Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uhci/@/net/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uhci/@/net/if_ef.c |
/*- * Copyright (c) 1999, 2000 Boris Popov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/net/if_ef.c 207554 2010-05-03 07:32:50Z sobomax $ */ #include "opt_inet.h" #include "opt_ipx.h" #include "opt_ef.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/socket.h> #include <sys/syslog.h> #include <sys/kernel.h> #include <sys/module.h> #include <net/ethernet.h> #include <net/if_llc.h> #include <net/if.h> #include <net/if_arp.h> #include <net/if_dl.h> #include <net/if_types.h> #include <net/netisr.h> #include <net/bpf.h> #include <net/vnet.h> #ifdef INET #include <netinet/in.h> #include <netinet/in_var.h> #include <netinet/if_ether.h> #endif #ifdef IPX #include <netipx/ipx.h> #include <netipx/ipx_if.h> #endif /* If none of the supported layers is enabled explicitly enable them all */ #if !defined(ETHER_II) && !defined(ETHER_8023) && !defined(ETHER_8022) && \ !defined(ETHER_SNAP) #define ETHER_II 1 #define ETHER_8023 1 #define ETHER_8022 1 #define ETHER_SNAP 1 #endif /* internal frame types */ #define ETHER_FT_EII 0 /* Ethernet_II - default */ #define ETHER_FT_8023 1 /* 802.3 (Novell) */ #define ETHER_FT_8022 2 /* 802.2 */ #define ETHER_FT_SNAP 3 /* SNAP */ #define EF_NFT 4 /* total number of frame types */ #ifdef EF_DEBUG #define EFDEBUG(format, args...) printf("%s: "format, __func__ ,## args) #else #define EFDEBUG(format, args...) #endif #define EFERROR(format, args...) printf("%s: "format, __func__ ,## args) struct efnet { struct ifnet *ef_ifp; struct ifnet *ef_pifp; int ef_frametype; }; struct ef_link { SLIST_ENTRY(ef_link) el_next; struct ifnet *el_ifp; /* raw device for this clones */ struct efnet *el_units[EF_NFT]; /* our clones */ }; static SLIST_HEAD(ef_link_head, ef_link) efdev = {NULL}; static int efcount; extern int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); extern int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, short *tp, int *hlen); /* static void ef_reset (struct ifnet *); */ static int ef_attach(struct efnet *sc); static int ef_detach(struct efnet *sc); static void ef_init(void *); static int ef_ioctl(struct ifnet *, u_long, caddr_t); static void ef_start(struct ifnet *); static int ef_input(struct ifnet*, struct ether_header *, struct mbuf *); static int ef_output(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, short *tp, int *hlen); static int ef_load(void); static int ef_unload(void); /* * Install the interface, most of structure initialization done in ef_clone() */ static int ef_attach(struct efnet *sc) { struct ifnet *ifp = sc->ef_ifp; ifp->if_start = ef_start; ifp->if_init = ef_init; ifp->if_snd.ifq_maxlen = ifqmaxlen; ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); /* * Attach the interface */ ether_ifattach(ifp, IF_LLADDR(sc->ef_pifp)); ifp->if_resolvemulti = 0; ifp->if_type = IFT_XETHER; ifp->if_drv_flags |= IFF_DRV_RUNNING; EFDEBUG("%s: attached\n", ifp->if_xname); return 1; } /* * This is for _testing_only_, just removes interface from interfaces list */ static int ef_detach(struct efnet *sc) { struct ifnet *ifp = sc->ef_ifp; int s; s = splimp(); ether_ifdetach(ifp); if_free(ifp); splx(s); return 0; } static void ef_init(void *foo) { return; } static int ef_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct efnet *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr*)data; int s, error; EFDEBUG("IOCTL %ld for %s\n", cmd, ifp->if_xname); error = 0; s = splimp(); switch (cmd) { case SIOCSIFFLAGS: error = 0; break; case SIOCSIFADDR: if (sc->ef_frametype == ETHER_FT_8023 && ifa->ifa_addr->sa_family != AF_IPX) { error = EAFNOSUPPORT; break; } ifp->if_flags |= IFF_UP; /* FALL THROUGH */ default: error = ether_ioctl(ifp, cmd, data); break; } splx(s); return error; } /* * Currently packet prepared in the ether_output(), but this can be a better * place. */ static void ef_start(struct ifnet *ifp) { struct efnet *sc = (struct efnet*)ifp->if_softc; struct ifnet *p; struct mbuf *m; int error; ifp->if_drv_flags |= IFF_DRV_OACTIVE; p = sc->ef_pifp; EFDEBUG("\n"); for (;;) { IF_DEQUEUE(&ifp->if_snd, m); if (m == 0) break; BPF_MTAP(ifp, m); error = p->if_transmit(p, m); if (error) { ifp->if_oerrors++; continue; } ifp->if_opackets++; } ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; return; } /* * Inline functions do not put additional overhead to procedure call or * parameter passing but simplify the code */ static int __inline ef_inputEII(struct mbuf *m, struct ether_header *eh, u_short ether_type) { int isr; switch(ether_type) { #ifdef IPX case ETHERTYPE_IPX: isr = NETISR_IPX; break; #endif #ifdef INET case ETHERTYPE_IP: if ((m = ip_fastforward(m)) == NULL) return (0); isr = NETISR_IP; break; case ETHERTYPE_ARP: isr = NETISR_ARP; break; #endif default: return (EPROTONOSUPPORT); } netisr_dispatch(isr, m); return (0); } static int __inline ef_inputSNAP(struct mbuf *m, struct ether_header *eh, struct llc* l, u_short ether_type) { int isr; switch(ether_type) { #ifdef IPX case ETHERTYPE_IPX: m_adj(m, 8); isr = NETISR_IPX; break; #endif default: return (EPROTONOSUPPORT); } netisr_dispatch(isr, m); return (0); } static int __inline ef_input8022(struct mbuf *m, struct ether_header *eh, struct llc* l, u_short ether_type) { int isr; switch(ether_type) { #ifdef IPX case 0xe0: m_adj(m, 3); isr = NETISR_IPX; break; #endif default: return (EPROTONOSUPPORT); } netisr_dispatch(isr, m); return (0); } /* * Called from ether_input() */ static int ef_input(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m) { u_short ether_type; int ft = -1; struct efnet *efp; struct ifnet *eifp; struct llc *l; struct ef_link *efl; int isr; ether_type = ntohs(eh->ether_type); l = NULL; if (ether_type < ETHERMTU) { l = mtod(m, struct llc*); if (l->llc_dsap == 0xff && l->llc_ssap == 0xff) { /* * Novell's "802.3" frame */ ft = ETHER_FT_8023; } else if (l->llc_dsap == 0xaa && l->llc_ssap == 0xaa) { /* * 802.2/SNAP */ ft = ETHER_FT_SNAP; ether_type = ntohs(l->llc_un.type_snap.ether_type); } else if (l->llc_dsap == l->llc_ssap) { /* * 802.3/802.2 */ ft = ETHER_FT_8022; ether_type = l->llc_ssap; } } else ft = ETHER_FT_EII; if (ft == -1) { EFDEBUG("Unrecognised ether_type %x\n", ether_type); return EPROTONOSUPPORT; } /* * Check if interface configured for the given frame */ efp = NULL; SLIST_FOREACH(efl, &efdev, el_next) { if (efl->el_ifp == ifp) { efp = efl->el_units[ft]; break; } } if (efp == NULL) { EFDEBUG("Can't find if for %d\n", ft); return EPROTONOSUPPORT; } eifp = efp->ef_ifp; if ((eifp->if_flags & IFF_UP) == 0) return EPROTONOSUPPORT; eifp->if_ibytes += m->m_pkthdr.len + sizeof (*eh); m->m_pkthdr.rcvif = eifp; BPF_MTAP2(eifp, eh, ETHER_HDR_LEN, m); /* * Now we ready to adjust mbufs and pass them to protocol intr's */ switch(ft) { case ETHER_FT_EII: return (ef_inputEII(m, eh, ether_type)); #ifdef IPX case ETHER_FT_8023: /* only IPX can be here */ isr = NETISR_IPX; break; #endif case ETHER_FT_SNAP: return (ef_inputSNAP(m, eh, l, ether_type)); case ETHER_FT_8022: return (ef_input8022(m, eh, l, ether_type)); default: EFDEBUG("No support for frame %d and proto %04x\n", ft, ether_type); return (EPROTONOSUPPORT); } netisr_dispatch(isr, m); return (0); } static int ef_output(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, short *tp, int *hlen) { struct efnet *sc = (struct efnet*)ifp->if_softc; struct mbuf *m = *mp; u_char *cp; short type; if (ifp->if_type != IFT_XETHER) return ENETDOWN; switch (sc->ef_frametype) { case ETHER_FT_EII: #ifdef IPX type = htons(ETHERTYPE_IPX); #else return EPFNOSUPPORT; #endif break; case ETHER_FT_8023: type = htons(m->m_pkthdr.len); break; case ETHER_FT_8022: M_PREPEND(m, ETHER_HDR_LEN + 3, M_WAIT); /* * Ensure that ethernet header and next three bytes * will fit into single mbuf */ m = m_pullup(m, ETHER_HDR_LEN + 3); if (m == NULL) { *mp = NULL; return ENOBUFS; } m_adj(m, ETHER_HDR_LEN); type = htons(m->m_pkthdr.len); cp = mtod(m, u_char *); *cp++ = 0xE0; *cp++ = 0xE0; *cp++ = 0x03; *hlen += 3; break; case ETHER_FT_SNAP: M_PREPEND(m, 8, M_WAIT); type = htons(m->m_pkthdr.len); cp = mtod(m, u_char *); bcopy("\xAA\xAA\x03\x00\x00\x00\x81\x37", cp, 8); *hlen += 8; break; default: return EPFNOSUPPORT; } *mp = m; *tp = type; return 0; } /* * Create clone from the given interface */ static int ef_clone(struct ef_link *efl, int ft) { struct efnet *efp; struct ifnet *eifp; struct ifnet *ifp = efl->el_ifp; efp = (struct efnet*)malloc(sizeof(struct efnet), M_IFADDR, M_WAITOK | M_ZERO); if (efp == NULL) return ENOMEM; efp->ef_pifp = ifp; efp->ef_frametype = ft; eifp = efp->ef_ifp = if_alloc(IFT_ETHER); if (eifp == NULL) { free(efp, M_IFADDR); return (ENOSPC); } snprintf(eifp->if_xname, IFNAMSIZ, "%sf%d", ifp->if_xname, efp->ef_frametype); eifp->if_dname = "ef"; eifp->if_dunit = IF_DUNIT_NONE; eifp->if_softc = efp; if (ifp->if_ioctl) eifp->if_ioctl = ef_ioctl; efl->el_units[ft] = efp; return 0; } static int ef_load(void) { VNET_ITERATOR_DECL(vnet_iter); struct ifnet *ifp; struct efnet *efp; struct ef_link *efl = NULL, *efl_temp; int error = 0, d; VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* * XXXRW: The following loop walks the ifnet list while * modifying it, something not well-supported by ifnet * locking. To avoid lock upgrade/recursion issues, manually * acquire a write lock of ifnet_sxlock here, rather than a * read lock, so that when if_alloc() recurses the lock, we * don't panic. This structure, in which if_ef automatically * attaches to all ethernet interfaces, should be replaced * with a model like that found in if_vlan, in which * interfaces are explicitly configured, which would avoid * this (and other) problems. */ sx_xlock(&ifnet_sxlock); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_type != IFT_ETHER) continue; EFDEBUG("Found interface %s\n", ifp->if_xname); efl = (struct ef_link*)malloc(sizeof(struct ef_link), M_IFADDR, M_WAITOK | M_ZERO); if (efl == NULL) { error = ENOMEM; break; } efl->el_ifp = ifp; #ifdef ETHER_II error = ef_clone(efl, ETHER_FT_EII); if (error) break; #endif #ifdef ETHER_8023 error = ef_clone(efl, ETHER_FT_8023); if (error) break; #endif #ifdef ETHER_8022 error = ef_clone(efl, ETHER_FT_8022); if (error) break; #endif #ifdef ETHER_SNAP error = ef_clone(efl, ETHER_FT_SNAP); if (error) break; #endif efcount++; SLIST_INSERT_HEAD(&efdev, efl, el_next); } sx_xunlock(&ifnet_sxlock); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); if (error) { if (efl) SLIST_INSERT_HEAD(&efdev, efl, el_next); SLIST_FOREACH_SAFE(efl, &efdev, el_next, efl_temp) { for (d = 0; d < EF_NFT; d++) if (efl->el_units[d]) { if (efl->el_units[d]->ef_pifp != NULL) if_free(efl->el_units[d]->ef_pifp); free(efl->el_units[d], M_IFADDR); } free(efl, M_IFADDR); } return error; } SLIST_FOREACH(efl, &efdev, el_next) { for (d = 0; d < EF_NFT; d++) { efp = efl->el_units[d]; if (efp) ef_attach(efp); } } ef_inputp = ef_input; ef_outputp = ef_output; EFDEBUG("Loaded\n"); return 0; } static int ef_unload(void) { struct efnet *efp; struct ef_link *efl; int d; ef_inputp = NULL; ef_outputp = NULL; SLIST_FOREACH(efl, &efdev, el_next) { for (d = 0; d < EF_NFT; d++) { efp = efl->el_units[d]; if (efp) { ef_detach(efp); } } } EFDEBUG("Unloaded\n"); return 0; } static int if_ef_modevent(module_t mod, int type, void *data) { switch ((modeventtype_t)type) { case MOD_LOAD: return ef_load(); case MOD_UNLOAD: return ef_unload(); default: return EOPNOTSUPP; } return 0; } static moduledata_t if_ef_mod = { "if_ef", if_ef_modevent, NULL }; DECLARE_MODULE(if_ef, if_ef_mod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);