Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/udav/@/dev/bfe/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/udav/@/dev/bfe/if_bfe.c |
/*- * Copyright (c) 2003 Stuart Walsh<stu@ipng.org.uk> * and Duncan Barclay<dmlb@dmlb.org> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 'AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/bfe/if_bfe.c 229093 2011-12-31 14:12:12Z hselasky $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/rman.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <net/bpf.h> #include <net/if.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <dev/bfe/if_bfereg.h> MODULE_DEPEND(bfe, pci, 1, 1, 1); MODULE_DEPEND(bfe, ether, 1, 1, 1); MODULE_DEPEND(bfe, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #define BFE_DEVDESC_MAX 64 /* Maximum device description length */ static struct bfe_type bfe_devs[] = { { BCOM_VENDORID, BCOM_DEVICEID_BCM4401, "Broadcom BCM4401 Fast Ethernet" }, { BCOM_VENDORID, BCOM_DEVICEID_BCM4401B0, "Broadcom BCM4401-B0 Fast Ethernet" }, { 0, 0, NULL } }; static int bfe_probe (device_t); static int bfe_attach (device_t); static int bfe_detach (device_t); static int bfe_suspend (device_t); static int bfe_resume (device_t); static void bfe_release_resources (struct bfe_softc *); static void bfe_intr (void *); static int bfe_encap (struct bfe_softc *, struct mbuf **); static void bfe_start (struct ifnet *); static void bfe_start_locked (struct ifnet *); static int bfe_ioctl (struct ifnet *, u_long, caddr_t); static void bfe_init (void *); static void bfe_init_locked (void *); static void bfe_stop (struct bfe_softc *); static void bfe_watchdog (struct bfe_softc *); static int bfe_shutdown (device_t); static void bfe_tick (void *); static void bfe_txeof (struct bfe_softc *); static void bfe_rxeof (struct bfe_softc *); static void bfe_set_rx_mode (struct bfe_softc *); static int bfe_list_rx_init (struct bfe_softc *); static void bfe_list_tx_init (struct bfe_softc *); static void bfe_discard_buf (struct bfe_softc *, int); static int bfe_list_newbuf (struct bfe_softc *, int); static void bfe_rx_ring_free (struct bfe_softc *); static void bfe_pci_setup (struct bfe_softc *, u_int32_t); static int bfe_ifmedia_upd (struct ifnet *); static void bfe_ifmedia_sts (struct ifnet *, struct ifmediareq *); static int bfe_miibus_readreg (device_t, int, int); static int bfe_miibus_writereg (device_t, int, int, int); static void bfe_miibus_statchg (device_t); static int bfe_wait_bit (struct bfe_softc *, u_int32_t, u_int32_t, u_long, const int); static void bfe_get_config (struct bfe_softc *sc); static void bfe_read_eeprom (struct bfe_softc *, u_int8_t *); static void bfe_stats_update (struct bfe_softc *); static void bfe_clear_stats (struct bfe_softc *); static int bfe_readphy (struct bfe_softc *, u_int32_t, u_int32_t*); static int bfe_writephy (struct bfe_softc *, u_int32_t, u_int32_t); static int bfe_resetphy (struct bfe_softc *); static int bfe_setupphy (struct bfe_softc *); static void bfe_chip_reset (struct bfe_softc *); static void bfe_chip_halt (struct bfe_softc *); static void bfe_core_reset (struct bfe_softc *); static void bfe_core_disable (struct bfe_softc *); static int bfe_dma_alloc (struct bfe_softc *); static void bfe_dma_free (struct bfe_softc *sc); static void bfe_dma_map (void *, bus_dma_segment_t *, int, int); static void bfe_cam_write (struct bfe_softc *, u_char *, int); static int sysctl_bfe_stats (SYSCTL_HANDLER_ARGS); static device_method_t bfe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bfe_probe), DEVMETHOD(device_attach, bfe_attach), DEVMETHOD(device_detach, bfe_detach), DEVMETHOD(device_shutdown, bfe_shutdown), DEVMETHOD(device_suspend, bfe_suspend), DEVMETHOD(device_resume, bfe_resume), /* MII interface */ DEVMETHOD(miibus_readreg, bfe_miibus_readreg), DEVMETHOD(miibus_writereg, bfe_miibus_writereg), DEVMETHOD(miibus_statchg, bfe_miibus_statchg), DEVMETHOD_END }; static driver_t bfe_driver = { "bfe", bfe_methods, sizeof(struct bfe_softc) }; static devclass_t bfe_devclass; DRIVER_MODULE(bfe, pci, bfe_driver, bfe_devclass, 0, 0); DRIVER_MODULE(miibus, bfe, miibus_driver, miibus_devclass, 0, 0); /* * Probe for a Broadcom 4401 chip. */ static int bfe_probe(device_t dev) { struct bfe_type *t; t = bfe_devs; while (t->bfe_name != NULL) { if (pci_get_vendor(dev) == t->bfe_vid && pci_get_device(dev) == t->bfe_did) { device_set_desc(dev, t->bfe_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } struct bfe_dmamap_arg { bus_addr_t bfe_busaddr; }; static int bfe_dma_alloc(struct bfe_softc *sc) { struct bfe_dmamap_arg ctx; struct bfe_rx_data *rd; struct bfe_tx_data *td; int error, i; /* * parent tag. Apparently the chip cannot handle any DMA address * greater than 1GB. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->bfe_dev), /* parent */ 1, 0, /* alignment, boundary */ BFE_DMA_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->bfe_parent_tag); if (error != 0) { device_printf(sc->bfe_dev, "cannot create parent DMA tag.\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */ BFE_TX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BFE_TX_LIST_SIZE, /* maxsize */ 1, /* nsegments */ BFE_TX_LIST_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->bfe_tx_tag); if (error != 0) { device_printf(sc->bfe_dev, "cannot create Tx ring DMA tag.\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */ BFE_RX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BFE_RX_LIST_SIZE, /* maxsize */ 1, /* nsegments */ BFE_RX_LIST_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->bfe_rx_tag); if (error != 0) { device_printf(sc->bfe_dev, "cannot create Rx ring DMA tag.\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * BFE_MAXTXSEGS, /* maxsize */ BFE_MAXTXSEGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->bfe_txmbuf_tag); if (error != 0) { device_printf(sc->bfe_dev, "cannot create Tx buffer DMA tag.\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->bfe_rxmbuf_tag); if (error != 0) { device_printf(sc->bfe_dev, "cannot create Rx buffer DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load DMA map. */ error = bus_dmamem_alloc(sc->bfe_tx_tag, (void *)&sc->bfe_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->bfe_tx_map); if (error != 0) { device_printf(sc->bfe_dev, "cannot allocate DMA'able memory for Tx ring.\n"); goto fail; } ctx.bfe_busaddr = 0; error = bus_dmamap_load(sc->bfe_tx_tag, sc->bfe_tx_map, sc->bfe_tx_list, BFE_TX_LIST_SIZE, bfe_dma_map, &ctx, BUS_DMA_NOWAIT); if (error != 0 || ctx.bfe_busaddr == 0) { device_printf(sc->bfe_dev, "cannot load DMA'able memory for Tx ring.\n"); goto fail; } sc->bfe_tx_dma = BFE_ADDR_LO(ctx.bfe_busaddr); error = bus_dmamem_alloc(sc->bfe_rx_tag, (void *)&sc->bfe_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->bfe_rx_map); if (error != 0) { device_printf(sc->bfe_dev, "cannot allocate DMA'able memory for Rx ring.\n"); goto fail; } ctx.bfe_busaddr = 0; error = bus_dmamap_load(sc->bfe_rx_tag, sc->bfe_rx_map, sc->bfe_rx_list, BFE_RX_LIST_SIZE, bfe_dma_map, &ctx, BUS_DMA_NOWAIT); if (error != 0 || ctx.bfe_busaddr == 0) { device_printf(sc->bfe_dev, "cannot load DMA'able memory for Rx ring.\n"); goto fail; } sc->bfe_rx_dma = BFE_ADDR_LO(ctx.bfe_busaddr); /* Create DMA maps for Tx buffers. */ for (i = 0; i < BFE_TX_LIST_CNT; i++) { td = &sc->bfe_tx_ring[i]; td->bfe_mbuf = NULL; td->bfe_map = NULL; error = bus_dmamap_create(sc->bfe_txmbuf_tag, 0, &td->bfe_map); if (error != 0) { device_printf(sc->bfe_dev, "cannot create DMA map for Tx.\n"); goto fail; } } /* Create spare DMA map for Rx buffers. */ error = bus_dmamap_create(sc->bfe_rxmbuf_tag, 0, &sc->bfe_rx_sparemap); if (error != 0) { device_printf(sc->bfe_dev, "cannot create spare DMA map for Rx.\n"); goto fail; } /* Create DMA maps for Rx buffers. */ for (i = 0; i < BFE_RX_LIST_CNT; i++) { rd = &sc->bfe_rx_ring[i]; rd->bfe_mbuf = NULL; rd->bfe_map = NULL; rd->bfe_ctrl = 0; error = bus_dmamap_create(sc->bfe_rxmbuf_tag, 0, &rd->bfe_map); if (error != 0) { device_printf(sc->bfe_dev, "cannot create DMA map for Rx.\n"); goto fail; } } fail: return (error); } static void bfe_dma_free(struct bfe_softc *sc) { struct bfe_tx_data *td; struct bfe_rx_data *rd; int i; /* Tx ring. */ if (sc->bfe_tx_tag != NULL) { if (sc->bfe_tx_map != NULL) bus_dmamap_unload(sc->bfe_tx_tag, sc->bfe_tx_map); if (sc->bfe_tx_map != NULL && sc->bfe_tx_list != NULL) bus_dmamem_free(sc->bfe_tx_tag, sc->bfe_tx_list, sc->bfe_tx_map); sc->bfe_tx_map = NULL; sc->bfe_tx_list = NULL; bus_dma_tag_destroy(sc->bfe_tx_tag); sc->bfe_tx_tag = NULL; } /* Rx ring. */ if (sc->bfe_rx_tag != NULL) { if (sc->bfe_rx_map != NULL) bus_dmamap_unload(sc->bfe_rx_tag, sc->bfe_rx_map); if (sc->bfe_rx_map != NULL && sc->bfe_rx_list != NULL) bus_dmamem_free(sc->bfe_rx_tag, sc->bfe_rx_list, sc->bfe_rx_map); sc->bfe_rx_map = NULL; sc->bfe_rx_list = NULL; bus_dma_tag_destroy(sc->bfe_rx_tag); sc->bfe_rx_tag = NULL; } /* Tx buffers. */ if (sc->bfe_txmbuf_tag != NULL) { for (i = 0; i < BFE_TX_LIST_CNT; i++) { td = &sc->bfe_tx_ring[i]; if (td->bfe_map != NULL) { bus_dmamap_destroy(sc->bfe_txmbuf_tag, td->bfe_map); td->bfe_map = NULL; } } bus_dma_tag_destroy(sc->bfe_txmbuf_tag); sc->bfe_txmbuf_tag = NULL; } /* Rx buffers. */ if (sc->bfe_rxmbuf_tag != NULL) { for (i = 0; i < BFE_RX_LIST_CNT; i++) { rd = &sc->bfe_rx_ring[i]; if (rd->bfe_map != NULL) { bus_dmamap_destroy(sc->bfe_rxmbuf_tag, rd->bfe_map); rd->bfe_map = NULL; } } if (sc->bfe_rx_sparemap != NULL) { bus_dmamap_destroy(sc->bfe_rxmbuf_tag, sc->bfe_rx_sparemap); sc->bfe_rx_sparemap = NULL; } bus_dma_tag_destroy(sc->bfe_rxmbuf_tag); sc->bfe_rxmbuf_tag = NULL; } if (sc->bfe_parent_tag != NULL) { bus_dma_tag_destroy(sc->bfe_parent_tag); sc->bfe_parent_tag = NULL; } } static int bfe_attach(device_t dev) { struct ifnet *ifp = NULL; struct bfe_softc *sc; int error = 0, rid; sc = device_get_softc(dev); mtx_init(&sc->bfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->bfe_stat_co, &sc->bfe_mtx, 0); sc->bfe_dev = dev; /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = PCIR_BAR(0); sc->bfe_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bfe_res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } /* Allocate interrupt */ rid = 0; sc->bfe_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->bfe_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } if (bfe_dma_alloc(sc) != 0) { device_printf(dev, "failed to allocate DMA resources\n"); error = ENXIO; goto fail; } SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_bfe_stats, "I", "Statistics"); /* Set up ifnet structure */ ifp = sc->bfe_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "failed to if_alloc()\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bfe_ioctl; ifp->if_start = bfe_start; ifp->if_init = bfe_init; ifp->if_mtu = ETHERMTU; IFQ_SET_MAXLEN(&ifp->if_snd, BFE_TX_QLEN); ifp->if_snd.ifq_drv_maxlen = BFE_TX_QLEN; IFQ_SET_READY(&ifp->if_snd); bfe_get_config(sc); /* Reset the chip and turn on the PHY */ BFE_LOCK(sc); bfe_chip_reset(sc); BFE_UNLOCK(sc); error = mii_attach(dev, &sc->bfe_miibus, ifp, bfe_ifmedia_upd, bfe_ifmedia_sts, BMSR_DEFCAPMASK, sc->bfe_phyaddr, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ether_ifattach(ifp, sc->bfe_enaddr); /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable |= IFCAP_VLAN_MTU; /* * Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->bfe_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, bfe_intr, sc, &sc->bfe_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); goto fail; } fail: if (error != 0) bfe_detach(dev); return (error); } static int bfe_detach(device_t dev) { struct bfe_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->bfe_ifp; if (device_is_attached(dev)) { BFE_LOCK(sc); sc->bfe_flags |= BFE_FLAG_DETACH; bfe_stop(sc); BFE_UNLOCK(sc); callout_drain(&sc->bfe_stat_co); if (ifp != NULL) ether_ifdetach(ifp); } BFE_LOCK(sc); bfe_chip_reset(sc); BFE_UNLOCK(sc); bus_generic_detach(dev); if (sc->bfe_miibus != NULL) device_delete_child(dev, sc->bfe_miibus); bfe_release_resources(sc); bfe_dma_free(sc); mtx_destroy(&sc->bfe_mtx); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int bfe_shutdown(device_t dev) { struct bfe_softc *sc; sc = device_get_softc(dev); BFE_LOCK(sc); bfe_stop(sc); BFE_UNLOCK(sc); return (0); } static int bfe_suspend(device_t dev) { struct bfe_softc *sc; sc = device_get_softc(dev); BFE_LOCK(sc); bfe_stop(sc); BFE_UNLOCK(sc); return (0); } static int bfe_resume(device_t dev) { struct bfe_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->bfe_ifp; BFE_LOCK(sc); bfe_chip_reset(sc); if (ifp->if_flags & IFF_UP) { bfe_init_locked(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bfe_start_locked(ifp); } BFE_UNLOCK(sc); return (0); } static int bfe_miibus_readreg(device_t dev, int phy, int reg) { struct bfe_softc *sc; u_int32_t ret; sc = device_get_softc(dev); bfe_readphy(sc, reg, &ret); return (ret); } static int bfe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct bfe_softc *sc; sc = device_get_softc(dev); bfe_writephy(sc, reg, val); return (0); } static void bfe_miibus_statchg(device_t dev) { struct bfe_softc *sc; struct mii_data *mii; u_int32_t val, flow; sc = device_get_softc(dev); mii = device_get_softc(sc->bfe_miibus); sc->bfe_flags &= ~BFE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->bfe_flags |= BFE_FLAG_LINK; break; default: break; } } /* XXX Should stop Rx/Tx engine prior to touching MAC. */ val = CSR_READ_4(sc, BFE_TX_CTRL); val &= ~BFE_TX_DUPLEX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { val |= BFE_TX_DUPLEX; flow = 0; #ifdef notyet flow = CSR_READ_4(sc, BFE_RXCONF); flow &= ~BFE_RXCONF_FLOW; if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) flow |= BFE_RXCONF_FLOW; CSR_WRITE_4(sc, BFE_RXCONF, flow); /* * It seems that the hardware has Tx pause issues * so enable only Rx pause. */ flow = CSR_READ_4(sc, BFE_MAC_FLOW); flow &= ~BFE_FLOW_PAUSE_ENAB; CSR_WRITE_4(sc, BFE_MAC_FLOW, flow); #endif } CSR_WRITE_4(sc, BFE_TX_CTRL, val); } static void bfe_tx_ring_free(struct bfe_softc *sc) { int i; for(i = 0; i < BFE_TX_LIST_CNT; i++) { if (sc->bfe_tx_ring[i].bfe_mbuf != NULL) { bus_dmamap_sync(sc->bfe_txmbuf_tag, sc->bfe_tx_ring[i].bfe_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bfe_txmbuf_tag, sc->bfe_tx_ring[i].bfe_map); m_freem(sc->bfe_tx_ring[i].bfe_mbuf); sc->bfe_tx_ring[i].bfe_mbuf = NULL; } } bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE); bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void bfe_rx_ring_free(struct bfe_softc *sc) { int i; for (i = 0; i < BFE_RX_LIST_CNT; i++) { if (sc->bfe_rx_ring[i].bfe_mbuf != NULL) { bus_dmamap_sync(sc->bfe_rxmbuf_tag, sc->bfe_rx_ring[i].bfe_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bfe_rxmbuf_tag, sc->bfe_rx_ring[i].bfe_map); m_freem(sc->bfe_rx_ring[i].bfe_mbuf); sc->bfe_rx_ring[i].bfe_mbuf = NULL; } } bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE); bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static int bfe_list_rx_init(struct bfe_softc *sc) { struct bfe_rx_data *rd; int i; sc->bfe_rx_prod = sc->bfe_rx_cons = 0; bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE); for (i = 0; i < BFE_RX_LIST_CNT; i++) { rd = &sc->bfe_rx_ring[i]; rd->bfe_mbuf = NULL; rd->bfe_ctrl = 0; if (bfe_list_newbuf(sc, i) != 0) return (ENOBUFS); } bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, BFE_DMARX_PTR, (i * sizeof(struct bfe_desc))); return (0); } static void bfe_list_tx_init(struct bfe_softc *sc) { int i; sc->bfe_tx_cnt = sc->bfe_tx_prod = sc->bfe_tx_cons = 0; bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE); for (i = 0; i < BFE_TX_LIST_CNT; i++) sc->bfe_tx_ring[i].bfe_mbuf = NULL; bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void bfe_discard_buf(struct bfe_softc *sc, int c) { struct bfe_rx_data *r; struct bfe_desc *d; r = &sc->bfe_rx_ring[c]; d = &sc->bfe_rx_list[c]; d->bfe_ctrl = htole32(r->bfe_ctrl); } static int bfe_list_newbuf(struct bfe_softc *sc, int c) { struct bfe_rxheader *rx_header; struct bfe_desc *d; struct bfe_rx_data *r; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; u_int32_t ctrl; int nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); m->m_len = m->m_pkthdr.len = MCLBYTES; if (bus_dmamap_load_mbuf_sg(sc->bfe_rxmbuf_tag, sc->bfe_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); r = &sc->bfe_rx_ring[c]; if (r->bfe_mbuf != NULL) { bus_dmamap_sync(sc->bfe_rxmbuf_tag, r->bfe_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bfe_rxmbuf_tag, r->bfe_map); } map = r->bfe_map; r->bfe_map = sc->bfe_rx_sparemap; sc->bfe_rx_sparemap = map; r->bfe_mbuf = m; rx_header = mtod(m, struct bfe_rxheader *); rx_header->len = 0; rx_header->flags = 0; bus_dmamap_sync(sc->bfe_rxmbuf_tag, r->bfe_map, BUS_DMASYNC_PREREAD); ctrl = segs[0].ds_len & BFE_DESC_LEN; KASSERT(ctrl > ETHER_MAX_LEN + 32, ("%s: buffer size too small(%d)!", __func__, ctrl)); if (c == BFE_RX_LIST_CNT - 1) ctrl |= BFE_DESC_EOT; r->bfe_ctrl = ctrl; d = &sc->bfe_rx_list[c]; d->bfe_ctrl = htole32(ctrl); /* The chip needs all addresses to be added to BFE_PCI_DMA. */ d->bfe_addr = htole32(BFE_ADDR_LO(segs[0].ds_addr) + BFE_PCI_DMA); return (0); } static void bfe_get_config(struct bfe_softc *sc) { u_int8_t eeprom[128]; bfe_read_eeprom(sc, eeprom); sc->bfe_enaddr[0] = eeprom[79]; sc->bfe_enaddr[1] = eeprom[78]; sc->bfe_enaddr[2] = eeprom[81]; sc->bfe_enaddr[3] = eeprom[80]; sc->bfe_enaddr[4] = eeprom[83]; sc->bfe_enaddr[5] = eeprom[82]; sc->bfe_phyaddr = eeprom[90] & 0x1f; sc->bfe_mdc_port = (eeprom[90] >> 14) & 0x1; sc->bfe_core_unit = 0; sc->bfe_dma_offset = BFE_PCI_DMA; } static void bfe_pci_setup(struct bfe_softc *sc, u_int32_t cores) { u_int32_t bar_orig, pci_rev, val; bar_orig = pci_read_config(sc->bfe_dev, BFE_BAR0_WIN, 4); pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, BFE_REG_PCI, 4); pci_rev = CSR_READ_4(sc, BFE_SBIDHIGH) & BFE_RC_MASK; val = CSR_READ_4(sc, BFE_SBINTVEC); val |= cores; CSR_WRITE_4(sc, BFE_SBINTVEC, val); val = CSR_READ_4(sc, BFE_SSB_PCI_TRANS_2); val |= BFE_SSB_PCI_PREF | BFE_SSB_PCI_BURST; CSR_WRITE_4(sc, BFE_SSB_PCI_TRANS_2, val); pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, bar_orig, 4); } static void bfe_clear_stats(struct bfe_softc *sc) { uint32_t reg; BFE_LOCK_ASSERT(sc); CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ); for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) CSR_READ_4(sc, reg); for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) CSR_READ_4(sc, reg); } static int bfe_resetphy(struct bfe_softc *sc) { u_int32_t val; bfe_writephy(sc, 0, BMCR_RESET); DELAY(100); bfe_readphy(sc, 0, &val); if (val & BMCR_RESET) { device_printf(sc->bfe_dev, "PHY Reset would not complete.\n"); return (ENXIO); } return (0); } static void bfe_chip_halt(struct bfe_softc *sc) { BFE_LOCK_ASSERT(sc); /* disable interrupts - not that it actually does..*/ CSR_WRITE_4(sc, BFE_IMASK, 0); CSR_READ_4(sc, BFE_IMASK); CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE); bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 200, 1); CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0); CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0); DELAY(10); } static void bfe_chip_reset(struct bfe_softc *sc) { u_int32_t val; BFE_LOCK_ASSERT(sc); /* Set the interrupt vector for the enet core */ bfe_pci_setup(sc, BFE_INTVEC_ENET0); /* is core up? */ val = CSR_READ_4(sc, BFE_SBTMSLOW) & (BFE_RESET | BFE_REJECT | BFE_CLOCK); if (val == BFE_CLOCK) { /* It is, so shut it down */ CSR_WRITE_4(sc, BFE_RCV_LAZY, 0); CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE); bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 100, 1); CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0); if (CSR_READ_4(sc, BFE_DMARX_STAT) & BFE_STAT_EMASK) bfe_wait_bit(sc, BFE_DMARX_STAT, BFE_STAT_SIDLE, 100, 0); CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0); } bfe_core_reset(sc); bfe_clear_stats(sc); /* * We want the phy registers to be accessible even when * the driver is "downed" so initialize MDC preamble, frequency, * and whether internal or external phy here. */ /* 4402 has 62.5Mhz SB clock and internal phy */ CSR_WRITE_4(sc, BFE_MDIO_CTRL, 0x8d); /* Internal or external PHY? */ val = CSR_READ_4(sc, BFE_DEVCTRL); if (!(val & BFE_IPP)) CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_EPSEL); else if (CSR_READ_4(sc, BFE_DEVCTRL) & BFE_EPR) { BFE_AND(sc, BFE_DEVCTRL, ~BFE_EPR); DELAY(100); } /* Enable CRC32 generation and set proper LED modes */ BFE_OR(sc, BFE_MAC_CTRL, BFE_CTRL_CRC32_ENAB | BFE_CTRL_LED); /* Reset or clear powerdown control bit */ BFE_AND(sc, BFE_MAC_CTRL, ~BFE_CTRL_PDOWN); CSR_WRITE_4(sc, BFE_RCV_LAZY, ((1 << BFE_LAZY_FC_SHIFT) & BFE_LAZY_FC_MASK)); /* * We don't want lazy interrupts, so just send them at * the end of a frame, please */ BFE_OR(sc, BFE_RCV_LAZY, 0); /* Set max lengths, accounting for VLAN tags */ CSR_WRITE_4(sc, BFE_RXMAXLEN, ETHER_MAX_LEN+32); CSR_WRITE_4(sc, BFE_TXMAXLEN, ETHER_MAX_LEN+32); /* Set watermark XXX - magic */ CSR_WRITE_4(sc, BFE_TX_WMARK, 56); /* * Initialise DMA channels * - not forgetting dma addresses need to be added to BFE_PCI_DMA */ CSR_WRITE_4(sc, BFE_DMATX_CTRL, BFE_TX_CTRL_ENABLE); CSR_WRITE_4(sc, BFE_DMATX_ADDR, sc->bfe_tx_dma + BFE_PCI_DMA); CSR_WRITE_4(sc, BFE_DMARX_CTRL, (BFE_RX_OFFSET << BFE_RX_CTRL_ROSHIFT) | BFE_RX_CTRL_ENABLE); CSR_WRITE_4(sc, BFE_DMARX_ADDR, sc->bfe_rx_dma + BFE_PCI_DMA); bfe_resetphy(sc); bfe_setupphy(sc); } static void bfe_core_disable(struct bfe_softc *sc) { if ((CSR_READ_4(sc, BFE_SBTMSLOW)) & BFE_RESET) return; /* * Set reject, wait for it set, then wait for the core to stop * being busy, then set reset and reject and enable the clocks. */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_CLOCK)); bfe_wait_bit(sc, BFE_SBTMSLOW, BFE_REJECT, 1000, 0); bfe_wait_bit(sc, BFE_SBTMSHIGH, BFE_BUSY, 1000, 1); CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_FGC | BFE_CLOCK | BFE_REJECT | BFE_RESET)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Leave reset and reject set */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_RESET)); DELAY(10); } static void bfe_core_reset(struct bfe_softc *sc) { u_int32_t val; /* Disable the core */ bfe_core_disable(sc); /* and bring it back up */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_RESET | BFE_CLOCK | BFE_FGC)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Chip bug, clear SERR, IB and TO if they are set. */ if (CSR_READ_4(sc, BFE_SBTMSHIGH) & BFE_SERR) CSR_WRITE_4(sc, BFE_SBTMSHIGH, 0); val = CSR_READ_4(sc, BFE_SBIMSTATE); if (val & (BFE_IBE | BFE_TO)) CSR_WRITE_4(sc, BFE_SBIMSTATE, val & ~(BFE_IBE | BFE_TO)); /* Clear reset and allow it to move through the core */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_CLOCK | BFE_FGC)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Leave the clock set */ CSR_WRITE_4(sc, BFE_SBTMSLOW, BFE_CLOCK); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); } static void bfe_cam_write(struct bfe_softc *sc, u_char *data, int index) { u_int32_t val; val = ((u_int32_t) data[2]) << 24; val |= ((u_int32_t) data[3]) << 16; val |= ((u_int32_t) data[4]) << 8; val |= ((u_int32_t) data[5]); CSR_WRITE_4(sc, BFE_CAM_DATA_LO, val); val = (BFE_CAM_HI_VALID | (((u_int32_t) data[0]) << 8) | (((u_int32_t) data[1]))); CSR_WRITE_4(sc, BFE_CAM_DATA_HI, val); CSR_WRITE_4(sc, BFE_CAM_CTRL, (BFE_CAM_WRITE | ((u_int32_t) index << BFE_CAM_INDEX_SHIFT))); bfe_wait_bit(sc, BFE_CAM_CTRL, BFE_CAM_BUSY, 10000, 1); } static void bfe_set_rx_mode(struct bfe_softc *sc) { struct ifnet *ifp = sc->bfe_ifp; struct ifmultiaddr *ifma; u_int32_t val; int i = 0; BFE_LOCK_ASSERT(sc); val = CSR_READ_4(sc, BFE_RXCONF); if (ifp->if_flags & IFF_PROMISC) val |= BFE_RXCONF_PROMISC; else val &= ~BFE_RXCONF_PROMISC; if (ifp->if_flags & IFF_BROADCAST) val &= ~BFE_RXCONF_DBCAST; else val |= BFE_RXCONF_DBCAST; CSR_WRITE_4(sc, BFE_CAM_CTRL, 0); bfe_cam_write(sc, IF_LLADDR(sc->bfe_ifp), i++); if (ifp->if_flags & IFF_ALLMULTI) val |= BFE_RXCONF_ALLMULTI; else { val &= ~BFE_RXCONF_ALLMULTI; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; bfe_cam_write(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i++); } if_maddr_runlock(ifp); } CSR_WRITE_4(sc, BFE_RXCONF, val); BFE_OR(sc, BFE_CAM_CTRL, BFE_CAM_ENABLE); } static void bfe_dma_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct bfe_dmamap_arg *ctx; if (error != 0) return; KASSERT(nseg == 1, ("%s : %d segments returned!", __func__, nseg)); ctx = (struct bfe_dmamap_arg *)arg; ctx->bfe_busaddr = segs[0].ds_addr; } static void bfe_release_resources(struct bfe_softc *sc) { if (sc->bfe_intrhand != NULL) bus_teardown_intr(sc->bfe_dev, sc->bfe_irq, sc->bfe_intrhand); if (sc->bfe_irq != NULL) bus_release_resource(sc->bfe_dev, SYS_RES_IRQ, 0, sc->bfe_irq); if (sc->bfe_res != NULL) bus_release_resource(sc->bfe_dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bfe_res); if (sc->bfe_ifp != NULL) if_free(sc->bfe_ifp); } static void bfe_read_eeprom(struct bfe_softc *sc, u_int8_t *data) { long i; u_int16_t *ptr = (u_int16_t *)data; for(i = 0; i < 128; i += 2) ptr[i/2] = CSR_READ_4(sc, 4096 + i); } static int bfe_wait_bit(struct bfe_softc *sc, u_int32_t reg, u_int32_t bit, u_long timeout, const int clear) { u_long i; for (i = 0; i < timeout; i++) { u_int32_t val = CSR_READ_4(sc, reg); if (clear && !(val & bit)) break; if (!clear && (val & bit)) break; DELAY(10); } if (i == timeout) { device_printf(sc->bfe_dev, "BUG! Timeout waiting for bit %08x of register " "%x to %s.\n", bit, reg, (clear ? "clear" : "set")); return (-1); } return (0); } static int bfe_readphy(struct bfe_softc *sc, u_int32_t reg, u_int32_t *val) { int err; /* Clear MII ISR */ CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII); CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START | (BFE_MDIO_OP_READ << BFE_MDIO_OP_SHIFT) | (sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) | (reg << BFE_MDIO_RA_SHIFT) | (BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT))); err = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0); *val = CSR_READ_4(sc, BFE_MDIO_DATA) & BFE_MDIO_DATA_DATA; return (err); } static int bfe_writephy(struct bfe_softc *sc, u_int32_t reg, u_int32_t val) { int status; CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII); CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START | (BFE_MDIO_OP_WRITE << BFE_MDIO_OP_SHIFT) | (sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) | (reg << BFE_MDIO_RA_SHIFT) | (BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT) | (val & BFE_MDIO_DATA_DATA))); status = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0); return (status); } /* * XXX - I think this is handled by the PHY driver, but it can't hurt to do it * twice */ static int bfe_setupphy(struct bfe_softc *sc) { u_int32_t val; /* Enable activity LED */ bfe_readphy(sc, 26, &val); bfe_writephy(sc, 26, val & 0x7fff); bfe_readphy(sc, 26, &val); /* Enable traffic meter LED mode */ bfe_readphy(sc, 27, &val); bfe_writephy(sc, 27, val | (1 << 6)); return (0); } static void bfe_stats_update(struct bfe_softc *sc) { struct bfe_hw_stats *stats; struct ifnet *ifp; uint32_t mib[BFE_MIB_CNT]; uint32_t reg, *val; BFE_LOCK_ASSERT(sc); val = mib; CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ); for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) *val++ = CSR_READ_4(sc, reg); for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) *val++ = CSR_READ_4(sc, reg); ifp = sc->bfe_ifp; stats = &sc->bfe_stats; /* Tx stat. */ stats->tx_good_octets += mib[MIB_TX_GOOD_O]; stats->tx_good_frames += mib[MIB_TX_GOOD_P]; stats->tx_octets += mib[MIB_TX_O]; stats->tx_frames += mib[MIB_TX_P]; stats->tx_bcast_frames += mib[MIB_TX_BCAST]; stats->tx_mcast_frames += mib[MIB_TX_MCAST]; stats->tx_pkts_64 += mib[MIB_TX_64]; stats->tx_pkts_65_127 += mib[MIB_TX_65_127]; stats->tx_pkts_128_255 += mib[MIB_TX_128_255]; stats->tx_pkts_256_511 += mib[MIB_TX_256_511]; stats->tx_pkts_512_1023 += mib[MIB_TX_512_1023]; stats->tx_pkts_1024_max += mib[MIB_TX_1024_MAX]; stats->tx_jabbers += mib[MIB_TX_JABBER]; stats->tx_oversize_frames += mib[MIB_TX_OSIZE]; stats->tx_frag_frames += mib[MIB_TX_FRAG]; stats->tx_underruns += mib[MIB_TX_URUNS]; stats->tx_colls += mib[MIB_TX_TCOLS]; stats->tx_single_colls += mib[MIB_TX_SCOLS]; stats->tx_multi_colls += mib[MIB_TX_MCOLS]; stats->tx_excess_colls += mib[MIB_TX_ECOLS]; stats->tx_late_colls += mib[MIB_TX_LCOLS]; stats->tx_deferrals += mib[MIB_TX_DEFERED]; stats->tx_carrier_losts += mib[MIB_TX_CLOST]; stats->tx_pause_frames += mib[MIB_TX_PAUSE]; /* Rx stat. */ stats->rx_good_octets += mib[MIB_RX_GOOD_O]; stats->rx_good_frames += mib[MIB_RX_GOOD_P]; stats->rx_octets += mib[MIB_RX_O]; stats->rx_frames += mib[MIB_RX_P]; stats->rx_bcast_frames += mib[MIB_RX_BCAST]; stats->rx_mcast_frames += mib[MIB_RX_MCAST]; stats->rx_pkts_64 += mib[MIB_RX_64]; stats->rx_pkts_65_127 += mib[MIB_RX_65_127]; stats->rx_pkts_128_255 += mib[MIB_RX_128_255]; stats->rx_pkts_256_511 += mib[MIB_RX_256_511]; stats->rx_pkts_512_1023 += mib[MIB_RX_512_1023]; stats->rx_pkts_1024_max += mib[MIB_RX_1024_MAX]; stats->rx_jabbers += mib[MIB_RX_JABBER]; stats->rx_oversize_frames += mib[MIB_RX_OSIZE]; stats->rx_frag_frames += mib[MIB_RX_FRAG]; stats->rx_missed_frames += mib[MIB_RX_MISS]; stats->rx_crc_align_errs += mib[MIB_RX_CRCA]; stats->rx_runts += mib[MIB_RX_USIZE]; stats->rx_crc_errs += mib[MIB_RX_CRC]; stats->rx_align_errs += mib[MIB_RX_ALIGN]; stats->rx_symbol_errs += mib[MIB_RX_SYM]; stats->rx_pause_frames += mib[MIB_RX_PAUSE]; stats->rx_control_frames += mib[MIB_RX_NPAUSE]; /* Update counters in ifnet. */ ifp->if_opackets += (u_long)mib[MIB_TX_GOOD_P]; ifp->if_collisions += (u_long)mib[MIB_TX_TCOLS]; ifp->if_oerrors += (u_long)mib[MIB_TX_URUNS] + (u_long)mib[MIB_TX_ECOLS] + (u_long)mib[MIB_TX_DEFERED] + (u_long)mib[MIB_TX_CLOST]; ifp->if_ipackets += (u_long)mib[MIB_RX_GOOD_P]; ifp->if_ierrors += mib[MIB_RX_JABBER] + mib[MIB_RX_MISS] + mib[MIB_RX_CRCA] + mib[MIB_RX_USIZE] + mib[MIB_RX_CRC] + mib[MIB_RX_ALIGN] + mib[MIB_RX_SYM]; } static void bfe_txeof(struct bfe_softc *sc) { struct bfe_tx_data *r; struct ifnet *ifp; int i, chipidx; BFE_LOCK_ASSERT(sc); ifp = sc->bfe_ifp; chipidx = CSR_READ_4(sc, BFE_DMATX_STAT) & BFE_STAT_CDMASK; chipidx /= sizeof(struct bfe_desc); i = sc->bfe_tx_cons; if (i == chipidx) return; bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* Go through the mbufs and free those that have been transmitted */ for (; i != chipidx; BFE_INC(i, BFE_TX_LIST_CNT)) { r = &sc->bfe_tx_ring[i]; sc->bfe_tx_cnt--; if (r->bfe_mbuf == NULL) continue; bus_dmamap_sync(sc->bfe_txmbuf_tag, r->bfe_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bfe_txmbuf_tag, r->bfe_map); m_freem(r->bfe_mbuf); r->bfe_mbuf = NULL; } if (i != sc->bfe_tx_cons) { /* we freed up some mbufs */ sc->bfe_tx_cons = i; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } if (sc->bfe_tx_cnt == 0) sc->bfe_watchdog_timer = 0; } /* Pass a received packet up the stack */ static void bfe_rxeof(struct bfe_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct bfe_rxheader *rxheader; struct bfe_rx_data *r; int cons, prog; u_int32_t status, current, len, flags; BFE_LOCK_ASSERT(sc); cons = sc->bfe_rx_cons; status = CSR_READ_4(sc, BFE_DMARX_STAT); current = (status & BFE_STAT_CDMASK) / sizeof(struct bfe_desc); ifp = sc->bfe_ifp; bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (prog = 0; current != cons; prog++, BFE_INC(cons, BFE_RX_LIST_CNT)) { r = &sc->bfe_rx_ring[cons]; m = r->bfe_mbuf; /* * Rx status should be read from mbuf such that we can't * delay bus_dmamap_sync(9). This hardware limiation * results in inefficent mbuf usage as bfe(4) couldn't * reuse mapped buffer from errored frame. */ if (bfe_list_newbuf(sc, cons) != 0) { ifp->if_iqdrops++; bfe_discard_buf(sc, cons); continue; } rxheader = mtod(m, struct bfe_rxheader*); len = le16toh(rxheader->len); flags = le16toh(rxheader->flags); /* Remove CRC bytes. */ len -= ETHER_CRC_LEN; /* flag an error and try again */ if ((len > ETHER_MAX_LEN+32) || (flags & BFE_RX_FLAG_ERRORS)) { m_freem(m); continue; } /* Make sure to skip header bytes written by hardware. */ m_adj(m, BFE_RX_OFFSET); m->m_len = m->m_pkthdr.len = len; m->m_pkthdr.rcvif = ifp; BFE_UNLOCK(sc); (*ifp->if_input)(ifp, m); BFE_LOCK(sc); } if (prog > 0) { sc->bfe_rx_cons = cons; bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } static void bfe_intr(void *xsc) { struct bfe_softc *sc = xsc; struct ifnet *ifp; u_int32_t istat; ifp = sc->bfe_ifp; BFE_LOCK(sc); istat = CSR_READ_4(sc, BFE_ISTAT); /* * Defer unsolicited interrupts - This is necessary because setting the * chips interrupt mask register to 0 doesn't actually stop the * interrupts */ istat &= BFE_IMASK_DEF; CSR_WRITE_4(sc, BFE_ISTAT, istat); CSR_READ_4(sc, BFE_ISTAT); /* not expecting this interrupt, disregard it */ if (istat == 0 || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { BFE_UNLOCK(sc); return; } /* A packet was received */ if (istat & BFE_ISTAT_RX) bfe_rxeof(sc); /* A packet was sent */ if (istat & BFE_ISTAT_TX) bfe_txeof(sc); if (istat & BFE_ISTAT_ERRORS) { if (istat & BFE_ISTAT_DSCE) { device_printf(sc->bfe_dev, "Descriptor Error\n"); bfe_stop(sc); BFE_UNLOCK(sc); return; } if (istat & BFE_ISTAT_DPE) { device_printf(sc->bfe_dev, "Descriptor Protocol Error\n"); bfe_stop(sc); BFE_UNLOCK(sc); return; } ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bfe_init_locked(sc); } /* We have packets pending, fire them out */ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bfe_start_locked(ifp); BFE_UNLOCK(sc); } static int bfe_encap(struct bfe_softc *sc, struct mbuf **m_head) { struct bfe_desc *d; struct bfe_tx_data *r, *r1; struct mbuf *m; bus_dmamap_t map; bus_dma_segment_t txsegs[BFE_MAXTXSEGS]; uint32_t cur, si; int error, i, nsegs; BFE_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); si = cur = sc->bfe_tx_prod; r = &sc->bfe_tx_ring[cur]; error = bus_dmamap_load_mbuf_sg(sc->bfe_txmbuf_tag, r->bfe_map, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_DONTWAIT, BFE_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->bfe_txmbuf_tag, r->bfe_map, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } if (sc->bfe_tx_cnt + nsegs > BFE_TX_LIST_CNT - 1) { bus_dmamap_unload(sc->bfe_txmbuf_tag, r->bfe_map); return (ENOBUFS); } for (i = 0; i < nsegs; i++) { d = &sc->bfe_tx_list[cur]; d->bfe_ctrl = htole32(txsegs[i].ds_len & BFE_DESC_LEN); d->bfe_ctrl |= htole32(BFE_DESC_IOC); if (cur == BFE_TX_LIST_CNT - 1) /* * Tell the chip to wrap to the start of * the descriptor list. */ d->bfe_ctrl |= htole32(BFE_DESC_EOT); /* The chip needs all addresses to be added to BFE_PCI_DMA. */ d->bfe_addr = htole32(BFE_ADDR_LO(txsegs[i].ds_addr) + BFE_PCI_DMA); BFE_INC(cur, BFE_TX_LIST_CNT); } /* Update producer index. */ sc->bfe_tx_prod = cur; /* Set EOF on the last descriptor. */ cur = (cur + BFE_TX_LIST_CNT - 1) % BFE_TX_LIST_CNT; d = &sc->bfe_tx_list[cur]; d->bfe_ctrl |= htole32(BFE_DESC_EOF); /* Lastly set SOF on the first descriptor to avoid races. */ d = &sc->bfe_tx_list[si]; d->bfe_ctrl |= htole32(BFE_DESC_SOF); r1 = &sc->bfe_tx_ring[cur]; map = r->bfe_map; r->bfe_map = r1->bfe_map; r1->bfe_map = map; r1->bfe_mbuf = *m_head; sc->bfe_tx_cnt += nsegs; bus_dmamap_sync(sc->bfe_txmbuf_tag, map, BUS_DMASYNC_PREWRITE); return (0); } /* * Set up to transmit a packet. */ static void bfe_start(struct ifnet *ifp) { BFE_LOCK((struct bfe_softc *)ifp->if_softc); bfe_start_locked(ifp); BFE_UNLOCK((struct bfe_softc *)ifp->if_softc); } /* * Set up to transmit a packet. The softc is already locked. */ static void bfe_start_locked(struct ifnet *ifp) { struct bfe_softc *sc; struct mbuf *m_head; int queued; sc = ifp->if_softc; BFE_LOCK_ASSERT(sc); /* * Not much point trying to send if the link is down * or we have nothing to send. */ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->bfe_flags & BFE_FLAG_LINK) == 0) return; for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->bfe_tx_cnt < BFE_TX_LIST_CNT - 1;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the tx ring. If we dont have * enough room, let the chip drain the ring. */ if (bfe_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (queued) { bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Transmit - twice due to apparent hardware bug */ CSR_WRITE_4(sc, BFE_DMATX_PTR, sc->bfe_tx_prod * sizeof(struct bfe_desc)); /* * XXX It seems the following write is not necessary * to kick Tx command. What might be required would be * a way flushing PCI posted write. Reading the register * back ensures the flush operation. In addition, * hardware will execute PCI posted write in the long * run and watchdog timer for the kick command was set * to 5 seconds. Therefore I think the second write * access is not necessary or could be replaced with * read operation. */ CSR_WRITE_4(sc, BFE_DMATX_PTR, sc->bfe_tx_prod * sizeof(struct bfe_desc)); /* * Set a timeout in case the chip goes out to lunch. */ sc->bfe_watchdog_timer = 5; } } static void bfe_init(void *xsc) { BFE_LOCK((struct bfe_softc *)xsc); bfe_init_locked(xsc); BFE_UNLOCK((struct bfe_softc *)xsc); } static void bfe_init_locked(void *xsc) { struct bfe_softc *sc = (struct bfe_softc*)xsc; struct ifnet *ifp = sc->bfe_ifp; struct mii_data *mii; BFE_LOCK_ASSERT(sc); mii = device_get_softc(sc->bfe_miibus); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; bfe_stop(sc); bfe_chip_reset(sc); if (bfe_list_rx_init(sc) == ENOBUFS) { device_printf(sc->bfe_dev, "%s: Not enough memory for list buffers\n", __func__); bfe_stop(sc); return; } bfe_list_tx_init(sc); bfe_set_rx_mode(sc); /* Enable the chip and core */ BFE_OR(sc, BFE_ENET_CTRL, BFE_ENET_ENABLE); /* Enable interrupts */ CSR_WRITE_4(sc, BFE_IMASK, BFE_IMASK_DEF); /* Clear link state and change media. */ sc->bfe_flags &= ~BFE_FLAG_LINK; mii_mediachg(mii); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->bfe_stat_co, hz, bfe_tick, sc); } /* * Set media options. */ static int bfe_ifmedia_upd(struct ifnet *ifp) { struct bfe_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; BFE_LOCK(sc); mii = device_get_softc(sc->bfe_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); BFE_UNLOCK(sc); return (error); } /* * Report current media status. */ static void bfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bfe_softc *sc = ifp->if_softc; struct mii_data *mii; BFE_LOCK(sc); mii = device_get_softc(sc->bfe_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; BFE_UNLOCK(sc); } static int bfe_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct bfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFFLAGS: BFE_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) bfe_set_rx_mode(sc); else if ((sc->bfe_flags & BFE_FLAG_DETACH) == 0) bfe_init_locked(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) bfe_stop(sc); BFE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: BFE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) bfe_set_rx_mode(sc); BFE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->bfe_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void bfe_watchdog(struct bfe_softc *sc) { struct ifnet *ifp; BFE_LOCK_ASSERT(sc); if (sc->bfe_watchdog_timer == 0 || --sc->bfe_watchdog_timer) return; ifp = sc->bfe_ifp; device_printf(sc->bfe_dev, "watchdog timeout -- resetting\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; bfe_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) bfe_start_locked(ifp); } static void bfe_tick(void *xsc) { struct bfe_softc *sc = xsc; struct mii_data *mii; BFE_LOCK_ASSERT(sc); mii = device_get_softc(sc->bfe_miibus); mii_tick(mii); bfe_stats_update(sc); bfe_watchdog(sc); callout_reset(&sc->bfe_stat_co, hz, bfe_tick, sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bfe_stop(struct bfe_softc *sc) { struct ifnet *ifp; BFE_LOCK_ASSERT(sc); ifp = sc->bfe_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->bfe_flags &= ~BFE_FLAG_LINK; callout_stop(&sc->bfe_stat_co); sc->bfe_watchdog_timer = 0; bfe_chip_halt(sc); bfe_tx_ring_free(sc); bfe_rx_ring_free(sc); } static int sysctl_bfe_stats(SYSCTL_HANDLER_ARGS) { struct bfe_softc *sc; struct bfe_hw_stats *stats; int error, result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (result != 1) return (error); sc = (struct bfe_softc *)arg1; stats = &sc->bfe_stats; printf("%s statistics:\n", device_get_nameunit(sc->bfe_dev)); printf("Transmit good octets : %ju\n", (uintmax_t)stats->tx_good_octets); printf("Transmit good frames : %ju\n", (uintmax_t)stats->tx_good_frames); printf("Transmit octets : %ju\n", (uintmax_t)stats->tx_octets); printf("Transmit frames : %ju\n", (uintmax_t)stats->tx_frames); printf("Transmit broadcast frames : %ju\n", (uintmax_t)stats->tx_bcast_frames); printf("Transmit multicast frames : %ju\n", (uintmax_t)stats->tx_mcast_frames); printf("Transmit frames 64 bytes : %ju\n", (uint64_t)stats->tx_pkts_64); printf("Transmit frames 65 to 127 bytes : %ju\n", (uint64_t)stats->tx_pkts_65_127); printf("Transmit frames 128 to 255 bytes : %ju\n", (uint64_t)stats->tx_pkts_128_255); printf("Transmit frames 256 to 511 bytes : %ju\n", (uint64_t)stats->tx_pkts_256_511); printf("Transmit frames 512 to 1023 bytes : %ju\n", (uint64_t)stats->tx_pkts_512_1023); printf("Transmit frames 1024 to max bytes : %ju\n", (uint64_t)stats->tx_pkts_1024_max); printf("Transmit jabber errors : %u\n", stats->tx_jabbers); printf("Transmit oversized frames : %ju\n", (uint64_t)stats->tx_oversize_frames); printf("Transmit fragmented frames : %ju\n", (uint64_t)stats->tx_frag_frames); printf("Transmit underruns : %u\n", stats->tx_colls); printf("Transmit total collisions : %u\n", stats->tx_single_colls); printf("Transmit single collisions : %u\n", stats->tx_single_colls); printf("Transmit multiple collisions : %u\n", stats->tx_multi_colls); printf("Transmit excess collisions : %u\n", stats->tx_excess_colls); printf("Transmit late collisions : %u\n", stats->tx_late_colls); printf("Transmit deferrals : %u\n", stats->tx_deferrals); printf("Transmit carrier losts : %u\n", stats->tx_carrier_losts); printf("Transmit pause frames : %u\n", stats->tx_pause_frames); printf("Receive good octets : %ju\n", (uintmax_t)stats->rx_good_octets); printf("Receive good frames : %ju\n", (uintmax_t)stats->rx_good_frames); printf("Receive octets : %ju\n", (uintmax_t)stats->rx_octets); printf("Receive frames : %ju\n", (uintmax_t)stats->rx_frames); printf("Receive broadcast frames : %ju\n", (uintmax_t)stats->rx_bcast_frames); printf("Receive multicast frames : %ju\n", (uintmax_t)stats->rx_mcast_frames); printf("Receive frames 64 bytes : %ju\n", (uint64_t)stats->rx_pkts_64); printf("Receive frames 65 to 127 bytes : %ju\n", (uint64_t)stats->rx_pkts_65_127); printf("Receive frames 128 to 255 bytes : %ju\n", (uint64_t)stats->rx_pkts_128_255); printf("Receive frames 256 to 511 bytes : %ju\n", (uint64_t)stats->rx_pkts_256_511); printf("Receive frames 512 to 1023 bytes : %ju\n", (uint64_t)stats->rx_pkts_512_1023); printf("Receive frames 1024 to max bytes : %ju\n", (uint64_t)stats->rx_pkts_1024_max); printf("Receive jabber errors : %u\n", stats->rx_jabbers); printf("Receive oversized frames : %ju\n", (uint64_t)stats->rx_oversize_frames); printf("Receive fragmented frames : %ju\n", (uint64_t)stats->rx_frag_frames); printf("Receive missed frames : %u\n", stats->rx_missed_frames); printf("Receive CRC align errors : %u\n", stats->rx_crc_align_errs); printf("Receive undersized frames : %u\n", stats->rx_runts); printf("Receive CRC errors : %u\n", stats->rx_crc_errs); printf("Receive align errors : %u\n", stats->rx_align_errs); printf("Receive symbol errors : %u\n", stats->rx_symbol_errs); printf("Receive pause frames : %u\n", stats->rx_pause_frames); printf("Receive control frames : %u\n", stats->rx_control_frames); return (error); }