /* Tx stats. */ stat->tx_frames += smb->tx_frames; stat->tx_bcast_frames += smb->tx_bcast_frames; stat->tx_mcast_frames += smb->tx_mcast_frames; stat->tx_pause_frames += smb->tx_pause_frames; stat->tx_excess_defer += smb->tx_excess_defer; stat->tx_control_frames += smb->tx_control_frames; stat->tx_deferred += smb->tx_deferred; stat->tx_bytes += smb->tx_bytes; stat->tx_pkts_64 += smb->tx_pkts_64; stat->tx_pkts_65_127 += smb->tx_pkts_65_127; stat->tx_pkts_128_255 += smb->tx_pkts_128_255; stat->tx_pkts_256_511 += smb->tx_pkts_256_511; stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; stat->tx_single_colls += smb->tx_single_colls; stat->tx_multi_colls += smb->tx_multi_colls; stat->tx_late_colls += smb->tx_late_colls; stat->tx_excess_colls += smb->tx_excess_colls; stat->tx_abort += smb->tx_abort; stat->tx_underrun += smb->tx_underrun; stat->tx_desc_underrun += smb->tx_desc_underrun; stat->tx_lenerrs += smb->tx_lenerrs; stat->tx_pkts_truncated += smb->tx_pkts_truncated; stat->tx_bcast_bytes += smb->tx_bcast_bytes; stat->tx_mcast_bytes += smb->tx_mcast_bytes; /* Update counters in ifnet. */ ifp->if_opackets += smb->tx_frames; ifp->if_collisions += smb->tx_single_colls + smb->tx_multi_colls * 2 + smb->tx_late_colls + smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; /* * XXX * tx_pkts_truncated counter looks suspicious. It constantly * increments with no sign of Tx errors. This may indicate * the counter name is not correct one so I've removed the * counter in output errors. */ ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + smb->tx_underrun; ifp->if_ipackets += smb->rx_frames; ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated + smb->rx_fifo_oflows + smb->rx_rrs_errs + smb->rx_alignerrs; } static int ale_intr(void *arg) { struct ale_softc *sc; uint32_t status; sc = (struct ale_softc *)arg; status = CSR_READ_4(sc, ALE_INTR_STATUS); if ((status & ALE_INTRS) == 0) return (FILTER_STRAY); /* Disable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT); taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); return (FILTER_HANDLED); } static void ale_int_task(void *arg, int pending) { struct ale_softc *sc; struct ifnet *ifp; uint32_t status; int more; sc = (struct ale_softc *)arg; status = CSR_READ_4(sc, ALE_INTR_STATUS); ALE_LOCK(sc); if (sc->ale_morework != 0) status |= INTR_RX_PKT; if ((status & ALE_INTRS) == 0) goto done; /* Acknowledge interrupts but still disable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); ifp = sc->ale_ifp; more = 0; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { more = ale_rxeof(sc, sc->ale_process_limit); if (more == EAGAIN) sc->ale_morework = 1; else if (more == EIO) { sc->ale_stats.reset_brk_seq++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ale_init_locked(sc); ALE_UNLOCK(sc); return; } if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { if ((status & INTR_DMA_RD_TO_RST) != 0) device_printf(sc->ale_dev, "DMA read error! -- resetting\n"); if ((status & INTR_DMA_WR_TO_RST) != 0) device_printf(sc->ale_dev, "DMA write error! -- resetting\n"); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ale_init_locked(sc); ALE_UNLOCK(sc); return; } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) ale_start_locked(ifp); } if (more == EAGAIN || (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) { ALE_UNLOCK(sc); taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task); return; } done: ALE_UNLOCK(sc); /* Re-enable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); } static void ale_txeof(struct ale_softc *sc) { struct ifnet *ifp; struct ale_txdesc *txd; uint32_t cons, prod; int prog; ALE_LOCK_ASSERT(sc); ifp = sc->ale_ifp; if (sc->ale_cdata.ale_tx_cnt == 0) return; bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, sc->ale_cdata.ale_tx_cmb_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; } else prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); cons = sc->ale_cdata.ale_tx_cons; /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ for (prog = 0; cons != prod; prog++, ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { if (sc->ale_cdata.ale_tx_cnt <= 0) break; prog++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->ale_cdata.ale_tx_cnt--; txd = &sc->ale_cdata.ale_txdesc[cons]; if (txd->tx_m != NULL) { /* Reclaim transmitted mbufs. */ bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } if (prog > 0) { sc->ale_cdata.ale_tx_cons = cons; /* * Unarm watchdog timer only when there is no pending * Tx descriptors in queue. */ if (sc->ale_cdata.ale_tx_cnt == 0) sc->ale_watchdog_timer = 0; } } static void ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, uint32_t length, uint32_t *prod) { struct ale_rx_page *rx_page; rx_page = *page; /* Update consumer position. */ rx_page->cons += roundup(length + sizeof(struct rx_rs), ALE_RX_PAGE_ALIGN); if (rx_page->cons >= ALE_RX_PAGE_SZ) { /* * End of Rx page reached, let hardware reuse * this page. */ rx_page->cons = 0; *rx_page->cmb_addr = 0; bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, RXF_VALID); /* Switch to alternate Rx page. */ sc->ale_cdata.ale_rx_curp ^= 1; rx_page = *page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; /* Page flipped, sync CMB and Rx page. */ bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* Sync completed, cache updated producer index. */ *prod = *rx_page->cmb_addr; } } /* * It seems that AR81xx controller can compute partial checksum. * The partial checksum value can be used to accelerate checksum * computation for fragmented TCP/UDP packets. Upper network stack * already takes advantage of the partial checksum value in IP * reassembly stage. But I'm not sure the correctness of the * partial hardware checksum assistance due to lack of data sheet. * In addition, the Rx feature of controller that requires copying * for every frames effectively nullifies one of most nice offload * capability of controller. */ static void ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) { struct ifnet *ifp; struct ip *ip; char *p; ifp = sc->ale_ifp; m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((status & ALE_RD_IPCSUM_NOK) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { if (((status & ALE_RD_IPV4_FRAG) == 0) && ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } else { if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { p = mtod(m, char *); p += ETHER_HDR_LEN; if ((status & ALE_RD_802_3) != 0) p += LLC_SNAPFRAMELEN; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 && (status & ALE_RD_VLAN) != 0) p += ETHER_VLAN_ENCAP_LEN; ip = (struct ip *)p; if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) return; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } /* * Don't mark bad checksum for TCP/UDP frames * as fragmented frames may always have set * bad checksummed bit of frame status. */ } /* Process received frames. */ static int ale_rxeof(struct ale_softc *sc, int count) { struct ale_rx_page *rx_page; struct rx_rs *rs; struct ifnet *ifp; struct mbuf *m; uint32_t length, prod, seqno, status, vtags; int prog; ifp = sc->ale_ifp; rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Don't directly access producer index as hardware may * update it while Rx handler is in progress. It would * be even better if there is a way to let hardware * know how far driver processed its received frames. * Alternatively, hardware could provide a way to disable * CMB updates until driver acknowledges the end of CMB * access. */ prod = *rx_page->cmb_addr; for (prog = 0; prog < count; prog++) { if (rx_page->cons >= prod) break; rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); seqno = ALE_RX_SEQNO(le32toh(rs->seqno)); if (sc->ale_cdata.ale_rx_seqno != seqno) { /* * Normally I believe this should not happen unless * severe driver bug or corrupted memory. However * it seems to happen under certain conditions which * is triggered by abrupt Rx events such as initiation * of bulk transfer of remote host. It's not easy to * reproduce this and I doubt it could be related * with FIFO overflow of hardware or activity of Tx * CMB updates. I also remember similar behaviour * seen on RealTek 8139 which uses resembling Rx * scheme. */ if (bootverbose) device_printf(sc->ale_dev, "garbled seq: %u, expected: %u -- " "resetting!\n", seqno, sc->ale_cdata.ale_rx_seqno); return (EIO); } /* Frame received. */ sc->ale_cdata.ale_rx_seqno++; length = ALE_RX_BYTES(le32toh(rs->length)); status = le32toh(rs->flags); if ((status & ALE_RD_ERROR) != 0) { /* * We want to pass the following frames to upper * layer regardless of error status of Rx return * status. * * o IP/TCP/UDP checksum is bad. * o frame length and protocol specific length * does not match. */ if ((status & (ALE_RD_CRC | ALE_RD_CODE | ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | ALE_RD_TRUNC)) != 0) { ale_rx_update_page(sc, &rx_page, length, &prod); continue; } } /* * m_devget(9) is major bottle-neck of ale(4)(It comes * from hardware limitation). For jumbo frames we could * get a slightly better performance if driver use * m_getjcl(9) with proper buffer size argument. However * that would make code more complicated and I don't * think users would expect good Rx performance numbers * on these low-end consumer ethernet controller. */ m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, ETHER_ALIGN, ifp, NULL); if (m == NULL) { ifp->if_iqdrops++; ale_rx_update_page(sc, &rx_page, length, &prod); continue; } if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && (status & ALE_RD_IPV4) != 0) ale_rxcsum(sc, m, status); if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && (status & ALE_RD_VLAN) != 0) { vtags = ALE_RX_VLAN(le32toh(rs->vtags)); m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); m->m_flags |= M_VLANTAG; } /* Pass it to upper layer. */ ALE_UNLOCK(sc); (*ifp->if_input)(ifp, m); ALE_LOCK(sc); ale_rx_update_page(sc, &rx_page, length, &prod); } return (count > 0 ? 0 : EAGAIN); } static void ale_tick(void *arg) { struct ale_softc *sc; struct mii_data *mii; sc = (struct ale_softc *)arg; ALE_LOCK_ASSERT(sc); mii = device_get_softc(sc->ale_miibus); mii_tick(mii); ale_stats_update(sc); /* * Reclaim Tx buffers that have been transferred. It's not * needed here but it would release allocated mbuf chains * faster and limit the maximum delay to a hz. */ ale_txeof(sc); ale_watchdog(sc); callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); } static void ale_reset(struct ale_softc *sc) { uint32_t reg; int i; /* Initialize PCIe module. From Linux. */ CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); for (i = ALE_RESET_TIMEOUT; i > 0; i--) { DELAY(10); if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) break; } if (i == 0) device_printf(sc->ale_dev, "master reset timeout!\n"); for (i = ALE_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg); } static void ale_init(void *xsc) { struct ale_softc *sc; sc = (struct ale_softc *)xsc; ALE_LOCK(sc); ale_init_locked(sc); ALE_UNLOCK(sc); } static void ale_init_locked(struct ale_softc *sc) { struct ifnet *ifp; struct mii_data *mii; uint8_t eaddr[ETHER_ADDR_LEN]; bus_addr_t paddr; uint32_t reg, rxf_hi, rxf_lo; ALE_LOCK_ASSERT(sc); ifp = sc->ale_ifp; mii = device_get_softc(sc->ale_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel any pending I/O. */ ale_stop(sc); /* * Reset the chip to a known state. */ ale_reset(sc); /* Initialize Tx descriptors, DMA memory blocks. */ ale_init_rx_pages(sc); ale_init_tx_ring(sc); /* Reprogram the station address. */ bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, ALE_PAR0, eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); /* * Clear WOL status and disable all WOL feature as WOL * would interfere Rx operation under normal environments. */ CSR_READ_4(sc, ALE_WOL_CFG); CSR_WRITE_4(sc, ALE_WOL_CFG, 0); /* * Set Tx descriptor/RXF0/CMB base addresses. They share * the same high address part of DMAable region. */ paddr = sc->ale_cdata.ale_tx_ring_paddr; CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); CSR_WRITE_4(sc, ALE_TPD_CNT, (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); /* Set Rx page base address, note we use single queue. */ paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); /* Set Tx/Rx CMB addresses. */ paddr = sc->ale_cdata.ale_tx_cmb_paddr; CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); /* Mark RXF0 is valid. */ CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); /* * No need to initialize RFX1/RXF2/RXF3. We don't use * multi-queue yet. */ /* Set Rx page size, excluding guard frame size. */ CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); /* Tell hardware that we're ready to load DMA blocks. */ CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); /* Set Rx/Tx interrupt trigger threshold. */ CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | (4 << INT_TRIG_TX_THRESH_SHIFT)); /* * XXX * Set interrupt trigger timer, its purpose and relation * with interrupt moderation mechanism is not clear yet. */ CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); /* Configure interrupt moderation timer. */ reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; CSR_WRITE_4(sc, ALE_IM_TIMER, reg); reg = CSR_READ_4(sc, ALE_MASTER_CFG); reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); if (ALE_USECS(sc->ale_int_rx_mod) != 0) reg |= MASTER_IM_RX_TIMER_ENB; if (ALE_USECS(sc->ale_int_tx_mod) != 0) reg |= MASTER_IM_TX_TIMER_ENB; CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); /* Set Maximum frame size of controller. */ if (ifp->if_mtu < ETHERMTU) sc->ale_max_frame_size = ETHERMTU; else sc->ale_max_frame_size = ifp->if_mtu; sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); /* Configure IPG/IFG parameters. */ CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); /* Set parameters for half-duplex media. */ CSR_WRITE_4(sc, ALE_HDPX_CFG, ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & HDPX_CFG_LCOL_MASK) | ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & HDPX_CFG_ABEBT_MASK) | ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & HDPX_CFG_JAMIPG_MASK)); /* Configure Tx jumbo frame parameters. */ if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { if (ifp->if_mtu < ETHERMTU) reg = sc->ale_max_frame_size; else if (ifp->if_mtu < 6 * 1024) reg = (sc->ale_max_frame_size * 2) / 3; else reg = sc->ale_max_frame_size / 2; CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, roundup(reg, TX_JUMBO_THRESH_UNIT) >> TX_JUMBO_THRESH_UNIT_SHIFT); } /* Configure TxQ. */ reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) << TXQ_CFG_TX_FIFO_BURST_SHIFT; reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & TXQ_CFG_TPD_BURST_MASK; CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); /* Configure Rx jumbo frame & flow control parameters. */ if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & RX_JUMBO_LKAH_MASK)); reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); rxf_hi = (reg * 7) / 10; rxf_lo = (reg * 3)/ 10; CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & RX_FIFO_PAUSE_THRESH_LO_MASK) | ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & RX_FIFO_PAUSE_THRESH_HI_MASK)); } /* Disable RSS. */ CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); CSR_WRITE_4(sc, ALE_RSS_CPU, 0); /* Configure RxQ. */ CSR_WRITE_4(sc, ALE_RXQ_CFG, RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); /* Configure DMA parameters. */ reg = 0; if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) reg |= DMA_CFG_TXCMB_ENB; CSR_WRITE_4(sc, ALE_DMA_CFG, DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | sc->ale_dma_rd_burst | reg | sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & DMA_CFG_RD_DELAY_CNT_MASK) | ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & DMA_CFG_WR_DELAY_CNT_MASK)); /* * Hardware can be configured to issue SMB interrupt based * on programmed interval. Since there is a callout that is * invoked for every hz in driver we use that instead of * relying on periodic SMB interrupt. */ CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); /* Clear MAC statistics. */ ale_stats_clear(sc); /* * Configure Tx/Rx MACs. * - Auto-padding for short frames. * - Enable CRC generation. * Actual reconfiguration of MAC for resolved speed/duplex * is followed after detection of link establishment. * AR81xx always does checksum computation regardless of * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will * cause Rx handling issue for fragmented IP datagrams due * to silicon bug. */ reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & MAC_CFG_PREAMBLE_MASK); if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) reg |= MAC_CFG_SPEED_10_100; else reg |= MAC_CFG_SPEED_1000; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); /* Set up the receive filter. */ ale_rxfilter(sc); ale_rxvlan(sc); /* Acknowledge all pending interrupts and clear it. */ CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->ale_flags &= ~ALE_FLAG_LINK; /* Switch to the current media. */ mii_mediachg(mii); callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc); } static void ale_stop(struct ale_softc *sc) { struct ifnet *ifp; struct ale_txdesc *txd; uint32_t reg; int i; ALE_LOCK_ASSERT(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp = sc->ale_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->ale_flags &= ~ALE_FLAG_LINK; callout_stop(&sc->ale_tick_ch); sc->ale_watchdog_timer = 0; ale_stats_update(sc); /* Disable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_MASK, 0); CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); /* Disable queue processing and DMA. */ reg = CSR_READ_4(sc, ALE_TXQ_CFG); reg &= ~TXQ_CFG_ENB; CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); reg = CSR_READ_4(sc, ALE_RXQ_CFG); reg &= ~RXQ_CFG_ENB; CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); reg = CSR_READ_4(sc, ALE_DMA_CFG); reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); CSR_WRITE_4(sc, ALE_DMA_CFG, reg); DELAY(1000); /* Stop Rx/Tx MACs. */ ale_stop_mac(sc); /* Disable interrupts which might be touched in taskq handler. */ CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); /* * Free TX mbufs still in the queues. */ for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } static void ale_stop_mac(struct ale_softc *sc) { uint32_t reg; int i; ALE_LOCK_ASSERT(sc); reg = CSR_READ_4(sc, ALE_MAC_CFG); if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } for (i = ALE_TIMEOUT; i > 0; i--) { reg = CSR_READ_4(sc, ALE_IDLE_STATUS); if (reg == 0) break; DELAY(10); } if (i == 0) device_printf(sc->ale_dev, "could not disable Tx/Rx MAC(0x%08x)!\n", reg); } static void ale_init_tx_ring(struct ale_softc *sc) { struct ale_txdesc *txd; int i; ALE_LOCK_ASSERT(sc); sc->ale_cdata.ale_tx_prod = 0; sc->ale_cdata.ale_tx_cons = 0; sc->ale_cdata.ale_tx_cnt = 0; bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; txd->tx_m = NULL; } *sc->ale_cdata.ale_tx_cmb = 0; bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag, sc->ale_cdata.ale_tx_cmb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag, sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void ale_init_rx_pages(struct ale_softc *sc) { struct ale_rx_page *rx_page; int i; ALE_LOCK_ASSERT(sc); sc->ale_morework = 0; sc->ale_cdata.ale_rx_seqno = 0; sc->ale_cdata.ale_rx_curp = 0; for (i = 0; i < ALE_RX_PAGES; i++) { rx_page = &sc->ale_cdata.ale_rx_page[i]; bzero(rx_page->page_addr, sc->ale_pagesize); bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); rx_page->cons = 0; *rx_page->cmb_addr = 0; bus_dmamap_sync(rx_page->page_tag, rx_page->page_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } static void ale_rxvlan(struct ale_softc *sc) { struct ifnet *ifp; uint32_t reg; ALE_LOCK_ASSERT(sc); ifp = sc->ale_ifp; reg = CSR_READ_4(sc, ALE_MAC_CFG); reg &= ~MAC_CFG_VLAN_TAG_STRIP; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) reg |= MAC_CFG_VLAN_TAG_STRIP; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } static void ale_rxfilter(struct ale_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t crc; uint32_t mchash[2]; uint32_t rxcfg; ALE_LOCK_ASSERT(sc); ifp = sc->ale_ifp; rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); if ((ifp->if_flags & IFF_BROADCAST) != 0) rxcfg |= MAC_CFG_BCAST; if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) != 0) rxcfg |= MAC_CFG_PROMISC; if ((ifp->if_flags & IFF_ALLMULTI) != 0) rxcfg |= MAC_CFG_ALLMULTI; CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF); CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); return; } /* Program new filter. */ bzero(mchash, sizeof(mchash)); if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); } if_maddr_runlock(ifp); CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); } static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (arg1 == NULL) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || req->newptr == NULL) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, ALE_PROC_MIN, ALE_PROC_MAX)); } static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX)); }