config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/umodem/@/dev/bce/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/umodem/@/dev/bce/if_bce.c

/*-
 * Copyright (c) 2006-2010 Broadcom Corporation
 *	David Christensen <davidch@broadcom.com>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written consent.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/bce/if_bce.c 236216 2012-05-29 04:30:02Z yongari $");

/*
 * The following controllers are supported by this driver:
 *   BCM5706C A2, A3
 *   BCM5706S A2, A3
 *   BCM5708C B1, B2
 *   BCM5708S B1, B2
 *   BCM5709C A1, C0
 *   BCM5709S A1, C0
 *   BCM5716C C0
 *   BCM5716S C0
 *
 * The following controllers are not supported by this driver:
 *   BCM5706C A0, A1 (pre-production)
 *   BCM5706S A0, A1 (pre-production)
 *   BCM5708C A0, B0 (pre-production)
 *   BCM5708S A0, B0 (pre-production)
 *   BCM5709C A0  B0, B1, B2 (pre-production)
 *   BCM5709S A0, B0, B1, B2 (pre-production)
 */

#include "opt_bce.h"

#include <dev/bce/if_bcereg.h>
#include <dev/bce/if_bcefw.h>

/****************************************************************************/
/* BCE Debug Options                                                        */
/****************************************************************************/
#ifdef BCE_DEBUG
	u32 bce_debug = BCE_WARN;

	/*          0 = Never              */
	/*          1 = 1 in 2,147,483,648 */
	/*        256 = 1 in     8,388,608 */
	/*       2048 = 1 in     1,048,576 */
	/*      65536 = 1 in        32,768 */
	/*    1048576 = 1 in         2,048 */
	/*  268435456 =	1 in             8 */
	/*  536870912 = 1 in             4 */
	/* 1073741824 = 1 in             2 */

	/* Controls how often the l2_fhdr frame error check will fail. */
	int l2fhdr_error_sim_control = 0;

	/* Controls how often the unexpected attention check will fail. */
	int unexpected_attention_sim_control = 0;

	/* Controls how often to simulate an mbuf allocation failure. */
	int mbuf_alloc_failed_sim_control = 0;

	/* Controls how often to simulate a DMA mapping failure. */
	int dma_map_addr_failed_sim_control = 0;

	/* Controls how often to simulate a bootcode failure. */
	int bootcode_running_failure_sim_control = 0;
#endif

/****************************************************************************/
/* PCI Device ID Table                                                      */
/*                                                                          */
/* Used by bce_probe() to identify the devices supported by this driver.    */
/****************************************************************************/
#define BCE_DEVDESC_MAX		64

static struct bce_type bce_devs[] = {
	/* BCM5706C Controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
		"HP NC370T Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
		"HP NC370i Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
		"HP NC371i Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5706 1000Base-T" },

	/* BCM5706S controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
		"HP NC370F Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5706 1000Base-SX" },

	/* BCM5708C controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
		"HP NC373T PCIe Multifunction Gig Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
		"HP NC373i Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
		"HP NC374m PCIe Multifunction Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5708 1000Base-T" },

	/* BCM5708S controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
		"HP NC373m Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
		"HP NC373i Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
		"HP NC373F PCIe Multifunc Giga Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5708 1000Base-SX" },

	/* BCM5709C controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
		"HP NC382i DP Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5709 1000Base-T" },

	/* BCM5709S controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
		"HP NC382i DP Multifunction Gigabit Server Adapter" },
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5709 1000Base-SX" },

	/* BCM5716 controllers and OEM boards. */
	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
		"Broadcom NetXtreme II BCM5716 1000Base-T" },

	{ 0, 0, 0, 0, NULL }
};


/****************************************************************************/
/* Supported Flash NVRAM device data.                                       */
/****************************************************************************/
static struct flash_spec flash_table[] =
{
#define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
#define NONBUFFERED_FLAGS	(BCE_NV_WREN)

	/* Slow EEPROM */
	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
	 "EEPROM - slow"},
	/* Expansion entry 0001 */
	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 0001"},
	/* Saifun SA25F010 (non-buffered flash) */
	/* strap, cfg1, & write1 need updates */
	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
	 "Non-buffered flash (128kB)"},
	/* Saifun SA25F020 (non-buffered flash) */
	/* strap, cfg1, & write1 need updates */
	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
	 "Non-buffered flash (256kB)"},
	/* Expansion entry 0100 */
	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 0100"},
	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
	/* Saifun SA25F005 (non-buffered flash) */
	/* strap, cfg1, & write1 need updates */
	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
	 "Non-buffered flash (64kB)"},
	/* Fast EEPROM */
	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
	 "EEPROM - fast"},
	/* Expansion entry 1001 */
	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 1001"},
	/* Expansion entry 1010 */
	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 1010"},
	/* ATMEL AT45DB011B (buffered flash) */
	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
	 "Buffered flash (128kB)"},
	/* Expansion entry 1100 */
	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 1100"},
	/* Expansion entry 1101 */
	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 1101"},
	/* Ateml Expansion entry 1110 */
	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
	 "Entry 1110 (Atmel)"},
	/* ATMEL AT45DB021B (buffered flash) */
	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
	 "Buffered flash (256kB)"},
};

/*
 * The BCM5709 controllers transparently handle the
 * differences between Atmel 264 byte pages and all
 * flash devices which use 256 byte pages, so no
 * logical-to-physical mapping is required in the
 * driver.
 */
static struct flash_spec flash_5709 = {
	.flags		= BCE_NV_BUFFERED,
	.page_bits	= BCM5709_FLASH_PAGE_BITS,
	.page_size	= BCM5709_FLASH_PAGE_SIZE,
	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
	.name		= "5709/5716 buffered flash (256kB)",
};


/****************************************************************************/
/* FreeBSD device entry points.                                             */
/****************************************************************************/
static int  bce_probe			(device_t);
static int  bce_attach			(device_t);
static int  bce_detach			(device_t);
static int  bce_shutdown		(device_t);


/****************************************************************************/
/* BCE Debug Data Structure Dump Routines                                   */
/****************************************************************************/
#ifdef BCE_DEBUG
static u32  bce_reg_rd				(struct bce_softc *, u32);
static void bce_reg_wr				(struct bce_softc *, u32, u32);
static void bce_reg_wr16			(struct bce_softc *, u32, u16);
static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
static void bce_dump_txbd			(struct bce_softc *,
    int, struct tx_bd *);
static void bce_dump_rxbd			(struct bce_softc *,
    int, struct rx_bd *);
static void bce_dump_pgbd			(struct bce_softc *,
    int, struct rx_bd *);
static void bce_dump_l2fhdr		(struct bce_softc *,
    int, struct l2_fhdr *);
static void bce_dump_ctx			(struct bce_softc *, u16);
static void bce_dump_ftqs			(struct bce_softc *);
static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
static void bce_dump_status_block	(struct bce_softc *);
static void bce_dump_stats_block	(struct bce_softc *);
static void bce_dump_driver_state	(struct bce_softc *);
static void bce_dump_hw_state		(struct bce_softc *);
static void bce_dump_shmem_state	(struct bce_softc *);
static void bce_dump_mq_regs		(struct bce_softc *);
static void bce_dump_bc_state		(struct bce_softc *);
static void bce_dump_txp_state		(struct bce_softc *, int);
static void bce_dump_rxp_state		(struct bce_softc *, int);
static void bce_dump_tpat_state	(struct bce_softc *, int);
static void bce_dump_cp_state		(struct bce_softc *, int);
static void bce_dump_com_state		(struct bce_softc *, int);
static void bce_dump_rv2p_state	(struct bce_softc *);
static void bce_breakpoint			(struct bce_softc *);
#endif /*BCE_DEBUG */


/****************************************************************************/
/* BCE Register/Memory Access Routines                                      */
/****************************************************************************/
static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
static void bce_shmem_wr		(struct bce_softc *, u32, u32);
static u32  bce_shmem_rd		(struct bce_softc *, u32);
static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
static int  bce_miibus_read_reg		(device_t, int, int);
static int  bce_miibus_write_reg	(device_t, int, int, int);
static void bce_miibus_statchg		(device_t);

#ifdef BCE_DEBUG
static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
#ifdef BCE_NVRAM_WRITE_SUPPORT
static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
#endif
#endif

/****************************************************************************/
/* BCE NVRAM Access Routines                                                */
/****************************************************************************/
static int  bce_acquire_nvram_lock	(struct bce_softc *);
static int  bce_release_nvram_lock	(struct bce_softc *);
static void bce_enable_nvram_access(struct bce_softc *);
static void bce_disable_nvram_access(struct bce_softc *);
static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
static int  bce_init_nvram			(struct bce_softc *);
static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
static int  bce_nvram_test			(struct bce_softc *);
#ifdef BCE_NVRAM_WRITE_SUPPORT
static int  bce_enable_nvram_write	(struct bce_softc *);
static void bce_disable_nvram_write(struct bce_softc *);
static int  bce_nvram_erase_page	(struct bce_softc *, u32);
static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
#endif

/****************************************************************************/
/*                                                                          */
/****************************************************************************/
static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
static void bce_get_media			(struct bce_softc *);
static void bce_init_media			(struct bce_softc *);
static u32 bce_get_rphy_link		(struct bce_softc *);
static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
static int  bce_dma_alloc			(device_t);
static void bce_dma_free			(struct bce_softc *);
static void bce_release_resources	(struct bce_softc *);

/****************************************************************************/
/* BCE Firmware Synchronization and Load                                    */
/****************************************************************************/
static void bce_fw_cap_init			(struct bce_softc *);
static int  bce_fw_sync			(struct bce_softc *, u32);
static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
static void bce_load_cpu_fw		(struct bce_softc *,
    struct cpu_reg *, struct fw_info *);
static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
static void bce_start_rxp_cpu		(struct bce_softc *);
static void bce_init_rxp_cpu		(struct bce_softc *);
static void bce_init_txp_cpu 		(struct bce_softc *);
static void bce_init_tpat_cpu		(struct bce_softc *);
static void bce_init_cp_cpu	  	(struct bce_softc *);
static void bce_init_com_cpu	  	(struct bce_softc *);
static void bce_init_cpus			(struct bce_softc *);

static void bce_print_adapter_info	(struct bce_softc *);
static void bce_probe_pci_caps		(device_t, struct bce_softc *);
static void bce_stop				(struct bce_softc *);
static int  bce_reset				(struct bce_softc *, u32);
static int  bce_chipinit 			(struct bce_softc *);
static int  bce_blockinit 			(struct bce_softc *);

static int  bce_init_tx_chain		(struct bce_softc *);
static void bce_free_tx_chain		(struct bce_softc *);

static int  bce_get_rx_buf			(struct bce_softc *,
    struct mbuf *, u16 *, u16 *, u32 *);
static int  bce_init_rx_chain		(struct bce_softc *);
static void bce_fill_rx_chain		(struct bce_softc *);
static void bce_free_rx_chain		(struct bce_softc *);

static int  bce_get_pg_buf			(struct bce_softc *,
    struct mbuf *, u16 *, u16 *);
static int  bce_init_pg_chain		(struct bce_softc *);
static void bce_fill_pg_chain		(struct bce_softc *);
static void bce_free_pg_chain		(struct bce_softc *);

static struct mbuf *bce_tso_setup	(struct bce_softc *,
    struct mbuf **, u16 *);
static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
static void bce_start_locked		(struct ifnet *);
static void bce_start				(struct ifnet *);
static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
static void bce_watchdog			(struct bce_softc *);
static int  bce_ifmedia_upd		(struct ifnet *);
static int  bce_ifmedia_upd_locked	(struct ifnet *);
static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
static void bce_init_locked		(struct bce_softc *);
static void bce_init				(void *);
static void bce_mgmt_init_locked	(struct bce_softc *sc);

static int  bce_init_ctx			(struct bce_softc *);
static void bce_get_mac_addr		(struct bce_softc *);
static void bce_set_mac_addr		(struct bce_softc *);
static void bce_phy_intr			(struct bce_softc *);
static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
static void bce_rx_intr			(struct bce_softc *);
static void bce_tx_intr			(struct bce_softc *);
static void bce_disable_intr		(struct bce_softc *);
static void bce_enable_intr		(struct bce_softc *, int);

static void bce_intr				(void *);
static void bce_set_rx_mode		(struct bce_softc *);
static void bce_stats_update		(struct bce_softc *);
static void bce_tick				(void *);
static void bce_pulse				(void *);
static void bce_add_sysctls		(struct bce_softc *);


/****************************************************************************/
/* FreeBSD device dispatch table.                                           */
/****************************************************************************/
static device_method_t bce_methods[] = {
	/* Device interface (device_if.h) */
	DEVMETHOD(device_probe,		bce_probe),
	DEVMETHOD(device_attach,	bce_attach),
	DEVMETHOD(device_detach,	bce_detach),
	DEVMETHOD(device_shutdown,	bce_shutdown),
/* Supported by device interface but not used here. */
/*	DEVMETHOD(device_identify,	bce_identify),      */
/*	DEVMETHOD(device_suspend,	bce_suspend),       */
/*	DEVMETHOD(device_resume,	bce_resume),        */
/*	DEVMETHOD(device_quiesce,	bce_quiesce),       */

	/* MII interface (miibus_if.h) */
	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
/* Supported by MII interface but not used here.       */
/*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
/*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */

	DEVMETHOD_END
};

static driver_t bce_driver = {
	"bce",
	bce_methods,
	sizeof(struct bce_softc)
};

static devclass_t bce_devclass;

MODULE_DEPEND(bce, pci, 1, 1, 1);
MODULE_DEPEND(bce, ether, 1, 1, 1);
MODULE_DEPEND(bce, miibus, 1, 1, 1);

DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);


/****************************************************************************/
/* Tunable device values                                                    */
/****************************************************************************/
SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");

/* Allowable values are TRUE or FALSE */
static int bce_verbose = TRUE;
TUNABLE_INT("hw.bce.verbose", &bce_verbose);
SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
    "Verbose output enable/disable");

/* Allowable values are TRUE or FALSE */
static int bce_tso_enable = TRUE;
TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
    "TSO Enable/Disable");

/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
/* ToDo: Add MSI-X support. */
static int bce_msi_enable = 1;
TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
    "MSI-X|MSI|INTx selector");

/* Allowable values are 1, 2, 4, 8. */
static int bce_rx_pages = DEFAULT_RX_PAGES;
TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
    "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");

/* Allowable values are 1, 2, 4, 8. */
static int bce_tx_pages = DEFAULT_TX_PAGES;
TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
    "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");

/* Allowable values are TRUE or FALSE. */
static int bce_hdr_split = TRUE;
TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
    "Frame header/payload splitting Enable/Disable");

/* Allowable values are TRUE or FALSE. */
static int bce_strict_rx_mtu = FALSE;
TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
SYSCTL_UINT(_hw_bce, OID_AUTO, loose_rx_mtu, CTLFLAG_RDTUN,
    &bce_strict_rx_mtu, 0,
    "Enable/Disable strict RX frame size checking");

/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate 1 interrupt for every transmit completion. */
static int bce_tx_quick_cons_trip_int = 1;
#else
/* Generate 1 interrupt for every 20 transmit completions. */
static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
#endif
TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
    &bce_tx_quick_cons_trip_int, 0,
    "Transmit BD trip point during interrupts");

/* Allowable values are 0 ... 100 */
/* Generate 1 interrupt for every transmit completion. */
#ifdef BCE_DEBUG
static int bce_tx_quick_cons_trip = 1;
#else
/* Generate 1 interrupt for every 20 transmit completions. */
static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
#endif
TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
    &bce_tx_quick_cons_trip, 0,
    "Transmit BD trip point");

/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an interrupt if 0us have elapsed since the last TX completion. */
static int bce_tx_ticks_int = 0;
#else
/* Generate an interrupt if 80us have elapsed since the last TX completion. */
static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
#endif
TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
    &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");

/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an interrupt if 0us have elapsed since the last TX completion. */
static int bce_tx_ticks = 0;
#else
/* Generate an interrupt if 80us have elapsed since the last TX completion. */
static int bce_tx_ticks = DEFAULT_TX_TICKS;
#endif
TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
    &bce_tx_ticks, 0, "Transmit ticks count");

/* Allowable values are 1 ... 100 */
#ifdef BCE_DEBUG
/* Generate 1 interrupt for every received frame. */
static int bce_rx_quick_cons_trip_int = 1;
#else
/* Generate 1 interrupt for every 6 received frames. */
static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
#endif
TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
    &bce_rx_quick_cons_trip_int, 0,
    "Receive BD trip point duirng interrupts");

/* Allowable values are 1 ... 100 */
#ifdef BCE_DEBUG
/* Generate 1 interrupt for every received frame. */
static int bce_rx_quick_cons_trip = 1;
#else
/* Generate 1 interrupt for every 6 received frames. */
static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
#endif
TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
    &bce_rx_quick_cons_trip, 0,
    "Receive BD trip point");

/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an int. if 0us have elapsed since the last received frame. */
static int bce_rx_ticks_int = 0;
#else
/* Generate an int. if 18us have elapsed since the last received frame. */
static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
#endif
TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
    &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");

/* Allowable values are 0 ... 100 */
#ifdef BCE_DEBUG
/* Generate an int. if 0us have elapsed since the last received frame. */
static int bce_rx_ticks = 0;
#else
/* Generate an int. if 18us have elapsed since the last received frame. */
static int bce_rx_ticks = DEFAULT_RX_TICKS;
#endif
TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
    &bce_rx_ticks, 0, "Receive ticks count");


/****************************************************************************/
/* Device probe function.                                                   */
/*                                                                          */
/* Compares the device to the driver's list of supported devices and        */
/* reports back to the OS whether this is the right driver for the device.  */
/*                                                                          */
/* Returns:                                                                 */
/*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
/****************************************************************************/
static int
bce_probe(device_t dev)
{
	struct bce_type *t;
	struct bce_softc *sc;
	char *descbuf;
	u16 vid = 0, did = 0, svid = 0, sdid = 0;

	t = bce_devs;

	sc = device_get_softc(dev);
	bzero(sc, sizeof(struct bce_softc));
	sc->bce_unit = device_get_unit(dev);
	sc->bce_dev = dev;

	/* Get the data for the device to be probed. */
	vid  = pci_get_vendor(dev);
	did  = pci_get_device(dev);
	svid = pci_get_subvendor(dev);
	sdid = pci_get_subdevice(dev);

	DBPRINT(sc, BCE_EXTREME_LOAD,
	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);

	/* Look through the list of known devices for a match. */
	while(t->bce_name != NULL) {

		if ((vid == t->bce_vid) && (did == t->bce_did) &&
		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {

			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);

			if (descbuf == NULL)
				return(ENOMEM);

			/* Print out the device identity. */
			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
			    t->bce_name, (((pci_read_config(dev,
			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));

			device_set_desc_copy(dev, descbuf);
			free(descbuf, M_TEMP);
			return(BUS_PROBE_DEFAULT);
		}
		t++;
	}

	return(ENXIO);
}


/****************************************************************************/
/* PCI Capabilities Probe Function.                                         */
/*                                                                          */
/* Walks the PCI capabiites list for the device to find what features are   */
/* supported.                                                               */
/*                                                                          */
/* Returns:                                                                 */
/*   None.                                                                  */
/****************************************************************************/
static void
bce_print_adapter_info(struct bce_softc *sc)
{
	int i = 0;

	DBENTER(BCE_VERBOSE_LOAD);

	if (bce_verbose || bootverbose) {
		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));


		/* Bus info. */
		if (sc->bce_flags & BCE_PCIE_FLAG) {
			printf("Bus (PCIe x%d, ", sc->link_width);
			switch (sc->link_speed) {
			case 1: printf("2.5Gbps); "); break;
			case 2:	printf("5Gbps); "); break;
			default: printf("Unknown link speed); ");
			}
		} else {
			printf("Bus (PCI%s, %s, %dMHz); ",
			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
		}

		/* Firmware version and device features. */
		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));

		if (bce_hdr_split == TRUE) {
			printf("SPLT");
			i++;
		}

		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
			if (i > 0) printf("|");
			printf("MSI"); i++;
		}

		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
			if (i > 0) printf("|");
			printf("MSI-X"); i++;
		}

		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
			if (i > 0) printf("|");
			printf("2.5G"); i++;
		}

		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
			if (i > 0) printf("|");
			printf("Remote PHY(%s)",
			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
			    "FIBER" : "TP"); i++;
		}

		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
			if (i > 0) printf("|");
			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
		} else {
			printf(")\n");
		}

		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
		    sc->bce_rx_quick_cons_trip_int,
		    sc->bce_rx_quick_cons_trip,
		    sc->bce_rx_ticks_int,
		    sc->bce_rx_ticks,
		    sc->bce_tx_quick_cons_trip_int,
		    sc->bce_tx_quick_cons_trip,
		    sc->bce_tx_ticks_int,
		    sc->bce_tx_ticks);

	}

	DBEXIT(BCE_VERBOSE_LOAD);
}


/****************************************************************************/
/* PCI Capabilities Probe Function.                                         */
/*                                                                          */
/* Walks the PCI capabiites list for the device to find what features are   */
/* supported.                                                               */
/*                                                                          */
/* Returns:                                                                 */
/*   None.                                                                  */
/****************************************************************************/
static void
bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
{
	u32 reg;

	DBENTER(BCE_VERBOSE_LOAD);

	/* Check if PCI-X capability is enabled. */
	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
		if (reg != 0)
			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
	}

	/* Check if PCIe capability is enabled. */
	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
		if (reg != 0) {
			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
			    "0x%08X\n",	link_status);
			sc->link_speed = link_status & 0xf;
			sc->link_width = (link_status >> 4) & 0x3f;
			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
			sc->bce_flags |= BCE_PCIE_FLAG;
		}
	}

	/* Check if MSI capability is enabled. */
	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
		if (reg != 0)
			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
	}

	/* Check if MSI-X capability is enabled. */
	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
		if (reg != 0)
			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
	}

	DBEXIT(BCE_VERBOSE_LOAD);
}


/****************************************************************************/
/* Load and validate user tunable settings.                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_set_tunables(struct bce_softc *sc)
{
	/* Set sysctl values for RX page count. */
	switch (bce_rx_pages) {
	case 1:
		/* fall-through */
	case 2:
		/* fall-through */
	case 4:
		/* fall-through */
	case 8:
		sc->rx_pages = bce_rx_pages;
		break;
	default:
		sc->rx_pages = DEFAULT_RX_PAGES;
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.rx_pages!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
	}

	/* ToDo: Consider allowing user setting for pg_pages. */
	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);

	/* Set sysctl values for TX page count. */
	switch (bce_tx_pages) {
	case 1:
		/* fall-through */
	case 2:
		/* fall-through */
	case 4:
		/* fall-through */
	case 8:
		sc->tx_pages = bce_tx_pages;
		break;
	default:
		sc->tx_pages = DEFAULT_TX_PAGES;
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.tx_pages!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
	}

	/*
	 * Validate the TX trip point (i.e. the number of
	 * TX completions before a status block update is
	 * generated and an interrupt is asserted.
	 */
	if (bce_tx_quick_cons_trip_int <= 100) {
		sc->bce_tx_quick_cons_trip_int =
		    bce_tx_quick_cons_trip_int;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
		sc->bce_tx_quick_cons_trip_int =
		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
	}

	if (bce_tx_quick_cons_trip <= 100) {
		sc->bce_tx_quick_cons_trip =
		    bce_tx_quick_cons_trip;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
		    DEFAULT_TX_QUICK_CONS_TRIP);
		sc->bce_tx_quick_cons_trip =
		    DEFAULT_TX_QUICK_CONS_TRIP;
	}

	/*
	 * Validate the TX ticks count (i.e. the maximum amount
	 * of time to wait after the last TX completion has
	 * occurred before a status block update is generated
	 * and an interrupt is asserted.
	 */
	if (bce_tx_ticks_int <= 100) {
		sc->bce_tx_ticks_int =
		    bce_tx_ticks_int;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_tx_ticks_int,
		    DEFAULT_TX_TICKS_INT);
		sc->bce_tx_ticks_int =
		    DEFAULT_TX_TICKS_INT;
	   }

	if (bce_tx_ticks <= 100) {
		sc->bce_tx_ticks =
		    bce_tx_ticks;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.tx_ticks!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_tx_ticks,
		    DEFAULT_TX_TICKS);
		sc->bce_tx_ticks =
		    DEFAULT_TX_TICKS;
	}

	/*
	 * Validate the RX trip point (i.e. the number of
	 * RX frames received before a status block update is
	 * generated and an interrupt is asserted.
	 */
	if (bce_rx_quick_cons_trip_int <= 100) {
		sc->bce_rx_quick_cons_trip_int =
		    bce_rx_quick_cons_trip_int;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
		sc->bce_rx_quick_cons_trip_int =
		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
	}

	if (bce_rx_quick_cons_trip <= 100) {
		sc->bce_rx_quick_cons_trip =
		    bce_rx_quick_cons_trip;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
		    DEFAULT_RX_QUICK_CONS_TRIP);
		sc->bce_rx_quick_cons_trip =
		    DEFAULT_RX_QUICK_CONS_TRIP;
	}

	/*
	 * Validate the RX ticks count (i.e. the maximum amount
	 * of time to wait after the last RX frame has been
	 * received before a status block update is generated
	 * and an interrupt is asserted.
	 */
	if (bce_rx_ticks_int <= 100) {
		sc->bce_rx_ticks_int = bce_rx_ticks_int;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_rx_ticks_int,
		    DEFAULT_RX_TICKS_INT);
		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
	}

	if (bce_rx_ticks <= 100) {
		sc->bce_rx_ticks = bce_rx_ticks;
	} else {
		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
		    "hw.bce.rx_ticks!  Setting default of %d.\n",
		    __FILE__, __LINE__, bce_rx_ticks,
		    DEFAULT_RX_TICKS);
		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
	}

	/* Disabling both RX ticks and RX trips will prevent interrupts. */
	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
		   __FILE__, __LINE__);
		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
	}

	/* Disabling both TX ticks and TX trips will prevent interrupts. */
	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
		   __FILE__, __LINE__);
		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
	}

}


/****************************************************************************/
/* Device attach function.                                                  */
/*                                                                          */
/* Allocates device resources, performs secondary chip identification,      */
/* resets and initializes the hardware, and initializes driver instance     */
/* variables.                                                               */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_attach(device_t dev)
{
	struct bce_softc *sc;
	struct ifnet *ifp;
	u32 val;
	int error, rid, rc = 0;

	sc = device_get_softc(dev);
	sc->bce_dev = dev;

	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);

	sc->bce_unit = device_get_unit(dev);

	/* Set initial device and PHY flags */
	sc->bce_flags = 0;
	sc->bce_phy_flags = 0;

	bce_set_tunables(sc);

	pci_enable_busmaster(dev);

	/* Allocate PCI memory resources. */
	rid = PCIR_BAR(0);
	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
		&rid, RF_ACTIVE);

	if (sc->bce_res_mem == NULL) {
		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Get various resource handles. */
	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);

	bce_probe_pci_caps(dev, sc);

	rid = 1;
#if 0
	/* Try allocating MSI-X interrupts. */
	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
		(bce_msi_enable >= 2) &&
		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
		&rid, RF_ACTIVE)) != NULL)) {

		msi_needed = sc->bce_msi_count = 1;

		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
			(sc->bce_msi_count != msi_needed)) {
			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
				"Received = %d, error = %d\n", __FILE__, __LINE__,
				msi_needed, sc->bce_msi_count, error);
			sc->bce_msi_count = 0;
			pci_release_msi(dev);
			bus_release_resource(dev, SYS_RES_MEMORY, rid,
				sc->bce_res_irq);
			sc->bce_res_irq = NULL;
		} else {
			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
				__FUNCTION__);
			sc->bce_flags |= BCE_USING_MSIX_FLAG;
			sc->bce_intr = bce_intr;
		}
	}
#endif

	/* Try allocating a MSI interrupt. */
	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
		sc->bce_msi_count = 1;
		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
			BCE_PRINTF("%s(%d): MSI allocation failed! "
			    "error = %d\n", __FILE__, __LINE__, error);
			sc->bce_msi_count = 0;
			pci_release_msi(dev);
		} else {
			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
			    "interrupt.\n", __FUNCTION__);
			sc->bce_flags |= BCE_USING_MSI_FLAG;
			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
			sc->bce_irq_rid = 1;
			sc->bce_intr = bce_intr;
		}
	}

	/* Try allocating a legacy interrupt. */
	if (sc->bce_msi_count == 0) {
		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
			__FUNCTION__);
		rid = 0;
		sc->bce_intr = bce_intr;
	}

	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
	    &rid, RF_SHAREABLE | RF_ACTIVE);

	sc->bce_irq_rid = rid;

	/* Report any IRQ allocation errors. */
	if (sc->bce_res_irq == NULL) {
		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Initialize mutex for the current device instance. */
	BCE_LOCK_INIT(sc, device_get_nameunit(dev));

	/*
	 * Configure byte swap and enable indirect register access.
	 * Rely on CPU to do target byte swapping on big endian systems.
	 * Access to registers outside of PCI configurtion space are not
	 * valid until this is done.
	 */
	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);

	/* Save ASIC revsion info. */
	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);

	/* Weed out any non-production controller revisions. */
	switch(BCE_CHIP_ID(sc)) {
	case BCE_CHIP_ID_5706_A0:
	case BCE_CHIP_ID_5706_A1:
	case BCE_CHIP_ID_5708_A0:
	case BCE_CHIP_ID_5708_B0:
	case BCE_CHIP_ID_5709_A0:
	case BCE_CHIP_ID_5709_B0:
	case BCE_CHIP_ID_5709_B1:
	case BCE_CHIP_ID_5709_B2:
		BCE_PRINTF("%s(%d): Unsupported controller "
		    "revision (%c%d)!\n", __FILE__, __LINE__,
		    (((pci_read_config(dev, PCIR_REVID, 4) &
		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
		    PCIR_REVID, 4) & 0xf));
		rc = ENODEV;
		goto bce_attach_fail;
	}

	/*
	 * The embedded PCIe to PCI-X bridge (EPB)
	 * in the 5708 cannot address memory above
	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
	 */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
	else
		sc->max_bus_addr = BUS_SPACE_MAXADDR;

	/*
	 * Find the base address for shared memory access.
	 * Newer versions of bootcode use a signature and offset
	 * while older versions use a fixed address.
	 */
	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
		/* Multi-port devices use different offsets in shared memory. */
		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
		    (pci_get_function(sc->bce_dev) << 2));
	else
		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;

	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
	    __FUNCTION__, sc->bce_shmem_base);

	/* Fetch the bootcode revision. */
	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
	for (int i = 0, j = 0; i < 3; i++) {
		u8 num;

		num = (u8) (val >> (24 - (i * 8)));
		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
			if (num >= k || !skip0 || k == 1) {
				sc->bce_bc_ver[j++] = (num / k) + '0';
				skip0 = 0;
			}
		}

		if (i != 2)
			sc->bce_bc_ver[j++] = '.';
	}

	/* Check if any management firwmare is enabled. */
	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;

		/* Allow time for firmware to enter the running state. */
		for (int i = 0; i < 30; i++) {
			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
			if (val & BCE_CONDITION_MFW_RUN_MASK)
				break;
			DELAY(10000);
		}

		/* Check if management firmware is running. */
		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
		val &= BCE_CONDITION_MFW_RUN_MASK;
		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
			int i = 0;

			/* Read the management firmware version string. */
			for (int j = 0; j < 3; j++) {
				val = bce_reg_rd_ind(sc, addr + j * 4);
				val = bswap32(val);
				memcpy(&sc->bce_mfw_ver[i], &val, 4);
				i += 4;
			}
		} else {
			/* May cause firmware synchronization timeouts. */
			BCE_PRINTF("%s(%d): Management firmware enabled "
			    "but not running!\n", __FILE__, __LINE__);
			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");

			/* ToDo: Any action the driver should take? */
		}
	}

	/* Get PCI bus information (speed and type). */
	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
		u32 clkreg;

		sc->bce_flags |= BCE_PCIX_FLAG;

		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);

		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
		switch (clkreg) {
		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
			sc->bus_speed_mhz = 133;
			break;

		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
			sc->bus_speed_mhz = 100;
			break;

		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
			sc->bus_speed_mhz = 66;
			break;

		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
			sc->bus_speed_mhz = 50;
			break;

		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
			sc->bus_speed_mhz = 33;
			break;
		}
	} else {
		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
			sc->bus_speed_mhz = 66;
		else
			sc->bus_speed_mhz = 33;
	}

	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
		sc->bce_flags |= BCE_PCI_32BIT_FLAG;

	/* Find the media type for the adapter. */
	bce_get_media(sc);

	/* Reset controller and announce to bootcode that driver is present. */
	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
		BCE_PRINTF("%s(%d): Controller reset failed!\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Initialize the controller. */
	if (bce_chipinit(sc)) {
		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Perform NVRAM test. */
	if (bce_nvram_test(sc)) {
		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Fetch the permanent Ethernet MAC address. */
	bce_get_mac_addr(sc);

	/*
	 * Trip points control how many BDs
	 * should be ready before generating an
	 * interrupt while ticks control how long
	 * a BD can sit in the chain before
	 * generating an interrupt.  Set the default
	 * values for the RX and TX chains.
	 */

	/* Not used for L2. */
	sc->bce_comp_prod_trip_int     = 0;
	sc->bce_comp_prod_trip         = 0;
	sc->bce_com_ticks_int          = 0;
	sc->bce_com_ticks              = 0;
	sc->bce_cmd_ticks_int          = 0;
	sc->bce_cmd_ticks              = 0;

	/* Update statistics once every second. */
	sc->bce_stats_ticks = 1000000 & 0xffff00;

	/* Store data needed by PHY driver for backplane applications */
	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);

	/* Allocate DMA memory resources. */
	if (bce_dma_alloc(dev)) {
		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Allocate an ifnet structure. */
	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
	if (ifp == NULL) {
		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
		    __FILE__, __LINE__);
		rc = ENXIO;
		goto bce_attach_fail;
	}

	/* Initialize the ifnet interface. */
	ifp->if_softc	= sc;
	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl	= bce_ioctl;
	ifp->if_start	= bce_start;
	ifp->if_init	= bce_init;
	ifp->if_mtu	= ETHERMTU;

	if (bce_tso_enable) {
		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
		    IFCAP_VLAN_HWTSO;
	} else {
		ifp->if_hwassist = BCE_IF_HWASSIST;
		ifp->if_capabilities = BCE_IF_CAPABILITIES;
	}

#if __FreeBSD_version >= 800505
	/*
	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
	 * so it's approximate value.
	 */
	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
		ifp->if_capabilities |= IFCAP_LINKSTATE;
#endif

	ifp->if_capenable = ifp->if_capabilities;

	/*
	 * Assume standard mbuf sizes for buffer allocation.
	 * This may change later if the MTU size is set to
	 * something other than 1500.
	 */
	bce_get_rx_buffer_sizes(sc,
	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));

	/* Recalculate our buffer allocation sizes. */
	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
	IFQ_SET_READY(&ifp->if_snd);

	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
		ifp->if_baudrate = IF_Mbps(2500ULL);
	else
		ifp->if_baudrate = IF_Mbps(1000);

	/* Handle any special PHY initialization for SerDes PHYs. */
	bce_init_media(sc);

	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
		    bce_ifmedia_sts);
		/*
		 * We can't manually override remote PHY's link and assume
		 * PHY port configuration(Fiber or TP) is not changed after
		 * device attach.  This may not be correct though.
		 */
		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
				ifmedia_add(&sc->bce_ifmedia,
				    IFM_ETHER | IFM_2500_SX, 0, NULL);
				ifmedia_add(&sc->bce_ifmedia,
				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
			}
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_1000_SX, 0, NULL);
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
		} else {
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_10_T, 0, NULL);
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_100_TX, 0, NULL);
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_1000_T, 0, NULL);
			ifmedia_add(&sc->bce_ifmedia,
			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
		}
		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
	} else {
		/* MII child bus by attaching the PHY. */
		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
		    MII_OFFSET_ANY, MIIF_DOPAUSE);
		if (rc != 0) {
			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
			    __LINE__);
			goto bce_attach_fail;
		}
	}

	/* Attach to the Ethernet interface list. */
	ether_ifattach(ifp, sc->eaddr);

#if __FreeBSD_version < 500000
	callout_init(&sc->bce_tick_callout);
	callout_init(&sc->bce_pulse_callout);
#else
	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
#endif

	/* Hookup IRQ last. */
	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
		NULL, bce_intr, sc, &sc->bce_intrhand);

	if (rc) {
		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
		    __FILE__, __LINE__);
		bce_detach(dev);
		goto bce_attach_exit;
	}

	/*
	 * At this point we've acquired all the resources
	 * we need to run so there's no turning back, we're
	 * cleared for launch.
	 */

	/* Print some important debugging info. */
	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));

	/* Add the supported sysctls to the kernel. */
	bce_add_sysctls(sc);

	BCE_LOCK(sc);

	/*
	 * The chip reset earlier notified the bootcode that
	 * a driver is present.  We now need to start our pulse
	 * routine so that the bootcode is reminded that we're
	 * still running.
	 */
	bce_pulse(sc);

	bce_mgmt_init_locked(sc);
	BCE_UNLOCK(sc);

	/* Finally, print some useful adapter info */
	bce_print_adapter_info(sc);
	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
		__FUNCTION__, sc);

	goto bce_attach_exit;

bce_attach_fail:
	bce_release_resources(sc);

bce_attach_exit:

	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);

	return(rc);
}


/****************************************************************************/
/* Device detach function.                                                  */
/*                                                                          */
/* Stops the controller, resets the controller, and releases resources.     */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_detach(device_t dev)
{
	struct bce_softc *sc = device_get_softc(dev);
	struct ifnet *ifp;
	u32 msg;

	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);

	ifp = sc->bce_ifp;

	/* Stop and reset the controller. */
	BCE_LOCK(sc);

	/* Stop the pulse so the bootcode can go to driver absent state. */
	callout_stop(&sc->bce_pulse_callout);

	bce_stop(sc);
	if (sc->bce_flags & BCE_NO_WOL_FLAG)
		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
	else
		msg = BCE_DRV_MSG_CODE_UNLOAD;
	bce_reset(sc, msg);

	BCE_UNLOCK(sc);

	ether_ifdetach(ifp);

	/* If we have a child device on the MII bus remove it too. */
	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
		ifmedia_removeall(&sc->bce_ifmedia);
	else {
		bus_generic_detach(dev);
		device_delete_child(dev, sc->bce_miibus);
	}

	/* Release all remaining resources. */
	bce_release_resources(sc);

	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);

	return(0);
}


/****************************************************************************/
/* Device shutdown function.                                                */
/*                                                                          */
/* Stops and resets the controller.                                         */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_shutdown(device_t dev)
{
	struct bce_softc *sc = device_get_softc(dev);
	u32 msg;

	DBENTER(BCE_VERBOSE);

	BCE_LOCK(sc);
	bce_stop(sc);
	if (sc->bce_flags & BCE_NO_WOL_FLAG)
		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
	else
		msg = BCE_DRV_MSG_CODE_UNLOAD;
	bce_reset(sc, msg);
	BCE_UNLOCK(sc);

	DBEXIT(BCE_VERBOSE);

	return (0);
}


#ifdef BCE_DEBUG
/****************************************************************************/
/* Register read.                                                           */
/*                                                                          */
/* Returns:                                                                 */
/*   The value of the register.                                             */
/****************************************************************************/
static u32
bce_reg_rd(struct bce_softc *sc, u32 offset)
{
	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
		__FUNCTION__, offset, val);
	return val;
}


/****************************************************************************/
/* Register write (16 bit).                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
{
	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
		__FUNCTION__, offset, val);
	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
}


/****************************************************************************/
/* Register write.                                                          */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
{
	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
		__FUNCTION__, offset, val);
	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
}
#endif

/****************************************************************************/
/* Indirect register read.                                                  */
/*                                                                          */
/* Reads NetXtreme II registers using an index/data register pair in PCI    */
/* configuration space.  Using this mechanism avoids issues with posted     */
/* reads but is much slower than memory-mapped I/O.                         */
/*                                                                          */
/* Returns:                                                                 */
/*   The value of the register.                                             */
/****************************************************************************/
static u32
bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
{
	device_t dev;
	dev = sc->bce_dev;

	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
#ifdef BCE_DEBUG
	{
		u32 val;
		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
			__FUNCTION__, offset, val);
		return val;
	}
#else
	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
#endif
}


/****************************************************************************/
/* Indirect register write.                                                 */
/*                                                                          */
/* Writes NetXtreme II registers using an index/data register pair in PCI   */
/* configuration space.  Using this mechanism avoids issues with posted     */
/* writes but is muchh slower than memory-mapped I/O.                       */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
{
	device_t dev;
	dev = sc->bce_dev;

	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
		__FUNCTION__, offset, val);

	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
}


/****************************************************************************/
/* Shared memory write.                                                     */
/*                                                                          */
/* Writes NetXtreme II shared memory region.                                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
{
	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
	    "0x%08X\n",	__FUNCTION__, val, offset);

	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
}


/****************************************************************************/
/* Shared memory read.                                                      */
/*                                                                          */
/* Reads NetXtreme II shared memory region.                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   The 32 bit value read.                                                 */
/****************************************************************************/
static u32
bce_shmem_rd(struct bce_softc *sc, u32 offset)
{
	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);

	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
	    "0x%08X\n",	__FUNCTION__, val, offset);

	return val;
}


#ifdef BCE_DEBUG
/****************************************************************************/
/* Context memory read.                                                     */
/*                                                                          */
/* The NetXtreme II controller uses context memory to track connection      */
/* information for L2 and higher network protocols.                         */
/*                                                                          */
/* Returns:                                                                 */
/*   The requested 32 bit value of context memory.                          */
/****************************************************************************/
static u32
bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
{
	u32 idx, offset, retry_cnt = 5, val;

	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));

	offset = ctx_offset + cid_addr;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {

		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));

		for (idx = 0; idx < retry_cnt; idx++) {
			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
				break;
			DELAY(5);
		}

		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
			    __FILE__, __LINE__, cid_addr, ctx_offset);

		val = REG_RD(sc, BCE_CTX_CTX_DATA);
	} else {
		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
		val = REG_RD(sc, BCE_CTX_DATA);
	}

	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);

	return(val);
}
#endif


/****************************************************************************/
/* Context memory write.                                                    */
/*                                                                          */
/* The NetXtreme II controller uses context memory to track connection      */
/* information for L2 and higher network protocols.                         */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
{
	u32 idx, offset = ctx_offset + cid_addr;
	u32 val, retry_cnt = 5;

	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);

	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
		    __FUNCTION__, cid_addr));

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {

		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));

		for (idx = 0; idx < retry_cnt; idx++) {
			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
				break;
			DELAY(5);
		}

		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
			    __FILE__, __LINE__, cid_addr, ctx_offset);

	} else {
		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
		REG_WR(sc, BCE_CTX_DATA, ctx_val);
	}
}


/****************************************************************************/
/* PHY register read.                                                       */
/*                                                                          */
/* Implements register reads on the MII bus.                                */
/*                                                                          */
/* Returns:                                                                 */
/*   The value of the register.                                             */
/****************************************************************************/
static int
bce_miibus_read_reg(device_t dev, int phy, int reg)
{
	struct bce_softc *sc;
	u32 val;
	int i;

	sc = device_get_softc(dev);

	/* Make sure we are accessing the correct PHY address. */
	if (phy != sc->bce_phy_addr) {
		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
		    "for PHY read!\n", phy);
		return(0);
	}

    /*
     * The 5709S PHY is an IEEE Clause 45 PHY
     * with special mappings to work with IEEE
     * Clause 22 register accesses.
     */
	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
			reg += 0x10;
	}

    if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;

		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
		REG_RD(sc, BCE_EMAC_MDIO_MODE);

		DELAY(40);
	}


	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
	    BCE_EMAC_MDIO_COMM_START_BUSY;
	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);

	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
		DELAY(10);

		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
			DELAY(5);

			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
			val &= BCE_EMAC_MDIO_COMM_DATA;

			break;
		}
	}

	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
		val = 0x0;
	} else {
		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
	}


	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;

		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
		REG_RD(sc, BCE_EMAC_MDIO_MODE);

		DELAY(40);
	}

	DB_PRINT_PHY_REG(reg, val);
	return (val & 0xffff);

}


/****************************************************************************/
/* PHY register write.                                                      */
/*                                                                          */
/* Implements register writes on the MII bus.                               */
/*                                                                          */
/* Returns:                                                                 */
/*   The value of the register.                                             */
/****************************************************************************/
static int
bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
{
	struct bce_softc *sc;
	u32 val1;
	int i;

	sc = device_get_softc(dev);

	/* Make sure we are accessing the correct PHY address. */
	if (phy != sc->bce_phy_addr) {
		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
		    "for PHY write!\n", phy);
		return(0);
	}

	DB_PRINT_PHY_REG(reg, val);

	/*
	 * The 5709S PHY is an IEEE Clause 45 PHY
	 * with special mappings to work with IEEE
	 * Clause 22 register accesses.
	 */
	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
			reg += 0x10;
	}

	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;

		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
		REG_RD(sc, BCE_EMAC_MDIO_MODE);

		DELAY(40);
	}

	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);

	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
		DELAY(10);

		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
			DELAY(5);
			break;
		}
	}

	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
		BCE_PRINTF("%s(%d): PHY write timeout!\n",
		    __FILE__, __LINE__);

	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;

		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
		REG_RD(sc, BCE_EMAC_MDIO_MODE);

		DELAY(40);
	}

	return 0;
}


/****************************************************************************/
/* MII bus status change.                                                   */
/*                                                                          */
/* Called by the MII bus driver when the PHY establishes link to set the    */
/* MAC interface registers.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_miibus_statchg(device_t dev)
{
	struct bce_softc *sc;
	struct mii_data *mii;
	struct ifmediareq ifmr;
	int media_active, media_status, val;

	sc = device_get_softc(dev);

	DBENTER(BCE_VERBOSE_PHY);

	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
		bzero(&ifmr, sizeof(ifmr));
		bce_ifmedia_sts_rphy(sc, &ifmr);
		media_active = ifmr.ifm_active;
		media_status = ifmr.ifm_status;
	} else {
		mii = device_get_softc(sc->bce_miibus);
		media_active = mii->mii_media_active;
		media_status = mii->mii_media_status;
	}

	/* Ignore invalid media status. */
	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
	    (IFM_ACTIVE | IFM_AVALID))
		goto bce_miibus_statchg_exit;

	val = REG_RD(sc, BCE_EMAC_MODE);
	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
	    BCE_EMAC_MODE_25G);

	/* Set MII or GMII interface based on the PHY speed. */
	switch (IFM_SUBTYPE(media_active)) {
	case IFM_10_T:
		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
			DBPRINT(sc, BCE_INFO_PHY,
			    "Enabling 10Mb interface.\n");
			val |= BCE_EMAC_MODE_PORT_MII_10;
			break;
		}
		/* fall-through */
	case IFM_100_TX:
		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
		val |= BCE_EMAC_MODE_PORT_MII;
		break;
	case IFM_2500_SX:
		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
		val |= BCE_EMAC_MODE_25G;
		/* fall-through */
	case IFM_1000_T:
	case IFM_1000_SX:
		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
		val |= BCE_EMAC_MODE_PORT_GMII;
		break;
	default:
		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
		    "default GMII interface.\n");
		val |= BCE_EMAC_MODE_PORT_GMII;
	}

	/* Set half or full duplex based on PHY settings. */
	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
		DBPRINT(sc, BCE_INFO_PHY,
		    "Setting Half-Duplex interface.\n");
		val |= BCE_EMAC_MODE_HALF_DUPLEX;
	} else
		DBPRINT(sc, BCE_INFO_PHY,
		    "Setting Full-Duplex interface.\n");

	REG_WR(sc, BCE_EMAC_MODE, val);

	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
		DBPRINT(sc, BCE_INFO_PHY,
		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
	} else {
		DBPRINT(sc, BCE_INFO_PHY,
		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
	}

	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
		DBPRINT(sc, BCE_INFO_PHY,
		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
	} else {
		DBPRINT(sc, BCE_INFO_PHY,
		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
	}

	/* ToDo: Update watermarks in bce_init_rx_context(). */

bce_miibus_statchg_exit:
	DBEXIT(BCE_VERBOSE_PHY);
}


/****************************************************************************/
/* Acquire NVRAM lock.                                                      */
/*                                                                          */
/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
/* for use by the driver.                                                   */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_acquire_nvram_lock(struct bce_softc *sc)
{
	u32 val;
	int j, rc = 0;

	DBENTER(BCE_VERBOSE_NVRAM);

	/* Request access to the flash interface. */
	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
		val = REG_RD(sc, BCE_NVM_SW_ARB);
		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
			break;

		DELAY(5);
	}

	if (j >= NVRAM_TIMEOUT_COUNT) {
		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
		rc = EBUSY;
	}

	DBEXIT(BCE_VERBOSE_NVRAM);
	return (rc);
}


/****************************************************************************/
/* Release NVRAM lock.                                                      */
/*                                                                          */
/* When the caller is finished accessing NVRAM the lock must be released.   */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
/* for use by the driver.                                                   */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_release_nvram_lock(struct bce_softc *sc)
{
	u32 val;
	int j, rc = 0;

	DBENTER(BCE_VERBOSE_NVRAM);

	/*
	 * Relinquish nvram interface.
	 */
	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);

	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
		val = REG_RD(sc, BCE_NVM_SW_ARB);
		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
			break;

		DELAY(5);
	}

	if (j >= NVRAM_TIMEOUT_COUNT) {
		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
		rc = EBUSY;
	}

	DBEXIT(BCE_VERBOSE_NVRAM);
	return (rc);
}


#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Enable NVRAM write access.                                               */
/*                                                                          */
/* Before writing to NVRAM the caller must enable NVRAM writes.             */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_enable_nvram_write(struct bce_softc *sc)
{
	u32 val;
	int rc = 0;

	DBENTER(BCE_VERBOSE_NVRAM);

	val = REG_RD(sc, BCE_MISC_CFG);
	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);

	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
		int j;

		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);

		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
			DELAY(5);

			val = REG_RD(sc, BCE_NVM_COMMAND);
			if (val & BCE_NVM_COMMAND_DONE)
				break;
		}

		if (j >= NVRAM_TIMEOUT_COUNT) {
			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
			rc = EBUSY;
		}
	}

	DBENTER(BCE_VERBOSE_NVRAM);
	return (rc);
}


/****************************************************************************/
/* Disable NVRAM write access.                                              */
/*                                                                          */
/* When the caller is finished writing to NVRAM write access must be        */
/* disabled.                                                                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_disable_nvram_write(struct bce_softc *sc)
{
	u32 val;

	DBENTER(BCE_VERBOSE_NVRAM);

	val = REG_RD(sc, BCE_MISC_CFG);
	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);

	DBEXIT(BCE_VERBOSE_NVRAM);

}
#endif


/****************************************************************************/
/* Enable NVRAM access.                                                     */
/*                                                                          */
/* Before accessing NVRAM for read or write operations the caller must      */
/* enabled NVRAM access.                                                    */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_enable_nvram_access(struct bce_softc *sc)
{
	u32 val;

	DBENTER(BCE_VERBOSE_NVRAM);

	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
	/* Enable both bits, even on read. */
	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);

	DBEXIT(BCE_VERBOSE_NVRAM);
}


/****************************************************************************/
/* Disable NVRAM access.                                                    */
/*                                                                          */
/* When the caller is finished accessing NVRAM access must be disabled.     */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_disable_nvram_access(struct bce_softc *sc)
{
	u32 val;

	DBENTER(BCE_VERBOSE_NVRAM);

	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);

	/* Disable both bits, even after read. */
	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));

	DBEXIT(BCE_VERBOSE_NVRAM);
}


#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Erase NVRAM page before writing.                                         */
/*                                                                          */
/* Non-buffered flash parts require that a page be erased before it is      */
/* written.                                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
{
	u32 cmd;
	int j, rc = 0;

	DBENTER(BCE_VERBOSE_NVRAM);

	/* Buffered flash doesn't require an erase. */
	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
		goto bce_nvram_erase_page_exit;

	/* Build an erase command. */
	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
	    BCE_NVM_COMMAND_DOIT;

	/*
	 * Clear the DONE bit separately, set the NVRAM adress to erase,
	 * and issue the erase command.
	 */
	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
	REG_WR(sc, BCE_NVM_COMMAND, cmd);

	/* Wait for completion. */
	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
		u32 val;

		DELAY(5);

		val = REG_RD(sc, BCE_NVM_COMMAND);
		if (val & BCE_NVM_COMMAND_DONE)
			break;
	}

	if (j >= NVRAM_TIMEOUT_COUNT) {
		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
		rc = EBUSY;
	}

bce_nvram_erase_page_exit:
	DBEXIT(BCE_VERBOSE_NVRAM);
	return (rc);
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */


/****************************************************************************/
/* Read a dword (32 bits) from NVRAM.                                       */
/*                                                                          */
/* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
/* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success and the 32 bit value read, positive value on failure.     */
/****************************************************************************/
static int
bce_nvram_read_dword(struct bce_softc *sc,
    u32 offset, u8 *ret_val, u32 cmd_flags)
{
	u32 cmd;
	int i, rc = 0;

	DBENTER(BCE_EXTREME_NVRAM);

	/* Build the command word. */
	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;

	/* Calculate the offset for buffered flash if translation is used. */
	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
		offset = ((offset / sc->bce_flash_info->page_size) <<
		    sc->bce_flash_info->page_bits) +
		    (offset % sc->bce_flash_info->page_size);
	}

	/*
	 * Clear the DONE bit separately, set the address to read,
	 * and issue the read.
	 */
	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
	REG_WR(sc, BCE_NVM_COMMAND, cmd);

	/* Wait for completion. */
	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
		u32 val;

		DELAY(5);

		val = REG_RD(sc, BCE_NVM_COMMAND);
		if (val & BCE_NVM_COMMAND_DONE) {
			val = REG_RD(sc, BCE_NVM_READ);

			val = bce_be32toh(val);
			memcpy(ret_val, &val, 4);
			break;
		}
	}

	/* Check for errors. */
	if (i >= NVRAM_TIMEOUT_COUNT) {
		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
		rc = EBUSY;
	}

	DBEXIT(BCE_EXTREME_NVRAM);
	return(rc);
}


#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write a dword (32 bits) to NVRAM.                                        */
/*                                                                          */
/* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
/* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
/* enabled NVRAM write access.                                              */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
	u32 cmd_flags)
{
	u32 cmd, val32;
	int j, rc = 0;

	DBENTER(BCE_VERBOSE_NVRAM);

	/* Build the command word. */
	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;

	/* Calculate the offset for buffered flash if translation is used. */
	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
		offset = ((offset / sc->bce_flash_info->page_size) <<
		    sc->bce_flash_info->page_bits) +
		    (offset % sc->bce_flash_info->page_size);
	}

	/*
	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
	 * set the NVRAM address to write, and issue the write command
	 */
	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
	memcpy(&val32, val, 4);
	val32 = htobe32(val32);
	REG_WR(sc, BCE_NVM_WRITE, val32);
	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
	REG_WR(sc, BCE_NVM_COMMAND, cmd);

	/* Wait for completion. */
	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
		DELAY(5);

		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
			break;
	}
	if (j >= NVRAM_TIMEOUT_COUNT) {
		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
		rc = EBUSY;
	}

	DBEXIT(BCE_VERBOSE_NVRAM);
	return (rc);
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */


/****************************************************************************/
/* Initialize NVRAM access.                                                 */
/*                                                                          */
/* Identify the NVRAM device in use and prepare the NVRAM interface to      */
/* access that device.                                                      */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_init_nvram(struct bce_softc *sc)
{
	u32 val;
	int j, entry_count, rc = 0;
	struct flash_spec *flash;

	DBENTER(BCE_VERBOSE_NVRAM);

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		sc->bce_flash_info = &flash_5709;
		goto bce_init_nvram_get_flash_size;
	}

	/* Determine the selected interface. */
	val = REG_RD(sc, BCE_NVM_CFG1);

	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);

	/*
	 * Flash reconfiguration is required to support additional
	 * NVRAM devices not directly supported in hardware.
	 * Check if the flash interface was reconfigured
	 * by the bootcode.
	 */

	if (val & 0x40000000) {
		/* Flash interface reconfigured by bootcode. */

		DBPRINT(sc,BCE_INFO_LOAD,
			"bce_init_nvram(): Flash WAS reconfigured.\n");

		for (j = 0, flash = &flash_table[0]; j < entry_count;
		     j++, flash++) {
			if ((val & FLASH_BACKUP_STRAP_MASK) ==
			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
				sc->bce_flash_info = flash;
				break;
			}
		}
	} else {
		/* Flash interface not yet reconfigured. */
		u32 mask;

		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
			__FUNCTION__);

		if (val & (1 << 23))
			mask = FLASH_BACKUP_STRAP_MASK;
		else
			mask = FLASH_STRAP_MASK;

		/* Look for the matching NVRAM device configuration data. */
		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {

			/* Check if the device matches any of the known devices. */
			if ((val & mask) == (flash->strapping & mask)) {
				/* Found a device match. */
				sc->bce_flash_info = flash;

				/* Request access to the flash interface. */
				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
					return rc;

				/* Reconfigure the flash interface. */
				bce_enable_nvram_access(sc);
				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
				bce_disable_nvram_access(sc);
				bce_release_nvram_lock(sc);

				break;
			}
		}
	}

	/* Check if a matching device was found. */
	if (j == entry_count) {
		sc->bce_flash_info = NULL;
		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
		    __FILE__, __LINE__);
		DBEXIT(BCE_VERBOSE_NVRAM);
		return (ENODEV);
	}

bce_init_nvram_get_flash_size:
	/* Write the flash config data to the shared memory interface. */
	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
	if (val)
		sc->bce_flash_size = val;
	else
		sc->bce_flash_size = sc->bce_flash_info->total_size;

	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
	    __FUNCTION__, sc->bce_flash_info->name,
	    sc->bce_flash_info->total_size);

	DBEXIT(BCE_VERBOSE_NVRAM);
	return rc;
}


/****************************************************************************/
/* Read an arbitrary range of data from NVRAM.                              */
/*                                                                          */
/* Prepares the NVRAM interface for access and reads the requested data     */
/* into the supplied buffer.                                                */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success and the data read, positive value on failure.             */
/****************************************************************************/
static int
bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
	int buf_size)
{
	int rc = 0;
	u32 cmd_flags, offset32, len32, extra;

	DBENTER(BCE_VERBOSE_NVRAM);

	if (buf_size == 0)
		goto bce_nvram_read_exit;

	/* Request access to the flash interface. */
	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
		goto bce_nvram_read_exit;

	/* Enable access to flash interface */
	bce_enable_nvram_access(sc);

	len32 = buf_size;
	offset32 = offset;
	extra = 0;

	cmd_flags = 0;

	if (offset32 & 3) {
		u8 buf[4];
		u32 pre_len;

		offset32 &= ~3;
		pre_len = 4 - (offset & 3);

		if (pre_len >= len32) {
			pre_len = len32;
			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
		}
		else {
			cmd_flags = BCE_NVM_COMMAND_FIRST;
		}

		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);

		if (rc)
			return rc;

		memcpy(ret_buf, buf + (offset & 3), pre_len);

		offset32 += 4;
		ret_buf += pre_len;
		len32 -= pre_len;
	}

	if (len32 & 3) {
		extra = 4 - (len32 & 3);
		len32 = (len32 + 4) & ~3;
	}

	if (len32 == 4) {
		u8 buf[4];

		if (cmd_flags)
			cmd_flags = BCE_NVM_COMMAND_LAST;
		else
			cmd_flags = BCE_NVM_COMMAND_FIRST |
				    BCE_NVM_COMMAND_LAST;

		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);

		memcpy(ret_buf, buf, 4 - extra);
	}
	else if (len32 > 0) {
		u8 buf[4];

		/* Read the first word. */
		if (cmd_flags)
			cmd_flags = 0;
		else
			cmd_flags = BCE_NVM_COMMAND_FIRST;

		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);

		/* Advance to the next dword. */
		offset32 += 4;
		ret_buf += 4;
		len32 -= 4;

		while (len32 > 4 && rc == 0) {
			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);

			/* Advance to the next dword. */
			offset32 += 4;
			ret_buf += 4;
			len32 -= 4;
		}

		if (rc)
			goto bce_nvram_read_locked_exit;

		cmd_flags = BCE_NVM_COMMAND_LAST;
		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);

		memcpy(ret_buf, buf, 4 - extra);
	}

bce_nvram_read_locked_exit:
	/* Disable access to flash interface and release the lock. */
	bce_disable_nvram_access(sc);
	bce_release_nvram_lock(sc);

bce_nvram_read_exit:
	DBEXIT(BCE_VERBOSE_NVRAM);
	return rc;
}


#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write an arbitrary range of data from NVRAM.                             */
/*                                                                          */
/* Prepares the NVRAM interface for write access and writes the requested   */
/* data from the supplied buffer.  The caller is responsible for            */
/* calculating any appropriate CRCs.                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
	int buf_size)
{
	u32 written, offset32, len32;
	u8 *buf, start[4], end[4];
	int rc = 0;
	int align_start, align_end;

	DBENTER(BCE_VERBOSE_NVRAM);

	buf = data_buf;
	offset32 = offset;
	len32 = buf_size;
	align_start = align_end = 0;

	if ((align_start = (offset32 & 3))) {
		offset32 &= ~3;
		len32 += align_start;
		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
			goto bce_nvram_write_exit;
	}

	if (len32 & 3) {
	       	if ((len32 > 4) || !align_start) {
			align_end = 4 - (len32 & 3);
			len32 += align_end;
			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
				end, 4))) {
				goto bce_nvram_write_exit;
			}
		}
	}

	if (align_start || align_end) {
		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
		if (buf == 0) {
			rc = ENOMEM;
			goto bce_nvram_write_exit;
		}

		if (align_start) {
			memcpy(buf, start, 4);
		}

		if (align_end) {
			memcpy(buf + len32 - 4, end, 4);
		}
		memcpy(buf + align_start, data_buf, buf_size);
	}

	written = 0;
	while ((written < len32) && (rc == 0)) {
		u32 page_start, page_end, data_start, data_end;
		u32 addr, cmd_flags;
		int i;
		u8 flash_buffer[264];

	    /* Find the page_start addr */
		page_start = offset32 + written;
		page_start -= (page_start % sc->bce_flash_info->page_size);
		/* Find the page_end addr */
		page_end = page_start + sc->bce_flash_info->page_size;
		/* Find the data_start addr */
		data_start = (written == 0) ? offset32 : page_start;
		/* Find the data_end addr */
		data_end = (page_end > offset32 + len32) ?
			(offset32 + len32) : page_end;

		/* Request access to the flash interface. */
		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
			goto bce_nvram_write_exit;

		/* Enable access to flash interface */
		bce_enable_nvram_access(sc);

		cmd_flags = BCE_NVM_COMMAND_FIRST;
		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
			int j;

			/* Read the whole page into the buffer
			 * (non-buffer flash only) */
			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
				if (j == (sc->bce_flash_info->page_size - 4)) {
					cmd_flags |= BCE_NVM_COMMAND_LAST;
				}
				rc = bce_nvram_read_dword(sc,
					page_start + j,
					&flash_buffer[j],
					cmd_flags);

				if (rc)
					goto bce_nvram_write_locked_exit;

				cmd_flags = 0;
			}
		}

		/* Enable writes to flash interface (unlock write-protect) */
		if ((rc = bce_enable_nvram_write(sc)) != 0)
			goto bce_nvram_write_locked_exit;

		/* Erase the page */
		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
			goto bce_nvram_write_locked_exit;

		/* Re-enable the write again for the actual write */
		bce_enable_nvram_write(sc);

		/* Loop to write back the buffer data from page_start to
		 * data_start */
		i = 0;
		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
			for (addr = page_start; addr < data_start;
				addr += 4, i += 4) {

				rc = bce_nvram_write_dword(sc, addr,
					&flash_buffer[i], cmd_flags);

				if (rc != 0)
					goto bce_nvram_write_locked_exit;

				cmd_flags = 0;
			}
		}

		/* Loop to write the new data from data_start to data_end */
		for (addr = data_start; addr < data_end; addr += 4, i++) {
			if ((addr == page_end - 4) ||
				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
				(addr == data_end - 4))) {

				cmd_flags |= BCE_NVM_COMMAND_LAST;
			}
			rc = bce_nvram_write_dword(sc, addr, buf,
				cmd_flags);

			if (rc != 0)
				goto bce_nvram_write_locked_exit;

			cmd_flags = 0;
			buf += 4;
		}

		/* Loop to write back the buffer data from data_end
		 * to page_end */
		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
			for (addr = data_end; addr < page_end;
				addr += 4, i += 4) {

				if (addr == page_end-4) {
					cmd_flags = BCE_NVM_COMMAND_LAST;
                		}
				rc = bce_nvram_write_dword(sc, addr,
					&flash_buffer[i], cmd_flags);

				if (rc != 0)
					goto bce_nvram_write_locked_exit;

				cmd_flags = 0;
			}
		}

		/* Disable writes to flash interface (lock write-protect) */
		bce_disable_nvram_write(sc);

		/* Disable access to flash interface */
		bce_disable_nvram_access(sc);
		bce_release_nvram_lock(sc);

		/* Increment written */
		written += data_end - data_start;
	}

	goto bce_nvram_write_exit;

bce_nvram_write_locked_exit:
	bce_disable_nvram_write(sc);
	bce_disable_nvram_access(sc);
	bce_release_nvram_lock(sc);

bce_nvram_write_exit:
	if (align_start || align_end)
		free(buf, M_DEVBUF);

	DBEXIT(BCE_VERBOSE_NVRAM);
	return (rc);
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */


/****************************************************************************/
/* Verifies that NVRAM is accessible and contains valid data.               */
/*                                                                          */
/* Reads the configuration data from NVRAM and verifies that the CRC is     */
/* correct.                                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   0 on success, positive value on failure.                               */
/****************************************************************************/
static int
bce_nvram_test(struct bce_softc *sc)
{
	u32 buf[BCE_NVRAM_SIZE / 4];
	u8 *data = (u8 *) buf;
	int rc = 0;
	u32 magic, csum;

	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);

	/*
	 * Check that the device NVRAM is valid by reading
	 * the magic value at offset 0.
	 */
	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
		    __FILE__, __LINE__);
		goto bce_nvram_test_exit;
	}

	/*
	 * Verify that offset 0 of the NVRAM contains
	 * a valid magic number.
	 */
	magic = bce_be32toh(buf[0]);
	if (magic != BCE_NVRAM_MAGIC) {
		rc = ENODEV;
		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
		    "Expected: 0x%08X, Found: 0x%08X\n",
		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
		goto bce_nvram_test_exit;
	}

	/*
	 * Verify that the device NVRAM includes valid
	 * configuration data.
	 */
	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
		BCE_PRINTF("%s(%d): Unable to read manufacturing "
		    "Information from  NVRAM!\n", __FILE__, __LINE__);
		goto bce_nvram_test_exit;
	}

	csum = ether_crc32_le(data, 0x100);
	if (csum != BCE_CRC32_RESIDUAL) {
		rc = ENODEV;
		BCE_PRINTF("%s(%d): Invalid manufacturing information "
		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
		goto bce_nvram_test_exit;
	}

	csum = ether_crc32_le(data + 0x100, 0x100);
	if (csum != BCE_CRC32_RESIDUAL) {
		rc = ENODEV;
		BCE_PRINTF("%s(%d): Invalid feature configuration "
		    "information NVRAM CRC! Expected: 0x%08X, "
		    "Found: 08%08X\n", __FILE__, __LINE__,
		    BCE_CRC32_RESIDUAL, csum);
	}

bce_nvram_test_exit:
	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
	return rc;
}


/****************************************************************************/
/* Calculates the size of the buffers to allocate based on the MTU.         */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
{
	DBENTER(BCE_VERBOSE_LOAD);

	/* Use a single allocation type when header splitting enabled. */
	if (bce_hdr_split == TRUE) {
		sc->rx_bd_mbuf_alloc_size = MHLEN;
		/* Make sure offset is 16 byte aligned for hardware. */
		sc->rx_bd_mbuf_align_pad =
			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
			sc->rx_bd_mbuf_align_pad;
		sc->pg_bd_mbuf_alloc_size = MCLBYTES;
	} else {
		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
		    ETHER_CRC_LEN) > MCLBYTES) {
			/* Setup for jumbo RX buffer allocations. */
			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
			sc->rx_bd_mbuf_align_pad  =
				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
			sc->rx_bd_mbuf_data_len =
			    sc->rx_bd_mbuf_alloc_size -
			    sc->rx_bd_mbuf_align_pad;
		} else {
			/* Setup for standard RX buffer allocations. */
			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
			sc->rx_bd_mbuf_align_pad  =
			    roundup2(MCLBYTES, 16) - MCLBYTES;
			sc->rx_bd_mbuf_data_len =
			    sc->rx_bd_mbuf_alloc_size -
			    sc->rx_bd_mbuf_align_pad;
		}
	}

//	DBPRINT(sc, BCE_INFO_LOAD,
	DBPRINT(sc, BCE_WARN,
	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
	   sc->rx_bd_mbuf_align_pad);

	DBEXIT(BCE_VERBOSE_LOAD);

}

/****************************************************************************/
/* Identifies the current media type of the controller and sets the PHY     */
/* address.                                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_get_media(struct bce_softc *sc)
{
	u32 val;

	DBENTER(BCE_VERBOSE_PHY);

	/* Assume PHY address for copper controllers. */
	sc->bce_phy_addr = 1;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
		u32 strap;

		/*
		 * The BCM5709S is software configurable
		 * for Copper or SerDes operation.
		 */
		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
			    "for copper.\n");
			goto bce_get_media_exit;
		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
			    "for dual media.\n");
			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
			goto bce_get_media_exit;
		}

		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
			strap = (val &
			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
		else
			strap = (val &
			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;

		if (pci_get_function(sc->bce_dev) == 0) {
			switch (strap) {
			case 0x4:
			case 0x5:
			case 0x6:
				DBPRINT(sc, BCE_INFO_LOAD,
				    "BCM5709 s/w configured for SerDes.\n");
				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
				break;
			default:
				DBPRINT(sc, BCE_INFO_LOAD,
				    "BCM5709 s/w configured for Copper.\n");
				break;
			}
		} else {
			switch (strap) {
			case 0x1:
			case 0x2:
			case 0x4:
				DBPRINT(sc, BCE_INFO_LOAD,
				    "BCM5709 s/w configured for SerDes.\n");
				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
				break;
			default:
				DBPRINT(sc, BCE_INFO_LOAD,
				    "BCM5709 s/w configured for Copper.\n");
				break;
			}
		}

	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;

	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {

		sc->bce_flags |= BCE_NO_WOL_FLAG;

		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;

		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
			/* 5708S/09S/16S use a separate PHY for SerDes. */
			sc->bce_phy_addr = 2;

			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
				sc->bce_phy_flags |=
				    BCE_PHY_2_5G_CAPABLE_FLAG;
				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
				    "capable adapter\n");
			}
		}
	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;

bce_get_media_exit:
	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
		"Using PHY address %d.\n", sc->bce_phy_addr);

	DBEXIT(BCE_VERBOSE_PHY);
}


/****************************************************************************/
/* Performs PHY initialization required before MII drivers access the       */
/* device.                                                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_media(struct bce_softc *sc)
{
	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
		/*
		 * Configure 5709S/5716S PHYs to use traditional IEEE
		 * Clause 22 method. Otherwise we have no way to attach
		 * the PHY in mii(4) layer. PHY specific configuration
		 * is done in mii layer.
		 */

		/* Select auto-negotiation MMD of the PHY. */
		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);

		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
	}
}


/****************************************************************************/
/* Free any DMA memory owned by the driver.                                 */
/*                                                                          */
/* Scans through each data structre that requires DMA memory and frees      */
/* the memory if allocated.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_dma_free(struct bce_softc *sc)
{
	int i;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);

	/* Free, unmap, and destroy the status block. */
	if (sc->status_block != NULL) {
		bus_dmamem_free(
		   sc->status_tag,
		    sc->status_block,
		    sc->status_map);
		sc->status_block = NULL;
	}

	if (sc->status_map != NULL) {
		bus_dmamap_unload(
		    sc->status_tag,
		    sc->status_map);
		bus_dmamap_destroy(sc->status_tag,
		    sc->status_map);
		sc->status_map = NULL;
	}

	if (sc->status_tag != NULL) {
		bus_dma_tag_destroy(sc->status_tag);
		sc->status_tag = NULL;
	}


	/* Free, unmap, and destroy the statistics block. */
	if (sc->stats_block != NULL) {
		bus_dmamem_free(
		    sc->stats_tag,
		    sc->stats_block,
		    sc->stats_map);
		sc->stats_block = NULL;
	}

	if (sc->stats_map != NULL) {
		bus_dmamap_unload(
		    sc->stats_tag,
		    sc->stats_map);
		bus_dmamap_destroy(sc->stats_tag,
		    sc->stats_map);
		sc->stats_map = NULL;
	}

	if (sc->stats_tag != NULL) {
		bus_dma_tag_destroy(sc->stats_tag);
		sc->stats_tag = NULL;
	}


	/* Free, unmap and destroy all context memory pages. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		for (i = 0; i < sc->ctx_pages; i++ ) {
			if (sc->ctx_block[i] != NULL) {
				bus_dmamem_free(
				    sc->ctx_tag,
				    sc->ctx_block[i],
				    sc->ctx_map[i]);
				sc->ctx_block[i] = NULL;
			}

			if (sc->ctx_map[i] != NULL) {
				bus_dmamap_unload(
				    sc->ctx_tag,
				    sc->ctx_map[i]);
				bus_dmamap_destroy(
				    sc->ctx_tag,
				    sc->ctx_map[i]);
				sc->ctx_map[i] = NULL;
			}
		}

		/* Destroy the context memory tag. */
		if (sc->ctx_tag != NULL) {
			bus_dma_tag_destroy(sc->ctx_tag);
			sc->ctx_tag = NULL;
		}
	}


	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
	for (i = 0; i < sc->tx_pages; i++ ) {
		if (sc->tx_bd_chain[i] != NULL) {
			bus_dmamem_free(
			    sc->tx_bd_chain_tag,
			    sc->tx_bd_chain[i],
			    sc->tx_bd_chain_map[i]);
			sc->tx_bd_chain[i] = NULL;
		}

		if (sc->tx_bd_chain_map[i] != NULL) {
			bus_dmamap_unload(
			    sc->tx_bd_chain_tag,
			    sc->tx_bd_chain_map[i]);
			bus_dmamap_destroy(
			    sc->tx_bd_chain_tag,
			    sc->tx_bd_chain_map[i]);
			sc->tx_bd_chain_map[i] = NULL;
		}
	}

	/* Destroy the TX buffer descriptor tag. */
	if (sc->tx_bd_chain_tag != NULL) {
		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
		sc->tx_bd_chain_tag = NULL;
	}


	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
	for (i = 0; i < sc->rx_pages; i++ ) {
		if (sc->rx_bd_chain[i] != NULL) {
			bus_dmamem_free(
			    sc->rx_bd_chain_tag,
			    sc->rx_bd_chain[i],
			    sc->rx_bd_chain_map[i]);
			sc->rx_bd_chain[i] = NULL;
		}

		if (sc->rx_bd_chain_map[i] != NULL) {
			bus_dmamap_unload(
			    sc->rx_bd_chain_tag,
			    sc->rx_bd_chain_map[i]);
			bus_dmamap_destroy(
			    sc->rx_bd_chain_tag,
			    sc->rx_bd_chain_map[i]);
			sc->rx_bd_chain_map[i] = NULL;
		}
	}

	/* Destroy the RX buffer descriptor tag. */
	if (sc->rx_bd_chain_tag != NULL) {
		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
		sc->rx_bd_chain_tag = NULL;
	}


	/* Free, unmap and destroy all page buffer descriptor chain pages. */
	if (bce_hdr_split == TRUE) {
		for (i = 0; i < sc->pg_pages; i++ ) {
			if (sc->pg_bd_chain[i] != NULL) {
				bus_dmamem_free(
				    sc->pg_bd_chain_tag,
				    sc->pg_bd_chain[i],
				    sc->pg_bd_chain_map[i]);
				sc->pg_bd_chain[i] = NULL;
			}

			if (sc->pg_bd_chain_map[i] != NULL) {
				bus_dmamap_unload(
				    sc->pg_bd_chain_tag,
				    sc->pg_bd_chain_map[i]);
				bus_dmamap_destroy(
				    sc->pg_bd_chain_tag,
				    sc->pg_bd_chain_map[i]);
				sc->pg_bd_chain_map[i] = NULL;
			}
		}

		/* Destroy the page buffer descriptor tag. */
		if (sc->pg_bd_chain_tag != NULL) {
			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
			sc->pg_bd_chain_tag = NULL;
		}
	}


	/* Unload and destroy the TX mbuf maps. */
	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
		if (sc->tx_mbuf_map[i] != NULL) {
			bus_dmamap_unload(sc->tx_mbuf_tag,
			    sc->tx_mbuf_map[i]);
			bus_dmamap_destroy(sc->tx_mbuf_tag,
	 		    sc->tx_mbuf_map[i]);
			sc->tx_mbuf_map[i] = NULL;
		}
	}

	/* Destroy the TX mbuf tag. */
	if (sc->tx_mbuf_tag != NULL) {
		bus_dma_tag_destroy(sc->tx_mbuf_tag);
		sc->tx_mbuf_tag = NULL;
	}

	/* Unload and destroy the RX mbuf maps. */
	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
		if (sc->rx_mbuf_map[i] != NULL) {
			bus_dmamap_unload(sc->rx_mbuf_tag,
			    sc->rx_mbuf_map[i]);
			bus_dmamap_destroy(sc->rx_mbuf_tag,
	 		    sc->rx_mbuf_map[i]);
			sc->rx_mbuf_map[i] = NULL;
		}
	}

	/* Destroy the RX mbuf tag. */
	if (sc->rx_mbuf_tag != NULL) {
		bus_dma_tag_destroy(sc->rx_mbuf_tag);
		sc->rx_mbuf_tag = NULL;
	}

	/* Unload and destroy the page mbuf maps. */
	if (bce_hdr_split == TRUE) {
		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
			if (sc->pg_mbuf_map[i] != NULL) {
				bus_dmamap_unload(sc->pg_mbuf_tag,
				    sc->pg_mbuf_map[i]);
				bus_dmamap_destroy(sc->pg_mbuf_tag,
				    sc->pg_mbuf_map[i]);
				sc->pg_mbuf_map[i] = NULL;
			}
		}

		/* Destroy the page mbuf tag. */
		if (sc->pg_mbuf_tag != NULL) {
			bus_dma_tag_destroy(sc->pg_mbuf_tag);
			sc->pg_mbuf_tag = NULL;
		}
	}

	/* Destroy the parent tag */
	if (sc->parent_tag != NULL) {
		bus_dma_tag_destroy(sc->parent_tag);
		sc->parent_tag = NULL;
	}

	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
}


/****************************************************************************/
/* Get DMA memory from the OS.                                              */
/*                                                                          */
/* Validates that the OS has provided DMA buffers in response to a          */
/* bus_dmamap_load() call and saves the physical address of those buffers.  */
/* When the callback is used the OS will return 0 for the mapping function  */
/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
/* failures back to the caller.                                             */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
	bus_addr_t *busaddr = arg;

	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
	    __FUNCTION__, nseg));
	/* Simulate a mapping failure. */
	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
	    error = ENOMEM);

	/* ToDo: How to increment debug sim_count variable here? */

	/* Check for an error and signal the caller that an error occurred. */
	if (error) {
		*busaddr = 0;
	} else {
		*busaddr = segs->ds_addr;
	}

	return;
}


/****************************************************************************/
/* Allocate any DMA memory needed by the driver.                            */
/*                                                                          */
/* Allocates DMA memory needed for the various global structures needed by  */
/* hardware.                                                                */
/*                                                                          */
/* Memory alignment requirements:                                           */
/* +-----------------+----------+----------+----------+----------+          */
/* |                 |   5706   |   5708   |   5709   |   5716   |          */
/* +-----------------+----------+----------+----------+----------+          */
/* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
/* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
/* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
/* |PG Buffers       |   none   |   none   |   none   |   none   |          */
/* |TX Buffers       |   none   |   none   |   none   |   none   |          */
/* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
/* |Context Memory   |          |          |          |          |          */
/* +-----------------+----------+----------+----------+----------+          */
/*                                                                          */
/* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_dma_alloc(device_t dev)
{
	struct bce_softc *sc;
	int i, error, rc = 0;
	bus_size_t max_size, max_seg_size;
	int max_segments;

	sc = device_get_softc(dev);

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);

	/*
	 * Allocate the parent bus DMA tag appropriate for PCI.
	 */
	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
	    &sc->parent_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
		    __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	/*
	 * Create a DMA tag for the status block, allocate and clear the
	 * memory, map the memory into DMA space, and fetch the physical
	 * address of the block.
	 */
	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
	    0, NULL, NULL, &sc->status_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate status block "
		    "DMA tag!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
	    &sc->status_map)) {
		BCE_PRINTF("%s(%d): Could not allocate status block "
		    "DMA memory!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
	    &sc->status_block_paddr, BUS_DMA_NOWAIT);

	if (error) {
		BCE_PRINTF("%s(%d): Could not map status block "
		    "DMA memory!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);

	/*
	 * Create a DMA tag for the statistics block, allocate and clear the
	 * memory, map the memory into DMA space, and fetch the physical
	 * address of the block.
	 */
	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
	    0, NULL, NULL, &sc->stats_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate statistics block "
		    "DMA tag!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
		BCE_PRINTF("%s(%d): Could not allocate statistics block "
		    "DMA memory!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);

	if(error) {
		BCE_PRINTF("%s(%d): Could not map statistics block "
		    "DMA memory!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);

	/* BCM5709 uses host memory as cache for context memory. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
		if (sc->ctx_pages == 0)
			sc->ctx_pages = 1;

		DBRUNIF((sc->ctx_pages > 512),
		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
		    __FILE__, __LINE__, sc->ctx_pages));

		/*
		 * Create a DMA tag for the context pages,
		 * allocate and clear the memory, map the
		 * memory into DMA space, and fetch the
		 * physical address of the block.
		 */
		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
		    0, NULL, NULL, &sc->ctx_tag)) {
			BCE_PRINTF("%s(%d): Could not allocate CTX "
			    "DMA tag!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		for (i = 0; i < sc->ctx_pages; i++) {

			if(bus_dmamem_alloc(sc->ctx_tag,
			    (void **)&sc->ctx_block[i],
			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
			    &sc->ctx_map[i])) {
				BCE_PRINTF("%s(%d): Could not allocate CTX "
				    "DMA memory!\n", __FILE__, __LINE__);
				rc = ENOMEM;
				goto bce_dma_alloc_exit;
			}

			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);

			if (error) {
				BCE_PRINTF("%s(%d): Could not map CTX "
				    "DMA memory!\n", __FILE__, __LINE__);
				rc = ENOMEM;
				goto bce_dma_alloc_exit;
			}

			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
			    "= 0x%jX\n", __FUNCTION__, i,
			    (uintmax_t) sc->ctx_paddr[i]);
		}
	}

	/*
	 * Create a DMA tag for the TX buffer descriptor chain,
	 * allocate and clear the  memory, and fetch the
	 * physical address of the block.
	 */
	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
		    "chain DMA tag!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	for (i = 0; i < sc->tx_pages; i++) {

		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
		    (void **)&sc->tx_bd_chain[i],
		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
		    &sc->tx_bd_chain_map[i])) {
			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
			    "chain DMA memory!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		error = bus_dmamap_load(sc->tx_bd_chain_tag,
		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);

		if (error) {
			BCE_PRINTF("%s(%d): Could not map TX descriptor "
			    "chain DMA memory!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
		    "0x%jX\n", __FUNCTION__, i,
		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
	}

	/* Check the required size before mapping to conserve resources. */
	if (bce_tso_enable) {
		max_size     = BCE_TSO_MAX_SIZE;
		max_segments = BCE_MAX_SEGMENTS;
		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
	} else {
		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
		max_segments = BCE_MAX_SEGMENTS;
		max_seg_size = MCLBYTES;
	}

	/* Create a DMA tag for TX mbufs. */
	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
		    __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	/* Create DMA maps for the TX mbufs clusters. */
	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
			&sc->tx_mbuf_map[i])) {
			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
			    "map!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}
	}

	/*
	 * Create a DMA tag for the RX buffer descriptor chain,
	 * allocate and clear the memory, and fetch the physical
	 * address of the blocks.
	 */
	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
			sc->max_bus_addr, NULL, NULL,
			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
		    "DMA tag!\n", __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	for (i = 0; i < sc->rx_pages; i++) {

		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
		    (void **)&sc->rx_bd_chain[i],
		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
		    &sc->rx_bd_chain_map[i])) {
			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
			    "chain DMA memory!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		error = bus_dmamap_load(sc->rx_bd_chain_tag,
		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);

		if (error) {
			BCE_PRINTF("%s(%d): Could not map RX descriptor "
			    "chain DMA memory!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
		    "0x%jX\n", __FUNCTION__, i,
		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
	}

	/*
	 * Create a DMA tag for RX mbufs.
	 */
	if (bce_hdr_split == TRUE)
		max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
	else
		max_size = max_seg_size = MJUM9BYTES;
	max_segments = 1;

	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
	    "(max size = 0x%jX max segments = %d, max segment "
	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
	     max_segments, (uintmax_t) max_seg_size);

	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
	    &sc->rx_mbuf_tag)) {
		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
		    __FILE__, __LINE__);
		rc = ENOMEM;
		goto bce_dma_alloc_exit;
	}

	/* Create DMA maps for the RX mbuf clusters. */
	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
		    &sc->rx_mbuf_map[i])) {
			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
			    "DMA map!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}
	}

	if (bce_hdr_split == TRUE) {
		/*
		 * Create a DMA tag for the page buffer descriptor chain,
		 * allocate and clear the memory, and fetch the physical
		 * address of the blocks.
		 */
		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
			    "chain DMA tag!\n",	__FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		for (i = 0; i < sc->pg_pages; i++) {
			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
			    (void **)&sc->pg_bd_chain[i],
			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
			    &sc->pg_bd_chain_map[i])) {
				BCE_PRINTF("%s(%d): Could not allocate page "
				    "descriptor chain DMA memory!\n",
				    __FILE__, __LINE__);
				rc = ENOMEM;
				goto bce_dma_alloc_exit;
			}

			error = bus_dmamap_load(sc->pg_bd_chain_tag,
			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);

			if (error) {
				BCE_PRINTF("%s(%d): Could not map page descriptor "
					"chain DMA memory!\n", __FILE__, __LINE__);
				rc = ENOMEM;
				goto bce_dma_alloc_exit;
			}

			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
				"0x%jX\n", __FUNCTION__, i,
				(uintmax_t) sc->pg_bd_chain_paddr[i]);
		}

		/*
		 * Create a DMA tag for page mbufs.
		 */
		max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
			MCLBYTES : sc->pg_bd_mbuf_alloc_size);

		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
			sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
			max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
				"DMA tag!\n", __FILE__, __LINE__);
			rc = ENOMEM;
			goto bce_dma_alloc_exit;
		}

		/* Create DMA maps for the page mbuf clusters. */
		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
				&sc->pg_mbuf_map[i])) {
				BCE_PRINTF("%s(%d): Unable to create page mbuf "
					"DMA map!\n", __FILE__, __LINE__);
				rc = ENOMEM;
				goto bce_dma_alloc_exit;
			}
		}
	}

bce_dma_alloc_exit:
	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
	return(rc);
}


/****************************************************************************/
/* Release all resources used by the driver.                                */
/*                                                                          */
/* Releases all resources acquired by the driver including interrupts,      */
/* interrupt handler, interfaces, mutexes, and DMA memory.                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_release_resources(struct bce_softc *sc)
{
	device_t dev;

	DBENTER(BCE_VERBOSE_RESET);

	dev = sc->bce_dev;

	bce_dma_free(sc);

	if (sc->bce_intrhand != NULL) {
		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
	}

	if (sc->bce_res_irq != NULL) {
		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
		    sc->bce_res_irq);
	}

	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
		pci_release_msi(dev);
	}

	if (sc->bce_res_mem != NULL) {
		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
		    sc->bce_res_mem);
	}

	if (sc->bce_ifp != NULL) {
		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
		if_free(sc->bce_ifp);
	}

	if (mtx_initialized(&sc->bce_mtx))
		BCE_LOCK_DESTROY(sc);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Firmware synchronization.                                                */
/*                                                                          */
/* Before performing certain events such as a chip reset, synchronize with  */
/* the firmware first.                                                      */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_fw_sync(struct bce_softc *sc, u32 msg_data)
{
	int i, rc = 0;
	u32 val;

	DBENTER(BCE_VERBOSE_RESET);

	/* Don't waste any time if we've timed out before. */
	if (sc->bce_fw_timed_out == TRUE) {
		rc = EBUSY;
		goto bce_fw_sync_exit;
	}

	/* Increment the message sequence number. */
	sc->bce_fw_wr_seq++;
	msg_data |= sc->bce_fw_wr_seq;

 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
	    "0x%08X\n",	msg_data);

	/* Send the message to the bootcode driver mailbox. */
	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);

	/* Wait for the bootcode to acknowledge the message. */
	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
		/* Check for a response in the bootcode firmware mailbox. */
		val = bce_shmem_rd(sc, BCE_FW_MB);
		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
			break;
		DELAY(1000);
	}

	/* If we've timed out, tell bootcode that we've stopped waiting. */
	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {

		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);

		msg_data &= ~BCE_DRV_MSG_CODE;
		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;

		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);

		sc->bce_fw_timed_out = TRUE;
		rc = EBUSY;
	}

bce_fw_sync_exit:
	DBEXIT(BCE_VERBOSE_RESET);
	return (rc);
}


/****************************************************************************/
/* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
	u32 rv2p_code_len, u32 rv2p_proc)
{
	int i;
	u32 val;

	DBENTER(BCE_VERBOSE_RESET);

	/* Set the page size used by RV2P. */
	if (rv2p_proc == RV2P_PROC2) {
		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
	}

	for (i = 0; i < rv2p_code_len; i += 8) {
		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
		rv2p_code++;
		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
		rv2p_code++;

		if (rv2p_proc == RV2P_PROC1) {
			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
		}
		else {
			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
		}
	}

	/* Reset the processor, un-stall is done later. */
	if (rv2p_proc == RV2P_PROC1) {
		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
	}
	else {
		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
	}

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Load RISC processor firmware.                                            */
/*                                                                          */
/* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
/* associated with a particular processor.                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
	struct fw_info *fw)
{
	u32 offset;

	DBENTER(BCE_VERBOSE_RESET);

    bce_halt_cpu(sc, cpu_reg);

	/* Load the Text area. */
	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
	if (fw->text) {
		int j;

		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
			REG_WR_IND(sc, offset, fw->text[j]);
	        }
	}

	/* Load the Data area. */
	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
	if (fw->data) {
		int j;

		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
			REG_WR_IND(sc, offset, fw->data[j]);
		}
	}

	/* Load the SBSS area. */
	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
	if (fw->sbss) {
		int j;

		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
			REG_WR_IND(sc, offset, fw->sbss[j]);
		}
	}

	/* Load the BSS area. */
	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
	if (fw->bss) {
		int j;

		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
			REG_WR_IND(sc, offset, fw->bss[j]);
		}
	}

	/* Load the Read-Only area. */
	offset = cpu_reg->spad_base +
		(fw->rodata_addr - cpu_reg->mips_view_base);
	if (fw->rodata) {
		int j;

		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
			REG_WR_IND(sc, offset, fw->rodata[j]);
		}
	}

	/* Clear the pre-fetch instruction and set the FW start address. */
	REG_WR_IND(sc, cpu_reg->inst, 0);
	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Starts the RISC processor.                                               */
/*                                                                          */
/* Assumes the CPU starting address has already been set.                   */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
{
	u32 val;

	DBENTER(BCE_VERBOSE_RESET);

	/* Start the CPU. */
	val = REG_RD_IND(sc, cpu_reg->mode);
	val &= ~cpu_reg->mode_value_halt;
	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
	REG_WR_IND(sc, cpu_reg->mode, val);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Halts the RISC processor.                                                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
{
	u32 val;

	DBENTER(BCE_VERBOSE_RESET);

	/* Halt the CPU. */
	val = REG_RD_IND(sc, cpu_reg->mode);
	val |= cpu_reg->mode_value_halt;
	REG_WR_IND(sc, cpu_reg->mode, val);
	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the RX CPU.                                                   */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_start_rxp_cpu(struct bce_softc *sc)
{
	struct cpu_reg cpu_reg;

	DBENTER(BCE_VERBOSE_RESET);

	cpu_reg.mode = BCE_RXP_CPU_MODE;
	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
	cpu_reg.state = BCE_RXP_CPU_STATE;
	cpu_reg.state_value_clear = 0xffffff;
	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
	cpu_reg.spad_base = BCE_RXP_SCRATCH;
	cpu_reg.mips_view_base = 0x8000000;

	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
	bce_start_cpu(sc, &cpu_reg);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the RX CPU.                                                   */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_rxp_cpu(struct bce_softc *sc)
{
	struct cpu_reg cpu_reg;
	struct fw_info fw;

	DBENTER(BCE_VERBOSE_RESET);

	cpu_reg.mode = BCE_RXP_CPU_MODE;
	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
	cpu_reg.state = BCE_RXP_CPU_STATE;
	cpu_reg.state_value_clear = 0xffffff;
	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
	cpu_reg.spad_base = BCE_RXP_SCRATCH;
	cpu_reg.mips_view_base = 0x8000000;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 		fw.ver_major = bce_RXP_b09FwReleaseMajor;
		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
		fw.ver_fix = bce_RXP_b09FwReleaseFix;
		fw.start_addr = bce_RXP_b09FwStartAddr;

		fw.text_addr = bce_RXP_b09FwTextAddr;
		fw.text_len = bce_RXP_b09FwTextLen;
		fw.text_index = 0;
		fw.text = bce_RXP_b09FwText;

		fw.data_addr = bce_RXP_b09FwDataAddr;
		fw.data_len = bce_RXP_b09FwDataLen;
		fw.data_index = 0;
		fw.data = bce_RXP_b09FwData;

		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
		fw.sbss_len = bce_RXP_b09FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_RXP_b09FwSbss;

		fw.bss_addr = bce_RXP_b09FwBssAddr;
		fw.bss_len = bce_RXP_b09FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_RXP_b09FwBss;

		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
		fw.rodata_len = bce_RXP_b09FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_RXP_b09FwRodata;
	} else {
		fw.ver_major = bce_RXP_b06FwReleaseMajor;
		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
		fw.ver_fix = bce_RXP_b06FwReleaseFix;
		fw.start_addr = bce_RXP_b06FwStartAddr;

		fw.text_addr = bce_RXP_b06FwTextAddr;
		fw.text_len = bce_RXP_b06FwTextLen;
		fw.text_index = 0;
		fw.text = bce_RXP_b06FwText;

		fw.data_addr = bce_RXP_b06FwDataAddr;
		fw.data_len = bce_RXP_b06FwDataLen;
		fw.data_index = 0;
		fw.data = bce_RXP_b06FwData;

		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
		fw.sbss_len = bce_RXP_b06FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_RXP_b06FwSbss;

		fw.bss_addr = bce_RXP_b06FwBssAddr;
		fw.bss_len = bce_RXP_b06FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_RXP_b06FwBss;

		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
		fw.rodata_len = bce_RXP_b06FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_RXP_b06FwRodata;
	}

	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
	bce_load_cpu_fw(sc, &cpu_reg, &fw);

    /* Delay RXP start until initialization is complete. */

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the TX CPU.                                                   */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_txp_cpu(struct bce_softc *sc)
{
	struct cpu_reg cpu_reg;
	struct fw_info fw;

	DBENTER(BCE_VERBOSE_RESET);

	cpu_reg.mode = BCE_TXP_CPU_MODE;
	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
	cpu_reg.state = BCE_TXP_CPU_STATE;
	cpu_reg.state_value_clear = 0xffffff;
	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
	cpu_reg.spad_base = BCE_TXP_SCRATCH;
	cpu_reg.mips_view_base = 0x8000000;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		fw.ver_major = bce_TXP_b09FwReleaseMajor;
		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
		fw.ver_fix = bce_TXP_b09FwReleaseFix;
		fw.start_addr = bce_TXP_b09FwStartAddr;

		fw.text_addr = bce_TXP_b09FwTextAddr;
		fw.text_len = bce_TXP_b09FwTextLen;
		fw.text_index = 0;
		fw.text = bce_TXP_b09FwText;

		fw.data_addr = bce_TXP_b09FwDataAddr;
		fw.data_len = bce_TXP_b09FwDataLen;
		fw.data_index = 0;
		fw.data = bce_TXP_b09FwData;

		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
		fw.sbss_len = bce_TXP_b09FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_TXP_b09FwSbss;

		fw.bss_addr = bce_TXP_b09FwBssAddr;
		fw.bss_len = bce_TXP_b09FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_TXP_b09FwBss;

		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
		fw.rodata_len = bce_TXP_b09FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_TXP_b09FwRodata;
	} else {
		fw.ver_major = bce_TXP_b06FwReleaseMajor;
		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
		fw.ver_fix = bce_TXP_b06FwReleaseFix;
		fw.start_addr = bce_TXP_b06FwStartAddr;

		fw.text_addr = bce_TXP_b06FwTextAddr;
		fw.text_len = bce_TXP_b06FwTextLen;
		fw.text_index = 0;
		fw.text = bce_TXP_b06FwText;

		fw.data_addr = bce_TXP_b06FwDataAddr;
		fw.data_len = bce_TXP_b06FwDataLen;
		fw.data_index = 0;
		fw.data = bce_TXP_b06FwData;

		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
		fw.sbss_len = bce_TXP_b06FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_TXP_b06FwSbss;

		fw.bss_addr = bce_TXP_b06FwBssAddr;
		fw.bss_len = bce_TXP_b06FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_TXP_b06FwBss;

		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
		fw.rodata_len = bce_TXP_b06FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_TXP_b06FwRodata;
	}

	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
	bce_load_cpu_fw(sc, &cpu_reg, &fw);
    bce_start_cpu(sc, &cpu_reg);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the TPAT CPU.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_tpat_cpu(struct bce_softc *sc)
{
	struct cpu_reg cpu_reg;
	struct fw_info fw;

	DBENTER(BCE_VERBOSE_RESET);

	cpu_reg.mode = BCE_TPAT_CPU_MODE;
	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
	cpu_reg.state = BCE_TPAT_CPU_STATE;
	cpu_reg.state_value_clear = 0xffffff;
	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
	cpu_reg.mips_view_base = 0x8000000;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
		fw.start_addr = bce_TPAT_b09FwStartAddr;

		fw.text_addr = bce_TPAT_b09FwTextAddr;
		fw.text_len = bce_TPAT_b09FwTextLen;
		fw.text_index = 0;
		fw.text = bce_TPAT_b09FwText;

		fw.data_addr = bce_TPAT_b09FwDataAddr;
		fw.data_len = bce_TPAT_b09FwDataLen;
		fw.data_index = 0;
		fw.data = bce_TPAT_b09FwData;

		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
		fw.sbss_len = bce_TPAT_b09FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_TPAT_b09FwSbss;

		fw.bss_addr = bce_TPAT_b09FwBssAddr;
		fw.bss_len = bce_TPAT_b09FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_TPAT_b09FwBss;

		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
		fw.rodata_len = bce_TPAT_b09FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_TPAT_b09FwRodata;
	} else {
		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
		fw.start_addr = bce_TPAT_b06FwStartAddr;

		fw.text_addr = bce_TPAT_b06FwTextAddr;
		fw.text_len = bce_TPAT_b06FwTextLen;
		fw.text_index = 0;
		fw.text = bce_TPAT_b06FwText;

		fw.data_addr = bce_TPAT_b06FwDataAddr;
		fw.data_len = bce_TPAT_b06FwDataLen;
		fw.data_index = 0;
		fw.data = bce_TPAT_b06FwData;

		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
		fw.sbss_len = bce_TPAT_b06FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_TPAT_b06FwSbss;

		fw.bss_addr = bce_TPAT_b06FwBssAddr;
		fw.bss_len = bce_TPAT_b06FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_TPAT_b06FwBss;

		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
		fw.rodata_len = bce_TPAT_b06FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_TPAT_b06FwRodata;
	}

	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
	bce_load_cpu_fw(sc, &cpu_reg, &fw);
	bce_start_cpu(sc, &cpu_reg);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the CP CPU.                                                   */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_cp_cpu(struct bce_softc *sc)
{
	struct cpu_reg cpu_reg;
	struct fw_info fw;

	DBENTER(BCE_VERBOSE_RESET);

	cpu_reg.mode = BCE_CP_CPU_MODE;
	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
	cpu_reg.state = BCE_CP_CPU_STATE;
	cpu_reg.state_value_clear = 0xffffff;
	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
	cpu_reg.spad_base = BCE_CP_SCRATCH;
	cpu_reg.mips_view_base = 0x8000000;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		fw.ver_major = bce_CP_b09FwReleaseMajor;
		fw.ver_minor = bce_CP_b09FwReleaseMinor;
		fw.ver_fix = bce_CP_b09FwReleaseFix;
		fw.start_addr = bce_CP_b09FwStartAddr;

		fw.text_addr = bce_CP_b09FwTextAddr;
		fw.text_len = bce_CP_b09FwTextLen;
		fw.text_index = 0;
		fw.text = bce_CP_b09FwText;

		fw.data_addr = bce_CP_b09FwDataAddr;
		fw.data_len = bce_CP_b09FwDataLen;
		fw.data_index = 0;
		fw.data = bce_CP_b09FwData;

		fw.sbss_addr = bce_CP_b09FwSbssAddr;
		fw.sbss_len = bce_CP_b09FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_CP_b09FwSbss;

		fw.bss_addr = bce_CP_b09FwBssAddr;
		fw.bss_len = bce_CP_b09FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_CP_b09FwBss;

		fw.rodata_addr = bce_CP_b09FwRodataAddr;
		fw.rodata_len = bce_CP_b09FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_CP_b09FwRodata;
	} else {
		fw.ver_major = bce_CP_b06FwReleaseMajor;
		fw.ver_minor = bce_CP_b06FwReleaseMinor;
		fw.ver_fix = bce_CP_b06FwReleaseFix;
		fw.start_addr = bce_CP_b06FwStartAddr;

		fw.text_addr = bce_CP_b06FwTextAddr;
		fw.text_len = bce_CP_b06FwTextLen;
		fw.text_index = 0;
		fw.text = bce_CP_b06FwText;

		fw.data_addr = bce_CP_b06FwDataAddr;
		fw.data_len = bce_CP_b06FwDataLen;
		fw.data_index = 0;
		fw.data = bce_CP_b06FwData;

		fw.sbss_addr = bce_CP_b06FwSbssAddr;
		fw.sbss_len = bce_CP_b06FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_CP_b06FwSbss;

		fw.bss_addr = bce_CP_b06FwBssAddr;
		fw.bss_len = bce_CP_b06FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_CP_b06FwBss;

		fw.rodata_addr = bce_CP_b06FwRodataAddr;
		fw.rodata_len = bce_CP_b06FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_CP_b06FwRodata;
	}

	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
	bce_load_cpu_fw(sc, &cpu_reg, &fw);
	bce_start_cpu(sc, &cpu_reg);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the COM CPU.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_com_cpu(struct bce_softc *sc)
{
	struct cpu_reg cpu_reg;
	struct fw_info fw;

	DBENTER(BCE_VERBOSE_RESET);

	cpu_reg.mode = BCE_COM_CPU_MODE;
	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
	cpu_reg.state = BCE_COM_CPU_STATE;
	cpu_reg.state_value_clear = 0xffffff;
	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
	cpu_reg.spad_base = BCE_COM_SCRATCH;
	cpu_reg.mips_view_base = 0x8000000;

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		fw.ver_major = bce_COM_b09FwReleaseMajor;
		fw.ver_minor = bce_COM_b09FwReleaseMinor;
		fw.ver_fix = bce_COM_b09FwReleaseFix;
		fw.start_addr = bce_COM_b09FwStartAddr;

		fw.text_addr = bce_COM_b09FwTextAddr;
		fw.text_len = bce_COM_b09FwTextLen;
		fw.text_index = 0;
		fw.text = bce_COM_b09FwText;

		fw.data_addr = bce_COM_b09FwDataAddr;
		fw.data_len = bce_COM_b09FwDataLen;
		fw.data_index = 0;
		fw.data = bce_COM_b09FwData;

		fw.sbss_addr = bce_COM_b09FwSbssAddr;
		fw.sbss_len = bce_COM_b09FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_COM_b09FwSbss;

		fw.bss_addr = bce_COM_b09FwBssAddr;
		fw.bss_len = bce_COM_b09FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_COM_b09FwBss;

		fw.rodata_addr = bce_COM_b09FwRodataAddr;
		fw.rodata_len = bce_COM_b09FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_COM_b09FwRodata;
	} else {
		fw.ver_major = bce_COM_b06FwReleaseMajor;
		fw.ver_minor = bce_COM_b06FwReleaseMinor;
		fw.ver_fix = bce_COM_b06FwReleaseFix;
		fw.start_addr = bce_COM_b06FwStartAddr;

		fw.text_addr = bce_COM_b06FwTextAddr;
		fw.text_len = bce_COM_b06FwTextLen;
		fw.text_index = 0;
		fw.text = bce_COM_b06FwText;

		fw.data_addr = bce_COM_b06FwDataAddr;
		fw.data_len = bce_COM_b06FwDataLen;
		fw.data_index = 0;
		fw.data = bce_COM_b06FwData;

		fw.sbss_addr = bce_COM_b06FwSbssAddr;
		fw.sbss_len = bce_COM_b06FwSbssLen;
		fw.sbss_index = 0;
		fw.sbss = bce_COM_b06FwSbss;

		fw.bss_addr = bce_COM_b06FwBssAddr;
		fw.bss_len = bce_COM_b06FwBssLen;
		fw.bss_index = 0;
		fw.bss = bce_COM_b06FwBss;

		fw.rodata_addr = bce_COM_b06FwRodataAddr;
		fw.rodata_len = bce_COM_b06FwRodataLen;
		fw.rodata_index = 0;
		fw.rodata = bce_COM_b06FwRodata;
	}

	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
	bce_load_cpu_fw(sc, &cpu_reg, &fw);
	bce_start_cpu(sc, &cpu_reg);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
/*                                                                          */
/* Loads the firmware for each CPU and starts the CPU.                      */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_cpus(struct bce_softc *sc)
{
	DBENTER(BCE_VERBOSE_RESET);

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {

		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
		} else {
			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
		}

	} else {
		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
	}

	bce_init_rxp_cpu(sc);
	bce_init_txp_cpu(sc);
	bce_init_tpat_cpu(sc);
	bce_init_com_cpu(sc);
	bce_init_cp_cpu(sc);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize context memory.                                               */
/*                                                                          */
/* Clears the memory associated with each Context ID (CID).                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static int
bce_init_ctx(struct bce_softc *sc)
{
	u32 offset, val, vcid_addr;
	int i, j, rc, retry_cnt;

	rc = 0;
	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		retry_cnt = CTX_INIT_RETRY_COUNT;

		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");

		/*
		 * BCM5709 context memory may be cached
		 * in host memory so prepare the host memory
		 * for access.
		 */
		val = BCE_CTX_COMMAND_ENABLED |
		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
		val |= (BCM_PAGE_BITS - 8) << 16;
		REG_WR(sc, BCE_CTX_COMMAND, val);

		/* Wait for mem init command to complete. */
		for (i = 0; i < retry_cnt; i++) {
			val = REG_RD(sc, BCE_CTX_COMMAND);
			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
				break;
			DELAY(2);
		}
		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
			BCE_PRINTF("%s(): Context memory initialization failed!\n",
			    __FUNCTION__);
			rc = EBUSY;
			goto init_ctx_fail;
		}

		for (i = 0; i < sc->ctx_pages; i++) {
			/* Set the physical address of the context memory. */
			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
			    BCE_ADDR_HI(sc->ctx_paddr[i]));
			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);

			/* Verify the context memory write was successful. */
			for (j = 0; j < retry_cnt; j++) {
				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
				if ((val &
				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
					break;
				DELAY(5);
			}
			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
				BCE_PRINTF("%s(): Failed to initialize "
				    "context page %d!\n", __FUNCTION__, i);
				rc = EBUSY;
				goto init_ctx_fail;
			}
		}
	} else {

		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");

		/*
		 * For the 5706/5708, context memory is local to
		 * the controller, so initialize the controller
		 * context memory.
		 */

		vcid_addr = GET_CID_ADDR(96);
		while (vcid_addr) {

			vcid_addr -= PHY_CTX_SIZE;

			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);

			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
				CTX_WR(sc, 0x00, offset, 0);
			}

			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
		}

	}
init_ctx_fail:
	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
	return (rc);
}


/****************************************************************************/
/* Fetch the permanent MAC address of the controller.                       */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_get_mac_addr(struct bce_softc *sc)
{
	u32 mac_lo = 0, mac_hi = 0;

	DBENTER(BCE_VERBOSE_RESET);

	/*
	 * The NetXtreme II bootcode populates various NIC
	 * power-on and runtime configuration items in a
	 * shared memory area.  The factory configured MAC
	 * address is available from both NVRAM and the
	 * shared memory area so we'll read the value from
	 * shared memory for speed.
	 */

	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);

	if ((mac_lo == 0) && (mac_hi == 0)) {
		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
		    __FILE__, __LINE__);
	} else {
		sc->eaddr[0] = (u_char)(mac_hi >> 8);
		sc->eaddr[1] = (u_char)(mac_hi >> 0);
		sc->eaddr[2] = (u_char)(mac_lo >> 24);
		sc->eaddr[3] = (u_char)(mac_lo >> 16);
		sc->eaddr[4] = (u_char)(mac_lo >> 8);
		sc->eaddr[5] = (u_char)(mac_lo >> 0);
	}

	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
	    "address = %6D\n", sc->eaddr, ":");
	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Program the MAC address.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_set_mac_addr(struct bce_softc *sc)
{
	u32 val;
	u8 *mac_addr = sc->eaddr;

	/* ToDo: Add support for setting multiple MAC addresses. */

	DBENTER(BCE_VERBOSE_RESET);
	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
	    "%6D\n", sc->eaddr, ":");

	val = (mac_addr[0] << 8) | mac_addr[1];

	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);

	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
	    (mac_addr[4] << 8) | mac_addr[5];

	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Stop the controller.                                                     */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_stop(struct bce_softc *sc)
{
	struct ifnet *ifp;

	DBENTER(BCE_VERBOSE_RESET);

	BCE_LOCK_ASSERT(sc);

	ifp = sc->bce_ifp;

	callout_stop(&sc->bce_tick_callout);

	/* Disable the transmit/receive blocks. */
	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
	DELAY(20);

	bce_disable_intr(sc);

	/* Free RX buffers. */
	if (bce_hdr_split == TRUE) {
		bce_free_pg_chain(sc);
	}
	bce_free_rx_chain(sc);

	/* Free TX buffers. */
	bce_free_tx_chain(sc);

	sc->watchdog_timer = 0;

	sc->bce_link_up = FALSE;

	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);

	DBEXIT(BCE_VERBOSE_RESET);
}


static int
bce_reset(struct bce_softc *sc, u32 reset_code)
{
	u32 emac_mode_save, val;
	int i, rc = 0;
	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;

	DBENTER(BCE_VERBOSE_RESET);

	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
	    __FUNCTION__, reset_code);

	/*
	 * If ASF/IPMI is operational, then the EMAC Mode register already
	 * contains appropriate values for the link settings that have
	 * been auto-negotiated.  Resetting the chip will clobber those
	 * values.  Save the important bits so we can restore them after
	 * the reset.
	 */
	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;

	/* Wait for pending PCI transactions to complete. */
	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
	DELAY(5);

	/* Disable DMA */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
	}

	/* Assume bootcode is running. */
	sc->bce_fw_timed_out = FALSE;
	sc->bce_drv_cardiac_arrest = FALSE;

	/* Give the firmware a chance to prepare for the reset. */
	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
	if (rc)
		goto bce_reset_exit;

	/* Set a firmware reminder that this is a soft reset. */
	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);

	/* Dummy read to force the chip to complete all current transactions. */
	val = REG_RD(sc, BCE_MISC_ID);

	/* Chip reset. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
		REG_RD(sc, BCE_MISC_COMMAND);
		DELAY(5);

		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;

		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
	} else {
		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);

		/* Allow up to 30us for reset to complete. */
		for (i = 0; i < 10; i++) {
			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
				break;
			}
			DELAY(10);
		}

		/* Check that reset completed successfully. */
		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
			BCE_PRINTF("%s(%d): Reset failed!\n",
			    __FILE__, __LINE__);
			rc = EBUSY;
			goto bce_reset_exit;
		}
	}

	/* Make sure byte swapping is properly configured. */
	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
	if (val != 0x01020304) {
		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
		    __FILE__, __LINE__);
		rc = ENODEV;
		goto bce_reset_exit;
	}

	/* Just completed a reset, assume that firmware is running again. */
	sc->bce_fw_timed_out = FALSE;
	sc->bce_drv_cardiac_arrest = FALSE;

	/* Wait for the firmware to finish its initialization. */
	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
	if (rc)
		BCE_PRINTF("%s(%d): Firmware did not complete "
		    "initialization!\n", __FILE__, __LINE__);
	/* Get firmware capabilities. */
	bce_fw_cap_init(sc);

bce_reset_exit:
	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
	val = REG_RD(sc, BCE_EMAC_MODE);
	val = (val & ~emac_mode_mask) | emac_mode_save;
	REG_WR(sc, BCE_EMAC_MODE, val);

	DBEXIT(BCE_VERBOSE_RESET);
	return (rc);
}


static int
bce_chipinit(struct bce_softc *sc)
{
	u32 val;
	int rc = 0;

	DBENTER(BCE_VERBOSE_RESET);

	bce_disable_intr(sc);

	/*
	 * Initialize DMA byte/word swapping, configure the number of DMA
	 * channels and PCI clock compensation delay.
	 */
	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
#if BYTE_ORDER == BIG_ENDIAN
	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
	    DMA_READ_CHANS << 12 |
	    DMA_WRITE_CHANS << 16;

	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;

	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;

	/*
	 * This setting resolves a problem observed on certain Intel PCI
	 * chipsets that cannot handle multiple outstanding DMA operations.
	 * See errata E9_5706A1_65.
	 */
	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
	    !(sc->bce_flags & BCE_PCIX_FLAG))
		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;

	REG_WR(sc, BCE_DMA_CONFIG, val);

	/* Enable the RX_V2P and Context state machines before access. */
	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);

	/* Initialize context mapping and zero out the quick contexts. */
	if ((rc = bce_init_ctx(sc)) != 0)
		goto bce_chipinit_exit;

	/* Initialize the on-boards CPUs */
	bce_init_cpus(sc);

	/* Enable management frames (NC-SI) to flow to the MCP. */
	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
	}

	/* Prepare NVRAM for access. */
	if ((rc = bce_init_nvram(sc)) != 0)
		goto bce_chipinit_exit;

	/* Set the kernel bypass block size */
	val = REG_RD(sc, BCE_MQ_CONFIG);
	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;

	/* Enable bins used on the 5709. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
			val |= BCE_MQ_CONFIG_HALT_DIS;
	}

	REG_WR(sc, BCE_MQ_CONFIG, val);

	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);

	/* Set the page size and clear the RV2P processor stall bits. */
	val = (BCM_PAGE_BITS - 8) << 24;
	REG_WR(sc, BCE_RV2P_CONFIG, val);

	/* Configure page size. */
	val = REG_RD(sc, BCE_TBDR_CONFIG);
	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
	REG_WR(sc, BCE_TBDR_CONFIG, val);

	/* Set the perfect match control register to default. */
	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);

bce_chipinit_exit:
	DBEXIT(BCE_VERBOSE_RESET);

	return(rc);
}


/****************************************************************************/
/* Initialize the controller in preparation to send/receive traffic.        */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_blockinit(struct bce_softc *sc)
{
	u32 reg, val;
	int rc = 0;

	DBENTER(BCE_VERBOSE_RESET);

	/* Load the hardware default MAC address. */
	bce_set_mac_addr(sc);

	/* Set the Ethernet backoff seed value */
	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);

	sc->last_status_idx = 0;
	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;

	/* Set up link change interrupt generation. */
	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);

	/* Program the physical address of the status block. */
	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
	    BCE_ADDR_LO(sc->status_block_paddr));
	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
	    BCE_ADDR_HI(sc->status_block_paddr));

	/* Program the physical address of the statistics block. */
	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
	    BCE_ADDR_LO(sc->stats_block_paddr));
	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
	    BCE_ADDR_HI(sc->stats_block_paddr));

	/* Program various host coalescing parameters. */
	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
	REG_WR(sc, BCE_HC_TX_TICKS,
	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
	REG_WR(sc, BCE_HC_RX_TICKS,
	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
	REG_WR(sc, BCE_HC_COM_TICKS,
	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
	REG_WR(sc, BCE_HC_CMD_TICKS,
	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
	REG_WR(sc, BCE_HC_STATS_TICKS,
	    (sc->bce_stats_ticks & 0xffff00));
	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */

	/* Configure the Host Coalescing block. */
	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
	    BCE_HC_CONFIG_COLLECT_STATS;

#if 0
	/* ToDo: Add MSI-X support. */
	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
		    BCE_HC_SB_CONFIG_1;

		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);

		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
		    BCE_HC_SB_CONFIG_1_ONE_SHOT);

		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
		    (sc->tx_quick_cons_trip_int << 16) |
		     sc->tx_quick_cons_trip);

		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
		    (sc->tx_ticks_int << 16) | sc->tx_ticks);

		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
	}

	/*
	 * Tell the HC block to automatically set the
	 * INT_MASK bit after an MSI/MSI-X interrupt
	 * is generated so the driver doesn't have to.
	 */
	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
		val |= BCE_HC_CONFIG_ONE_SHOT;

	/* Set the MSI-X status blocks to 128 byte boundaries. */
	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
#endif

	REG_WR(sc, BCE_HC_CONFIG, val);

	/* Clear the internal statistics counters. */
	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);

	/* Verify that bootcode is running. */
	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);

	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
	    __FILE__, __LINE__);
	    reg = 0);

	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
		    "Expected: 08%08X\n", __FILE__, __LINE__,
		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
		    BCE_DEV_INFO_SIGNATURE_MAGIC);
		rc = ENODEV;
		goto bce_blockinit_exit;
	}

	/* Enable DMA */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
	}

	/* Allow bootcode to apply additional fixes before enabling MAC. */
	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
	    BCE_DRV_MSG_CODE_RESET);

	/* Enable link state change interrupt generation. */
	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);

	/* Enable the RXP. */
	bce_start_rxp_cpu(sc);

	/* Disable management frames (NC-SI) from flowing to the MCP. */
	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
	}

	/* Enable all remaining blocks in the MAC. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
		    BCE_MISC_ENABLE_DEFAULT_XI);
	else
		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
		    BCE_MISC_ENABLE_DEFAULT);

	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
	DELAY(20);

	/* Save the current host coalescing block settings. */
	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);

bce_blockinit_exit:
	DBEXIT(BCE_VERBOSE_RESET);

	return (rc);
}


/****************************************************************************/
/* Encapsulate an mbuf into the rx_bd chain.                                */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
    u16 *chain_prod, u32 *prod_bseq)
{
	bus_dmamap_t map;
	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
	struct mbuf *m_new = NULL;
	struct rx_bd *rxbd;
	int nsegs, error, rc = 0;
#ifdef BCE_DEBUG
	u16 debug_chain_prod = *chain_prod;
#endif

	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);

	/* Make sure the inputs are valid. */
	DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC),
	    BCE_PRINTF("%s(%d): RX producer out of range: "
	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
	    *chain_prod, (u16) MAX_RX_BD_ALLOC));

	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
	    *prod, *chain_prod, *prod_bseq);

	/* Update some debug statistic counters */
	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
	    sc->rx_low_watermark = sc->free_rx_bd);
	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
	    sc->rx_empty_count++);

	/* Check whether this is a new mbuf allocation. */
	if (m == NULL) {

		/* Simulate an mbuf allocation failure. */
		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
		    sc->mbuf_alloc_failed_count++;
		    sc->mbuf_alloc_failed_sim_count++;
		    rc = ENOBUFS;
		    goto bce_get_rx_buf_exit);

		/* This is a new mbuf allocation. */
		if (bce_hdr_split == TRUE)
			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
		else
			m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
			    sc->rx_bd_mbuf_alloc_size);

		if (m_new == NULL) {
			sc->mbuf_alloc_failed_count++;
			rc = ENOBUFS;
			goto bce_get_rx_buf_exit;
		}

		DBRUN(sc->debug_rx_mbuf_alloc++);
	} else {
		/* Reuse an existing mbuf. */
		m_new = m;
	}

	/* Make sure we have a valid packet header. */
	M_ASSERTPKTHDR(m_new);

	/* Initialize the mbuf size and pad if necessary for alignment. */
	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
	m_adj(m_new, sc->rx_bd_mbuf_align_pad);

	/* ToDo: Consider calling m_fragment() to test error handling. */

	/* Map the mbuf cluster into device memory. */
	map = sc->rx_mbuf_map[*chain_prod];
	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
	    segs, &nsegs, BUS_DMA_NOWAIT);

	/* Handle any mapping errors. */
	if (error) {
		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
		    "chain (%d)!\n", __FILE__, __LINE__, error);

		sc->dma_map_addr_rx_failed_count++;
		m_freem(m_new);

		DBRUN(sc->debug_rx_mbuf_alloc--);

		rc = ENOBUFS;
		goto bce_get_rx_buf_exit;
	}

	/* All mbufs must map to a single segment. */
	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
	    __FUNCTION__, nsegs));

	/* Setup the rx_bd for the segment. */
	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];

	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
	*prod_bseq += segs[0].ds_len;

	/* Save the mbuf and update our counter. */
	sc->rx_mbuf_ptr[*chain_prod] = m_new;
	sc->free_rx_bd -= nsegs;

	DBRUNMSG(BCE_INSANE_RECV,
	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));

	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);

bce_get_rx_buf_exit:
	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);

	return(rc);
}


/****************************************************************************/
/* Encapsulate an mbuf cluster into the page chain.                         */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
	u16 *prod_idx)
{
	bus_dmamap_t map;
	bus_addr_t busaddr;
	struct mbuf *m_new = NULL;
	struct rx_bd *pgbd;
	int error, rc = 0;
#ifdef BCE_DEBUG
	u16 debug_prod_idx = *prod_idx;
#endif

	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);

	/* Make sure the inputs are valid. */
	DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC),
	    BCE_PRINTF("%s(%d): page producer out of range: "
	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
	    *prod_idx, (u16) MAX_PG_BD_ALLOC));

	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);

	/* Update counters if we've hit a new low or run out of pages. */
	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
	    sc->pg_low_watermark = sc->free_pg_bd);
	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);

	/* Check whether this is a new mbuf allocation. */
	if (m == NULL) {

		/* Simulate an mbuf allocation failure. */
		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
		    sc->mbuf_alloc_failed_count++;
		    sc->mbuf_alloc_failed_sim_count++;
		    rc = ENOBUFS;
		    goto bce_get_pg_buf_exit);

		/* This is a new mbuf allocation. */
		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
		if (m_new == NULL) {
			sc->mbuf_alloc_failed_count++;
			rc = ENOBUFS;
			goto bce_get_pg_buf_exit;
		}

		DBRUN(sc->debug_pg_mbuf_alloc++);
	} else {
		/* Reuse an existing mbuf. */
		m_new = m;
		m_new->m_data = m_new->m_ext.ext_buf;
	}

	m_new->m_len = sc->pg_bd_mbuf_alloc_size;

	/* ToDo: Consider calling m_fragment() to test error handling. */

	/* Map the mbuf cluster into device memory. */
	map = sc->pg_mbuf_map[*prod_idx];
	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
	    &busaddr, BUS_DMA_NOWAIT);

	/* Handle any mapping errors. */
	if (error) {
		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
		    __FILE__, __LINE__);

		m_freem(m_new);
		DBRUN(sc->debug_pg_mbuf_alloc--);

		rc = ENOBUFS;
		goto bce_get_pg_buf_exit;
	}

	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */

	/*
	 * The page chain uses the same rx_bd data structure
	 * as the receive chain but doesn't require a byte sequence (bseq).
	 */
	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];

	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);

	/* Save the mbuf and update our counter. */
	sc->pg_mbuf_ptr[*prod_idx] = m_new;
	sc->free_pg_bd--;

	DBRUNMSG(BCE_INSANE_RECV,
	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));

	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);

bce_get_pg_buf_exit:
	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);

	return(rc);
}


/****************************************************************************/
/* Initialize the TX context memory.                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing                                                                */
/****************************************************************************/
static void
bce_init_tx_context(struct bce_softc *sc)
{
	u32 val;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);

	/* Initialize the context ID for an L2 TX chain. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		/* Set the CID type to support an L2 connection. */
		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
		CTX_WR(sc, GET_CID_ADDR(TX_CID),
		    BCE_L2CTX_TX_CMD_TYPE_XI, val);

		/* Point the hardware to the first page in the chain. */
		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
		CTX_WR(sc, GET_CID_ADDR(TX_CID),
		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
		CTX_WR(sc, GET_CID_ADDR(TX_CID),
		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
	} else {
		/* Set the CID type to support an L2 connection. */
		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);

		/* Point the hardware to the first page in the chain. */
		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
		CTX_WR(sc, GET_CID_ADDR(TX_CID),
		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
		CTX_WR(sc, GET_CID_ADDR(TX_CID),
		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
	}

	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
}


/****************************************************************************/
/* Allocate memory and initialize the TX data structures.                   */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_init_tx_chain(struct bce_softc *sc)
{
	struct tx_bd *txbd;
	int i, rc = 0;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);

	/* Set the initial TX producer/consumer indices. */
	sc->tx_prod        = 0;
	sc->tx_cons        = 0;
	sc->tx_prod_bseq   = 0;
	sc->used_tx_bd     = 0;
	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
	DBRUN(sc->tx_hi_watermark = 0);
	DBRUN(sc->tx_full_count = 0);

	/*
	 * The NetXtreme II supports a linked-list structre called
	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
	 * consists of a series of 1 or more chain pages, each of which
	 * consists of a fixed number of BD entries.
	 * The last BD entry on each page is a pointer to the next page
	 * in the chain, and the last pointer in the BD chain
	 * points back to the beginning of the chain.
	 */

	/* Set the TX next pointer chain entries. */
	for (i = 0; i < sc->tx_pages; i++) {
		int j;

		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];

		/* Check if we've reached the last page. */
		if (i == (sc->tx_pages - 1))
			j = 0;
		else
			j = i + 1;

		txbd->tx_bd_haddr_hi =
		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
		txbd->tx_bd_haddr_lo =
		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
	}

	bce_init_tx_context(sc);

	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);

	return(rc);
}


/****************************************************************************/
/* Free memory and clear the TX data structures.                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_free_tx_chain(struct bce_softc *sc)
{
	int i;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);

	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
		if (sc->tx_mbuf_ptr[i] != NULL) {
			if (sc->tx_mbuf_map[i] != NULL)
				bus_dmamap_sync(sc->tx_mbuf_tag,
				    sc->tx_mbuf_map[i],
				    BUS_DMASYNC_POSTWRITE);
			m_freem(sc->tx_mbuf_ptr[i]);
			sc->tx_mbuf_ptr[i] = NULL;
			DBRUN(sc->debug_tx_mbuf_alloc--);
		}
	}

	/* Clear each TX chain page. */
	for (i = 0; i < sc->tx_pages; i++)
		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);

	sc->used_tx_bd = 0;

	/* Check if we lost any mbufs in the process. */
	DBRUNIF((sc->debug_tx_mbuf_alloc),
	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
	    "from tx chain!\n",	__FILE__, __LINE__,
	    sc->debug_tx_mbuf_alloc));

	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
}


/****************************************************************************/
/* Initialize the RX context memory.                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing                                                                */
/****************************************************************************/
static void
bce_init_rx_context(struct bce_softc *sc)
{
	u32 val;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);

	/* Init the type, size, and BD cache levels for the RX context. */
	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);

	/*
	 * Set the level for generating pause frames
	 * when the number of available rx_bd's gets
	 * too low (the low watermark) and the level
	 * when pause frames can be stopped (the high
	 * watermark).
	 */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		u32 lo_water, hi_water;

		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
		} else {
			lo_water = 0;
		}

		if (lo_water >= USABLE_RX_BD_ALLOC) {
			lo_water = 0;
		}

		hi_water = USABLE_RX_BD_ALLOC / 4;

		if (hi_water <= lo_water) {
			lo_water = 0;
		}

		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;

		if (hi_water > 0xf)
			hi_water = 0xf;
		else if (hi_water == 0)
			lo_water = 0;

		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
	}

	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);

	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
	}

	/* Point the hardware to the first page in the chain. */
	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);

	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
}


/****************************************************************************/
/* Allocate memory and initialize the RX data structures.                   */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_init_rx_chain(struct bce_softc *sc)
{
	struct rx_bd *rxbd;
	int i, rc = 0;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
	    BCE_VERBOSE_CTX);

	/* Initialize the RX producer and consumer indices. */
	sc->rx_prod        = 0;
	sc->rx_cons        = 0;
	sc->rx_prod_bseq   = 0;
	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;

	/* Initialize the RX next pointer chain entries. */
	for (i = 0; i < sc->rx_pages; i++) {
		int j;

		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];

		/* Check if we've reached the last page. */
		if (i == (sc->rx_pages - 1))
			j = 0;
		else
			j = i + 1;

		/* Setup the chain page pointers. */
		rxbd->rx_bd_haddr_hi =
		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
		rxbd->rx_bd_haddr_lo =
		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
	}

	/* Fill up the RX chain. */
	bce_fill_rx_chain(sc);

	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
	DBRUN(sc->rx_empty_count = 0);
	for (i = 0; i < sc->rx_pages; i++) {
		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	}

	bce_init_rx_context(sc);

	DBRUNMSG(BCE_EXTREME_RECV,
	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
	    BCE_VERBOSE_CTX);

	/* ToDo: Are there possible failure modes here? */

	return(rc);
}


/****************************************************************************/
/* Add mbufs to the RX chain until its full or an mbuf allocation error     */
/* occurs.                                                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing                                                                */
/****************************************************************************/
static void
bce_fill_rx_chain(struct bce_softc *sc)
{
	u16 prod, prod_idx;
	u32 prod_bseq;

	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
	    BCE_VERBOSE_CTX);

	/* Get the RX chain producer indices. */
	prod      = sc->rx_prod;
	prod_bseq = sc->rx_prod_bseq;

	/* Keep filling the RX chain until it's full. */
	while (sc->free_rx_bd > 0) {
		prod_idx = RX_CHAIN_IDX(prod);
		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
			/* Bail out if we can't add an mbuf to the chain. */
			break;
		}
		prod = NEXT_RX_BD(prod);
	}

	/* Save the RX chain producer indices. */
	sc->rx_prod      = prod;
	sc->rx_prod_bseq = prod_bseq;

	/* We should never end up pointing to a next page pointer. */
	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
	    __FUNCTION__, sc->rx_prod));

	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);

	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
	    BCE_VERBOSE_CTX);
}


/****************************************************************************/
/* Free memory and clear the RX data structures.                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_free_rx_chain(struct bce_softc *sc)
{
	int i;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);

	/* Free any mbufs still in the RX mbuf chain. */
	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
		if (sc->rx_mbuf_ptr[i] != NULL) {
			if (sc->rx_mbuf_map[i] != NULL)
				bus_dmamap_sync(sc->rx_mbuf_tag,
				    sc->rx_mbuf_map[i],
				    BUS_DMASYNC_POSTREAD);
			m_freem(sc->rx_mbuf_ptr[i]);
			sc->rx_mbuf_ptr[i] = NULL;
			DBRUN(sc->debug_rx_mbuf_alloc--);
		}
	}

	/* Clear each RX chain page. */
	for (i = 0; i < sc->rx_pages; i++)
		if (sc->rx_bd_chain[i] != NULL) {
			bzero((char *)sc->rx_bd_chain[i],
			    BCE_RX_CHAIN_PAGE_SZ);
		}

	sc->free_rx_bd = sc->max_rx_bd;

	/* Check if we lost any mbufs in the process. */
	DBRUNIF((sc->debug_rx_mbuf_alloc),
	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
	    __FUNCTION__, sc->debug_rx_mbuf_alloc));

	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
}


/****************************************************************************/
/* Allocate memory and initialize the page data structures.                 */
/* Assumes that bce_init_rx_chain() has not already been called.            */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_init_pg_chain(struct bce_softc *sc)
{
	struct rx_bd *pgbd;
	int i, rc = 0;
	u32 val;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
		BCE_VERBOSE_CTX);

	/* Initialize the page producer and consumer indices. */
	sc->pg_prod        = 0;
	sc->pg_cons        = 0;
	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
	DBRUN(sc->pg_empty_count = 0);

	/* Initialize the page next pointer chain entries. */
	for (i = 0; i < sc->pg_pages; i++) {
		int j;

		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];

		/* Check if we've reached the last page. */
		if (i == (sc->pg_pages - 1))
			j = 0;
		else
			j = i + 1;

		/* Setup the chain page pointers. */
		pgbd->rx_bd_haddr_hi =
		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
		pgbd->rx_bd_haddr_lo =
		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
	}

	/* Setup the MQ BIN mapping for host_pg_bidx. */
	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);

	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);

	/* Configure the rx_bd and page chain mbuf cluster size. */
	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);

	/* Configure the context reserved for jumbo support. */
	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
		BCE_L2CTX_RX_RBDC_JUMBO_KEY);

	/* Point the hardware to the first page in the page chain. */
	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);

	/* Fill up the page chain. */
	bce_fill_pg_chain(sc);

	for (i = 0; i < sc->pg_pages; i++) {
		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	}

	DBRUNMSG(BCE_EXTREME_RECV,
	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
		BCE_VERBOSE_CTX);
	return(rc);
}


/****************************************************************************/
/* Add mbufs to the page chain until its full or an mbuf allocation error   */
/* occurs.                                                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing                                                                */
/****************************************************************************/
static void
bce_fill_pg_chain(struct bce_softc *sc)
{
	u16 prod, prod_idx;

	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
	    BCE_VERBOSE_CTX);

	/* Get the page chain prodcuer index. */
	prod = sc->pg_prod;

	/* Keep filling the page chain until it's full. */
	while (sc->free_pg_bd > 0) {
		prod_idx = PG_CHAIN_IDX(prod);
		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
			/* Bail out if we can't add an mbuf to the chain. */
			break;
		}
		prod = NEXT_PG_BD(prod);
	}

	/* Save the page chain producer index. */
	sc->pg_prod = prod;

	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
	    __FUNCTION__, sc->pg_prod));

	/*
	 * Write the mailbox and tell the chip about
	 * the new rx_bd's in the page chain.
	 */
	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);

	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
	    BCE_VERBOSE_CTX);
}


/****************************************************************************/
/* Free memory and clear the RX data structures.                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_free_pg_chain(struct bce_softc *sc)
{
	int i;

	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);

	/* Free any mbufs still in the mbuf page chain. */
	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
		if (sc->pg_mbuf_ptr[i] != NULL) {
			if (sc->pg_mbuf_map[i] != NULL)
				bus_dmamap_sync(sc->pg_mbuf_tag,
				    sc->pg_mbuf_map[i],
				    BUS_DMASYNC_POSTREAD);
			m_freem(sc->pg_mbuf_ptr[i]);
			sc->pg_mbuf_ptr[i] = NULL;
			DBRUN(sc->debug_pg_mbuf_alloc--);
		}
	}

	/* Clear each page chain pages. */
	for (i = 0; i < sc->pg_pages; i++)
		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);

	sc->free_pg_bd = sc->max_pg_bd;

	/* Check if we lost any mbufs in the process. */
	DBRUNIF((sc->debug_pg_mbuf_alloc),
	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
	    __FUNCTION__, sc->debug_pg_mbuf_alloc));

	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
}


static u32
bce_get_rphy_link(struct bce_softc *sc)
{
	u32 advertise, link;
	int fdpx;

	advertise = 0;
	fdpx = 0;
	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
	else
		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
	if (link & BCE_NETLINK_ANEG_ENB)
		advertise |= BCE_NETLINK_ANEG_ENB;
	if (link & BCE_NETLINK_SPEED_10HALF)
		advertise |= BCE_NETLINK_SPEED_10HALF;
	if (link & BCE_NETLINK_SPEED_10FULL) {
		advertise |= BCE_NETLINK_SPEED_10FULL;
		fdpx++;
	}
	if (link & BCE_NETLINK_SPEED_100HALF)
		advertise |= BCE_NETLINK_SPEED_100HALF;
	if (link & BCE_NETLINK_SPEED_100FULL) {
		advertise |= BCE_NETLINK_SPEED_100FULL;
		fdpx++;
	}
	if (link & BCE_NETLINK_SPEED_1000HALF)
		advertise |= BCE_NETLINK_SPEED_1000HALF;
	if (link & BCE_NETLINK_SPEED_1000FULL) {
		advertise |= BCE_NETLINK_SPEED_1000FULL;
		fdpx++;
	}
	if (link & BCE_NETLINK_SPEED_2500HALF)
		advertise |= BCE_NETLINK_SPEED_2500HALF;
	if (link & BCE_NETLINK_SPEED_2500FULL) {
		advertise |= BCE_NETLINK_SPEED_2500FULL;
		fdpx++;
	}
	if (fdpx)
		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
		    BCE_NETLINK_FC_PAUSE_ASYM;
	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
		    BCE_NETLINK_ETH_AT_WIRESPEED;

	return (advertise);
}


/****************************************************************************/
/* Set media options.                                                       */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_ifmedia_upd(struct ifnet *ifp)
{
	struct bce_softc *sc = ifp->if_softc;
	int error;

	DBENTER(BCE_VERBOSE);

	BCE_LOCK(sc);
	error = bce_ifmedia_upd_locked(ifp);
	BCE_UNLOCK(sc);

	DBEXIT(BCE_VERBOSE);
	return (error);
}


/****************************************************************************/
/* Set media options.                                                       */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static int
bce_ifmedia_upd_locked(struct ifnet *ifp)
{
	struct bce_softc *sc = ifp->if_softc;
	struct mii_data *mii;
	struct mii_softc *miisc;
	struct ifmedia *ifm;
	u32 link;
	int error, fdx;

	DBENTER(BCE_VERBOSE_PHY);

	error = 0;
	BCE_LOCK_ASSERT(sc);

	sc->bce_link_up = FALSE;
	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
		ifm = &sc->bce_ifmedia;
		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
			return (EINVAL);
		link = 0;
		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
		switch(IFM_SUBTYPE(ifm->ifm_media)) {
		case IFM_AUTO:
			/*
			 * Check advertised link of remote PHY by reading
			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
			 * Always use the same link type of remote PHY.
			 */
			link = bce_get_rphy_link(sc);
			break;
		case IFM_2500_SX:
			if ((sc->bce_phy_flags &
			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
				return (EINVAL);
			/*
			 * XXX
			 * Have to enable forced 2.5Gbps configuration.
			 */
			if (fdx != 0)
				link |= BCE_NETLINK_SPEED_2500FULL;
			else
				link |= BCE_NETLINK_SPEED_2500HALF;
			break;
		case IFM_1000_SX:
			if ((sc->bce_phy_flags &
			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
				return (EINVAL);
			/*
			 * XXX
			 * Have to disable 2.5Gbps configuration.
			 */
			if (fdx != 0)
				link = BCE_NETLINK_SPEED_1000FULL;
			else
				link = BCE_NETLINK_SPEED_1000HALF;
			break;
		case IFM_1000_T:
			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
				return (EINVAL);
			if (fdx != 0)
				link = BCE_NETLINK_SPEED_1000FULL;
			else
				link = BCE_NETLINK_SPEED_1000HALF;
			break;
		case IFM_100_TX:
			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
				return (EINVAL);
			if (fdx != 0)
				link = BCE_NETLINK_SPEED_100FULL;
			else
				link = BCE_NETLINK_SPEED_100HALF;
			break;
		case IFM_10_T:
			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
				return (EINVAL);
			if (fdx != 0)
				link = BCE_NETLINK_SPEED_10FULL;
			else
				link = BCE_NETLINK_SPEED_10HALF;
			break;
		default:
			return (EINVAL);
		}
		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
			/*
			 * XXX
			 * Advertise pause capability for full-duplex media.
			 */
			if (fdx != 0)
				link |= BCE_NETLINK_FC_PAUSE_SYM |
				    BCE_NETLINK_FC_PAUSE_ASYM;
			if ((sc->bce_phy_flags &
			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
				link |= BCE_NETLINK_PHY_APP_REMOTE |
				    BCE_NETLINK_ETH_AT_WIRESPEED;
		}

		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
	} else {
		mii = device_get_softc(sc->bce_miibus);

		/* Make sure the MII bus has been enumerated. */
		if (mii) {
			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
				PHY_RESET(miisc);
			error = mii_mediachg(mii);
		}
	}

	DBEXIT(BCE_VERBOSE_PHY);
	return (error);
}


static void
bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
{
	struct ifnet *ifp;
	u32 link;

	ifp = sc->bce_ifp;
	BCE_LOCK_ASSERT(sc);

	ifmr->ifm_status = IFM_AVALID;
	ifmr->ifm_active = IFM_ETHER;
	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
	/* XXX Handle heart beat status? */
	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
		ifmr->ifm_status |= IFM_ACTIVE;
	else {
		ifmr->ifm_active |= IFM_NONE;
		ifp->if_baudrate = 0;
		return;
	}
	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
	case BCE_LINK_STATUS_10HALF:
		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
		ifp->if_baudrate = IF_Mbps(10UL);
		break;
	case BCE_LINK_STATUS_10FULL:
		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
		ifp->if_baudrate = IF_Mbps(10UL);
		break;
	case BCE_LINK_STATUS_100HALF:
		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
		ifp->if_baudrate = IF_Mbps(100UL);
		break;
	case BCE_LINK_STATUS_100FULL:
		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
		ifp->if_baudrate = IF_Mbps(100UL);
		break;
	case BCE_LINK_STATUS_1000HALF:
		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
		else
			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
		ifp->if_baudrate = IF_Mbps(1000UL);
		break;
	case BCE_LINK_STATUS_1000FULL:
		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
		else
			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
		ifp->if_baudrate = IF_Mbps(1000UL);
		break;
	case BCE_LINK_STATUS_2500HALF:
		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
			ifmr->ifm_active |= IFM_NONE;
			return;
		} else
			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
		ifp->if_baudrate = IF_Mbps(2500UL);
		break;
	case BCE_LINK_STATUS_2500FULL:
		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
			ifmr->ifm_active |= IFM_NONE;
			return;
		} else
			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
		ifp->if_baudrate = IF_Mbps(2500UL);
		break;
	default:
		ifmr->ifm_active |= IFM_NONE;
		return;
	}

	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
}


/****************************************************************************/
/* Reports current media status.                                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct bce_softc *sc = ifp->if_softc;
	struct mii_data *mii;

	DBENTER(BCE_VERBOSE_PHY);

	BCE_LOCK(sc);

	if ((ifp->if_flags & IFF_UP) == 0) {
		BCE_UNLOCK(sc);
		return;
	}

	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
		bce_ifmedia_sts_rphy(sc, ifmr);
	else {
		mii = device_get_softc(sc->bce_miibus);
		mii_pollstat(mii);
		ifmr->ifm_active = mii->mii_media_active;
		ifmr->ifm_status = mii->mii_media_status;
	}

	BCE_UNLOCK(sc);

	DBEXIT(BCE_VERBOSE_PHY);
}


/****************************************************************************/
/* Handles PHY generated interrupt events.                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_phy_intr(struct bce_softc *sc)
{
	u32 new_link_state, old_link_state;

	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);

	DBRUN(sc->phy_interrupts++);

	new_link_state = sc->status_block->status_attn_bits &
	    STATUS_ATTN_BITS_LINK_STATE;
	old_link_state = sc->status_block->status_attn_bits_ack &
	    STATUS_ATTN_BITS_LINK_STATE;

	/* Handle any changes if the link state has changed. */
	if (new_link_state != old_link_state) {

		/* Update the status_attn_bits_ack field. */
		if (new_link_state) {
			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
			    STATUS_ATTN_BITS_LINK_STATE);
			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
			    __FUNCTION__);
		} else {
			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
			    STATUS_ATTN_BITS_LINK_STATE);
			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
			    __FUNCTION__);
		}

		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
			if (new_link_state) {
				if (bootverbose)
					if_printf(sc->bce_ifp, "link UP\n");
				if_link_state_change(sc->bce_ifp,
				    LINK_STATE_UP);
			} else {
				if (bootverbose)
					if_printf(sc->bce_ifp, "link DOWN\n");
				if_link_state_change(sc->bce_ifp,
				    LINK_STATE_DOWN);
			}
		}
		/*
		 * Assume link is down and allow
		 * tick routine to update the state
		 * based on the actual media state.
		 */
		sc->bce_link_up = FALSE;
		callout_stop(&sc->bce_tick_callout);
		bce_tick(sc);
	}

	/* Acknowledge the link change interrupt. */
	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);

	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
}


/****************************************************************************/
/* Reads the receive consumer value from the status block (skipping over    */
/* chain page pointer if necessary).                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   hw_cons                                                                */
/****************************************************************************/
static inline u16
bce_get_hw_rx_cons(struct bce_softc *sc)
{
	u16 hw_cons;

	rmb();
	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
		hw_cons++;

	return hw_cons;
}

/****************************************************************************/
/* Handles received frame interrupt events.                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_rx_intr(struct bce_softc *sc)
{
	struct ifnet *ifp = sc->bce_ifp;
	struct l2_fhdr *l2fhdr;
	struct ether_vlan_header *vh;
	unsigned int pkt_len;
	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
	u32 status;
	unsigned int rem_len;
	u16 sw_pg_cons, sw_pg_cons_idx;

	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
	DBRUN(sc->interrupts_rx++);
	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);

	/* Prepare the RX chain pages to be accessed by the host CPU. */
	for (int i = 0; i < sc->rx_pages; i++)
		bus_dmamap_sync(sc->rx_bd_chain_tag,
		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);

	/* Prepare the page chain pages to be accessed by the host CPU. */
	if (bce_hdr_split == TRUE) {
		for (int i = 0; i < sc->pg_pages; i++)
			bus_dmamap_sync(sc->pg_bd_chain_tag,
			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
	}

	/* Get the hardware's view of the RX consumer index. */
	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);

	/* Get working copies of the driver's view of the consumer indices. */
	sw_rx_cons = sc->rx_cons;
	sw_pg_cons = sc->pg_cons;

	/* Update some debug statistics counters */
	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
	    sc->rx_low_watermark = sc->free_rx_bd);
	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
	    sc->rx_empty_count++);

	/* Scan through the receive chain as long as there is work to do */
	/* ToDo: Consider setting a limit on the number of packets processed. */
	rmb();
	while (sw_rx_cons != hw_rx_cons) {
		struct mbuf *m0;

		/* Convert the producer/consumer indices to an actual rx_bd index. */
		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);

		/* Unmap the mbuf from DMA space. */
		bus_dmamap_sync(sc->rx_mbuf_tag,
		    sc->rx_mbuf_map[sw_rx_cons_idx],
		    BUS_DMASYNC_POSTREAD);
		bus_dmamap_unload(sc->rx_mbuf_tag,
		    sc->rx_mbuf_map[sw_rx_cons_idx]);

		/* Remove the mbuf from the RX chain. */
		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
		DBRUN(sc->debug_rx_mbuf_alloc--);
		sc->free_rx_bd++;

		if(m0 == NULL) {
			DBPRINT(sc, BCE_EXTREME_RECV,
			    "%s(): Oops! Empty mbuf pointer "
			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
			    __FUNCTION__, sw_rx_cons_idx);
			goto bce_rx_int_next_rx;
		}

		/*
 		 * Frames received on the NetXteme II are prepended
 		 * with an l2_fhdr structure which provides status
 		 * information about the received frame (including
 		 * VLAN tags and checksum info).  The frames are
		 * also automatically adjusted to word align the IP
 		 * header (i.e. two null bytes are inserted before
 		 * the Ethernet	header).  As a result the data
 		 * DMA'd by the controller into	the mbuf looks
		 * like this:
		 *
		 * +---------+-----+---------------------+-----+
		 * | l2_fhdr | pad | packet data         | FCS |
		 * +---------+-----+---------------------+-----+
		 *
 		 * The l2_fhdr needs to be checked and skipped and
 		 * the FCS needs to be stripped before sending the
		 * packet up the stack.
		 */
		l2fhdr  = mtod(m0, struct l2_fhdr *);

		/* Get the packet data + FCS length and the status. */
		pkt_len = l2fhdr->l2_fhdr_pkt_len;
		status  = l2fhdr->l2_fhdr_status;

		/*
		 * Skip over the l2_fhdr and pad, resulting in the
		 * following data in the mbuf:
		 * +---------------------+-----+
		 * | packet data         | FCS |
		 * +---------------------+-----+
		 */
		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);

		/*
 		 * When split header mode is used, an ethernet frame
 		 * may be split across the receive chain and the
 		 * page chain. If that occurs an mbuf cluster must be
 		 * reassembled from the individual mbuf pieces.
		 */
		if (bce_hdr_split == TRUE) {
			/*
			 * Check whether the received frame fits in a single
			 * mbuf or not (i.e. packet data + FCS <=
			 * sc->rx_bd_mbuf_data_len bytes).
			 */
			if (pkt_len > m0->m_len) {
				/*
				 * The received frame is larger than a single mbuf.
				 * If the frame was a TCP frame then only the TCP
				 * header is placed in the mbuf, the remaining
				 * payload (including FCS) is placed in the page
				 * chain, the SPLIT flag is set, and the header
				 * length is placed in the IP checksum field.
				 * If the frame is not a TCP frame then the mbuf
				 * is filled and the remaining bytes are placed
				 * in the page chain.
				 */

				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
					"packet.\n", __FUNCTION__);
				DBRUN(sc->split_header_frames_rcvd++);

				/*
				 * When the page chain is enabled and the TCP
				 * header has been split from the TCP payload,
				 * the ip_xsum structure will reflect the length
				 * of the TCP header, not the IP checksum.  Set
				 * the packet length of the mbuf accordingly.
				 */
				if (status & L2_FHDR_STATUS_SPLIT) {
					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
					DBRUN(sc->split_header_tcp_frames_rcvd++);
				}

				rem_len = pkt_len - m0->m_len;

				/* Pull mbufs off the page chain for any remaining data. */
				while (rem_len > 0) {
					struct mbuf *m_pg;

					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);

					/* Remove the mbuf from the page chain. */
					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
					DBRUN(sc->debug_pg_mbuf_alloc--);
					sc->free_pg_bd++;

					/* Unmap the page chain mbuf from DMA space. */
					bus_dmamap_sync(sc->pg_mbuf_tag,
						sc->pg_mbuf_map[sw_pg_cons_idx],
						BUS_DMASYNC_POSTREAD);
					bus_dmamap_unload(sc->pg_mbuf_tag,
						sc->pg_mbuf_map[sw_pg_cons_idx]);

					/* Adjust the mbuf length. */
					if (rem_len < m_pg->m_len) {
						/* The mbuf chain is complete. */
						m_pg->m_len = rem_len;
						rem_len = 0;
					} else {
						/* More packet data is waiting. */
						rem_len -= m_pg->m_len;
					}

					/* Concatenate the mbuf cluster to the mbuf. */
					m_cat(m0, m_pg);

					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
				}

				/* Set the total packet length. */
				m0->m_pkthdr.len = pkt_len;

			} else {
				/*
				 * The received packet is small and fits in a
				 * single mbuf (i.e. the l2_fhdr + pad + packet +
				 * FCS <= MHLEN).  In other words, the packet is
				 * 154 bytes or less in size.
				 */

				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
					"packet.\n", __FUNCTION__);

				/* Set the total packet length. */
				m0->m_pkthdr.len = m0->m_len = pkt_len;
			}
		} else
			/* Set the total packet length. */
			m0->m_pkthdr.len = m0->m_len = pkt_len;

		/* Remove the trailing Ethernet FCS. */
		m_adj(m0, -ETHER_CRC_LEN);

		/* Check that the resulting mbuf chain is valid. */
		DBRUN(m_sanity(m0, FALSE));
		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
		    BCE_PRINTF("Invalid Ethernet frame size!\n");
		    m_print(m0, 128));

		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
		    sc->l2fhdr_error_sim_count++;
		    status = status | L2_FHDR_ERRORS_PHY_DECODE);

		/* Check the received frame for errors. */
		if (status & (L2_FHDR_ERRORS_BAD_CRC |
		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {

			/* Log the error and release the mbuf. */
			ifp->if_ierrors++;
			sc->l2fhdr_error_count++;

			m_freem(m0);
			m0 = NULL;
			goto bce_rx_int_next_rx;
		}

		/* Send the packet to the appropriate interface. */
		m0->m_pkthdr.rcvif = ifp;

		/* Assume no hardware checksum. */
		m0->m_pkthdr.csum_flags = 0;

		/* Validate the checksum if offload enabled. */
		if (ifp->if_capenable & IFCAP_RXCSUM) {

			/* Check for an IP datagram. */
		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
				DBRUN(sc->csum_offload_ip++);
				/* Check if the IP checksum is valid. */
				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
					m0->m_pkthdr.csum_flags |=
					    CSUM_IP_VALID;
			}

			/* Check for a valid TCP/UDP frame. */
			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
			    L2_FHDR_STATUS_UDP_DATAGRAM)) {

				/* Check for a good TCP/UDP checksum. */
				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
					DBRUN(sc->csum_offload_tcp_udp++);
					m0->m_pkthdr.csum_data =
					    l2fhdr->l2_fhdr_tcp_udp_xsum;
					m0->m_pkthdr.csum_flags |=
					    (CSUM_DATA_VALID
					    | CSUM_PSEUDO_HDR);
				}
			}
		}

		/* Attach the VLAN tag.	*/
		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
			DBRUN(sc->vlan_tagged_frames_rcvd++);
			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
				DBRUN(sc->vlan_tagged_frames_stripped++);
#if __FreeBSD_version < 700000
				VLAN_INPUT_TAG(ifp, m0,
				    l2fhdr->l2_fhdr_vlan_tag, continue);
#else
				m0->m_pkthdr.ether_vtag =
				    l2fhdr->l2_fhdr_vlan_tag;
				m0->m_flags |= M_VLANTAG;
#endif
			} else {
				/*
				 * bce(4) controllers can't disable VLAN
				 * tag stripping if management firmware
				 * (ASF/IPMI/UMP) is running. So we always
				 * strip VLAN tag and manually reconstruct
				 * the VLAN frame by appending stripped
				 * VLAN tag in driver if VLAN tag stripping
				 * was disabled.
				 *
				 * TODO: LLC SNAP handling.
				 */
				bcopy(mtod(m0, uint8_t *),
				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
				    ETHER_ADDR_LEN * 2);
				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
				vh = mtod(m0, struct ether_vlan_header *);
				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
				m0->m_len += ETHER_VLAN_ENCAP_LEN;
			}
		}

		/* Increment received packet statistics. */
		ifp->if_ipackets++;

bce_rx_int_next_rx:
		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);

		/* If we have a packet, pass it up the stack */
		if (m0) {
			/* Make sure we don't lose our place when we release the lock. */
			sc->rx_cons = sw_rx_cons;
			sc->pg_cons = sw_pg_cons;

			BCE_UNLOCK(sc);
			(*ifp->if_input)(ifp, m0);
			BCE_LOCK(sc);

			/* Recover our place. */
			sw_rx_cons = sc->rx_cons;
			sw_pg_cons = sc->pg_cons;
		}

		/* Refresh hw_cons to see if there's new work */
		if (sw_rx_cons == hw_rx_cons)
			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
	}

	/* No new packets.  Refill the page chain. */
	if (bce_hdr_split == TRUE) {
		sc->pg_cons = sw_pg_cons;
		bce_fill_pg_chain(sc);
	}

	/* No new packets.  Refill the RX chain. */
	sc->rx_cons = sw_rx_cons;
	bce_fill_rx_chain(sc);

	/* Prepare the page chain pages to be accessed by the NIC. */
	for (int i = 0; i < sc->rx_pages; i++)
		bus_dmamap_sync(sc->rx_bd_chain_tag,
		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);

	if (bce_hdr_split == TRUE) {
		for (int i = 0; i < sc->pg_pages; i++)
			bus_dmamap_sync(sc->pg_bd_chain_tag,
			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
	}

	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
}


/****************************************************************************/
/* Reads the transmit consumer value from the status block (skipping over   */
/* chain page pointer if necessary).                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   hw_cons                                                                */
/****************************************************************************/
static inline u16
bce_get_hw_tx_cons(struct bce_softc *sc)
{
	u16 hw_cons;

	mb();
	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
		hw_cons++;

	return hw_cons;
}


/****************************************************************************/
/* Handles transmit completion interrupt events.                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_tx_intr(struct bce_softc *sc)
{
	struct ifnet *ifp = sc->bce_ifp;
	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;

	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
	DBRUN(sc->interrupts_tx++);
	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);

	BCE_LOCK_ASSERT(sc);

	/* Get the hardware's view of the TX consumer index. */
	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
	sw_tx_cons = sc->tx_cons;

	/* Prevent speculative reads of the status block. */
	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
	    BUS_SPACE_BARRIER_READ);

	/* Cycle through any completed TX chain page entries. */
	while (sw_tx_cons != hw_tx_cons) {
#ifdef BCE_DEBUG
		struct tx_bd *txbd = NULL;
#endif
		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);

		DBPRINT(sc, BCE_INFO_SEND,
		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
		    "sw_tx_chain_cons = 0x%04X\n",
		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);

		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
		    (int) MAX_TX_BD_ALLOC);
		    bce_breakpoint(sc));

		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
		    [TX_IDX(sw_tx_chain_cons)]);

		DBRUNIF((txbd == NULL),
		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
		    __FILE__, __LINE__, sw_tx_chain_cons);
		    bce_breakpoint(sc));

		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));

		/*
		 * Free the associated mbuf. Remember
		 * that only the last tx_bd of a packet
		 * has an mbuf pointer and DMA map.
		 */
		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {

			/* Validate that this is the last tx_bd. */
			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
			    "txmbuf == NULL!\n", __FILE__, __LINE__);
			    bce_breakpoint(sc));

			DBRUNMSG(BCE_INFO_SEND,
			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
			    "from tx_bd[0x%04X]\n", __FUNCTION__,
			    sw_tx_chain_cons));

			/* Unmap the mbuf. */
			bus_dmamap_unload(sc->tx_mbuf_tag,
			    sc->tx_mbuf_map[sw_tx_chain_cons]);

			/* Free the mbuf. */
			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
			DBRUN(sc->debug_tx_mbuf_alloc--);

			ifp->if_opackets++;
		}

		sc->used_tx_bd--;
		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);

		/* Refresh hw_cons to see if there's new work. */
		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);

		/* Prevent speculative reads of the status block. */
		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
		    BUS_SPACE_BARRIER_READ);
	}

	/* Clear the TX timeout timer. */
	sc->watchdog_timer = 0;

	/* Clear the tx hardware queue full flag. */
	if (sc->used_tx_bd < sc->max_tx_bd) {
		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
		    DBPRINT(sc, BCE_INFO_SEND,
		    "%s(): Open TX chain! %d/%d (used/total)\n",
		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
	}

	sc->tx_cons = sw_tx_cons;

	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
}


/****************************************************************************/
/* Disables interrupt generation.                                           */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_disable_intr(struct bce_softc *sc)
{
	DBENTER(BCE_VERBOSE_INTR);

	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);

	DBEXIT(BCE_VERBOSE_INTR);
}


/****************************************************************************/
/* Enables interrupt generation.                                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_enable_intr(struct bce_softc *sc, int coal_now)
{
	DBENTER(BCE_VERBOSE_INTR);

	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);

	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);

	/* Force an immediate interrupt (whether there is new data or not). */
	if (coal_now)
		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);

	DBEXIT(BCE_VERBOSE_INTR);
}


/****************************************************************************/
/* Handles controller initialization.                                       */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init_locked(struct bce_softc *sc)
{
	struct ifnet *ifp;
	u32 ether_mtu = 0;

	DBENTER(BCE_VERBOSE_RESET);

	BCE_LOCK_ASSERT(sc);

	ifp = sc->bce_ifp;

	/* Check if the driver is still running and bail out if it is. */
	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
		goto bce_init_locked_exit;

	bce_stop(sc);

	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
		BCE_PRINTF("%s(%d): Controller reset failed!\n",
		    __FILE__, __LINE__);
		goto bce_init_locked_exit;
	}

	if (bce_chipinit(sc)) {
		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
		    __FILE__, __LINE__);
		goto bce_init_locked_exit;
	}

	if (bce_blockinit(sc)) {
		BCE_PRINTF("%s(%d): Block initialization failed!\n",
		    __FILE__, __LINE__);
		goto bce_init_locked_exit;
	}

	/* Load our MAC address. */
	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
	bce_set_mac_addr(sc);

	if (bce_hdr_split == FALSE)
		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
	/*
	 * Calculate and program the hardware Ethernet MTU
 	 * size. Be generous on the receive if we have room
 	 * and allowed by the user.
	 */
	if (bce_strict_rx_mtu == TRUE)
		ether_mtu = ifp->if_mtu;
	else {
		if (bce_hdr_split == TRUE) {
			if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
				   sc->pg_bd_mbuf_alloc_size))
					ether_mtu = sc->rx_bd_mbuf_data_len +
					   sc->pg_bd_mbuf_alloc_size;
			else
				ether_mtu = ifp->if_mtu;
		} else {
			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
				ether_mtu = sc->rx_bd_mbuf_data_len;
			else
				ether_mtu = ifp->if_mtu;
		}
	}

	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;

	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
	    __FUNCTION__, ether_mtu);

	/* Program the mtu, enabling jumbo frame support if necessary. */
	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
	else
		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);

	/* Program appropriate promiscuous/multicast filtering. */
	bce_set_rx_mode(sc);

	if (bce_hdr_split == TRUE) {
		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
			__FUNCTION__, sc->pg_bd_mbuf_alloc_size);

		/* Init page buffer descriptor chain. */
		bce_init_pg_chain(sc);
	}

	/* Init RX buffer descriptor chain. */
	bce_init_rx_chain(sc);

	/* Init TX buffer descriptor chain. */
	bce_init_tx_chain(sc);

	/* Enable host interrupts. */
	bce_enable_intr(sc, 1);

	bce_ifmedia_upd_locked(ifp);

	/* Let the OS know the driver is up and running. */
	ifp->if_drv_flags |= IFF_DRV_RUNNING;
	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);

bce_init_locked_exit:
	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Initialize the controller just enough so that any management firmware    */
/* running on the device will continue to operate correctly.                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_mgmt_init_locked(struct bce_softc *sc)
{
	struct ifnet *ifp;

	DBENTER(BCE_VERBOSE_RESET);

	BCE_LOCK_ASSERT(sc);

	/* Bail out if management firmware is not running. */
	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
		    "No management firmware running...\n");
		goto bce_mgmt_init_locked_exit;
	}

	ifp = sc->bce_ifp;

	/* Enable all critical blocks in the MAC. */
	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
	DELAY(20);

	bce_ifmedia_upd_locked(ifp);

bce_mgmt_init_locked_exit:
	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Handles controller initialization when called from an unlocked routine.  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_init(void *xsc)
{
	struct bce_softc *sc = xsc;

	DBENTER(BCE_VERBOSE_RESET);

	BCE_LOCK(sc);
	bce_init_locked(sc);
	BCE_UNLOCK(sc);

	DBEXIT(BCE_VERBOSE_RESET);
}


/****************************************************************************/
/* Modifies an mbuf for TSO on the hardware.                                */
/*                                                                          */
/* Returns:                                                                 */
/*   Pointer to a modified mbuf.                                            */
/****************************************************************************/
static struct mbuf *
bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
{
	struct mbuf *m;
	struct ether_header *eh;
	struct ip *ip;
	struct tcphdr *th;
	u16 etype;
	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;

	DBRUN(sc->tso_frames_requested++);

	/* Controller may modify mbuf chains. */
	if (M_WRITABLE(*m_head) == 0) {
		m = m_dup(*m_head, M_DONTWAIT);
		m_freem(*m_head);
		if (m == NULL) {
			sc->mbuf_alloc_failed_count++;
			*m_head = NULL;
			return (NULL);
		}
		*m_head = m;
	}

	/*
	 * For TSO the controller needs two pieces of info,
	 * the MSS and the IP+TCP options length.
	 */
	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
	if (m == NULL) {
		*m_head = NULL;
		return (NULL);
	}
	eh = mtod(m, struct ether_header *);
	etype = ntohs(eh->ether_type);

	/* Check for supported TSO Ethernet types (only IPv4 for now) */
	switch (etype) {
	case ETHERTYPE_IP:
		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
		/* TSO only supported for TCP protocol. */
		if (ip->ip_p != IPPROTO_TCP) {
			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
			    __FILE__, __LINE__);
			m_freem(*m_head);
			*m_head = NULL;
			return (NULL);
		}

		/* Get IP header length in bytes (min 20) */
		ip_hlen = ip->ip_hl << 2;
		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
		    sizeof(struct tcphdr));
		if (m == NULL) {
			*m_head = NULL;
			return (NULL);
		}

		/* Get the TCP header length in bytes (min 20) */
		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
		tcp_hlen = (th->th_off << 2);

		/* Make sure all IP/TCP options live in the same buffer. */
		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
		    tcp_hlen);
		if (m == NULL) {
			*m_head = NULL;
			return (NULL);
		}

		/* Clear IP header length and checksum, will be calc'd by h/w. */
		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
		ip_len = ip->ip_len;
		ip->ip_len = 0;
		ip->ip_sum = 0;
		break;
	case ETHERTYPE_IPV6:
		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
		    __FILE__, __LINE__);
		m_freem(*m_head);
		*m_head = NULL;
		return (NULL);
		/* NOT REACHED */
	default:
		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
		    __FILE__, __LINE__);
		m_freem(*m_head);
		*m_head = NULL;
		return (NULL);
	}

	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;

	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
	    tcp_hlen, ip_len);

	/* Set the LSO flag in the TX BD */
	*flags |= TX_BD_FLAGS_SW_LSO;

	/* Set the length of IP + TCP options (in 32 bit words) */
	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
	    sizeof(struct tcphdr)) >> 2) << 8);

	DBRUN(sc->tso_frames_completed++);
	return (*m_head);
}


/****************************************************************************/
/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
/* memory visible to the controller.                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/* Modified:                                                                */
/*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
/****************************************************************************/
static int
bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
{
	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
	bus_dmamap_t map;
	struct tx_bd *txbd = NULL;
	struct mbuf *m0;
	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
	u32 prod_bseq;

#ifdef BCE_DEBUG
	u16 debug_prod;
#endif

	int i, error, nsegs, rc = 0;

	DBENTER(BCE_VERBOSE_SEND);

	/* Make sure we have room in the TX chain. */
	if (sc->used_tx_bd >= sc->max_tx_bd)
		goto bce_tx_encap_exit;

	/* Transfer any checksum offload flags to the bd. */
	m0 = *m_head;
	if (m0->m_pkthdr.csum_flags) {
		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
			m0 = bce_tso_setup(sc, m_head, &flags);
			if (m0 == NULL) {
				DBRUN(sc->tso_frames_failed++);
				goto bce_tx_encap_exit;
			}
			mss = htole16(m0->m_pkthdr.tso_segsz);
		} else {
			if (m0->m_pkthdr.csum_flags & CSUM_IP)
				flags |= TX_BD_FLAGS_IP_CKSUM;
			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
		}
	}

	/* Transfer any VLAN tags to the bd. */
	if (m0->m_flags & M_VLANTAG) {
		flags |= TX_BD_FLAGS_VLAN_TAG;
		vlan_tag = m0->m_pkthdr.ether_vtag;
	}

	/* Map the mbuf into DMAable memory. */
	prod = sc->tx_prod;
	chain_prod = TX_CHAIN_IDX(prod);
	map = sc->tx_mbuf_map[chain_prod];

	/* Map the mbuf into our DMA address space. */
	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
	    segs, &nsegs, BUS_DMA_NOWAIT);

	/* Check if the DMA mapping was successful */
	if (error == EFBIG) {
		sc->mbuf_frag_count++;

		/* Try to defrag the mbuf. */
		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
		if (m0 == NULL) {
			/* Defrag was unsuccessful */
			m_freem(*m_head);
			*m_head = NULL;
			sc->mbuf_alloc_failed_count++;
			rc = ENOBUFS;
			goto bce_tx_encap_exit;
		}

		/* Defrag was successful, try mapping again */
		*m_head = m0;
		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);

		/* Still getting an error after a defrag. */
		if (error == ENOMEM) {
			/* Insufficient DMA buffers available. */
			sc->dma_map_addr_tx_failed_count++;
			rc = error;
			goto bce_tx_encap_exit;
		} else if (error != 0) {
			/* Release it and return an error. */
			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
			    "TX chain!\n", __FILE__, __LINE__);
			m_freem(m0);
			*m_head = NULL;
			sc->dma_map_addr_tx_failed_count++;
			rc = ENOBUFS;
			goto bce_tx_encap_exit;
		}
	} else if (error == ENOMEM) {
		/* Insufficient DMA buffers available. */
		sc->dma_map_addr_tx_failed_count++;
		rc = error;
		goto bce_tx_encap_exit;
	} else if (error != 0) {
		m_freem(m0);
		*m_head = NULL;
		sc->dma_map_addr_tx_failed_count++;
		rc = error;
		goto bce_tx_encap_exit;
	}

	/* Make sure there's room in the chain */
	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
		bus_dmamap_unload(sc->tx_mbuf_tag, map);
		rc = ENOBUFS;
		goto bce_tx_encap_exit;
	}

	/* prod points to an empty tx_bd at this point. */
	prod_bseq  = sc->tx_prod_bseq;

#ifdef BCE_DEBUG
	debug_prod = chain_prod;
#endif

	DBPRINT(sc, BCE_INFO_SEND,
	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
	    "prod_bseq = 0x%08X\n",
	    __FUNCTION__, prod, chain_prod, prod_bseq);

	/*
	 * Cycle through each mbuf segment that makes up
	 * the outgoing frame, gathering the mapping info
	 * for that segment and creating a tx_bd for
	 * the mbuf.
	 */
	for (i = 0; i < nsegs ; i++) {

		chain_prod = TX_CHAIN_IDX(prod);
		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
		    [TX_IDX(chain_prod)];

		txbd->tx_bd_haddr_lo =
		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
		txbd->tx_bd_haddr_hi =
		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
		    htole16(segs[i].ds_len);
		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
		txbd->tx_bd_flags = htole16(flags);
		prod_bseq += segs[i].ds_len;
		if (i == 0)
			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
		prod = NEXT_TX_BD(prod);
	}

	/* Set the END flag on the last TX buffer descriptor. */
	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);

	DBRUNMSG(BCE_EXTREME_SEND,
	    bce_dump_tx_chain(sc, debug_prod, nsegs));

	/*
	 * Ensure that the mbuf pointer for this transmission
	 * is placed at the array index of the last
	 * descriptor in this chain.  This is done
	 * because a single map is used for all
	 * segments of the mbuf and we don't want to
	 * unload the map before all of the segments
	 * have been freed.
	 */
	sc->tx_mbuf_ptr[chain_prod] = m0;
	sc->used_tx_bd += nsegs;

	/* Update some debug statistic counters */
	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
	    sc->tx_hi_watermark = sc->used_tx_bd);
	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
	DBRUNIF(sc->debug_tx_mbuf_alloc++);

	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));

	/* prod points to the next free tx_bd at this point. */
	sc->tx_prod = prod;
	sc->tx_prod_bseq = prod_bseq;

	/* Tell the chip about the waiting TX frames. */
	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);

bce_tx_encap_exit:
	DBEXIT(BCE_VERBOSE_SEND);
	return(rc);
}


/****************************************************************************/
/* Main transmit routine when called from another routine with a lock.      */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_start_locked(struct ifnet *ifp)
{
	struct bce_softc *sc = ifp->if_softc;
	struct mbuf *m_head = NULL;
	int count = 0;
	u16 tx_prod, tx_chain_prod;

	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);

	BCE_LOCK_ASSERT(sc);

	/* prod points to the next free tx_bd. */
	tx_prod = sc->tx_prod;
	tx_chain_prod = TX_CHAIN_IDX(tx_prod);

	DBPRINT(sc, BCE_INFO_SEND,
	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
	    "tx_prod_bseq = 0x%08X\n",
	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);

	/* If there's no link or the transmit queue is empty then just exit. */
	if (sc->bce_link_up == FALSE) {
		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
		    __FUNCTION__);
		goto bce_start_locked_exit;
	}

	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
		    __FUNCTION__);
		goto bce_start_locked_exit;
	}

	/*
	 * Keep adding entries while there is space in the ring.
	 */
	while (sc->used_tx_bd < sc->max_tx_bd) {

		/* Check for any frames to send. */
		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);

		/* Stop when the transmit queue is empty. */
		if (m_head == NULL)
			break;

		/*
		 * Pack the data into the transmit ring. If we
		 * don't have room, place the mbuf back at the
		 * head of the queue and set the OACTIVE flag
		 * to wait for the NIC to drain the chain.
		 */
		if (bce_tx_encap(sc, &m_head)) {
			if (m_head != NULL)
				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
			DBPRINT(sc, BCE_INFO_SEND,
			    "TX chain is closed for business! Total "
			    "tx_bd used = %d\n", sc->used_tx_bd);
			break;
		}

		count++;

		/* Send a copy of the frame to any BPF listeners. */
		ETHER_BPF_MTAP(ifp, m_head);
	}

	/* Exit if no packets were dequeued. */
	if (count == 0) {
		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
		    "dequeued\n", __FUNCTION__);
		goto bce_start_locked_exit;
	}

	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
	    "send queue.\n", __FUNCTION__, count);

	/* Set the tx timeout. */
	sc->watchdog_timer = BCE_TX_TIMEOUT;

	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));

bce_start_locked_exit:
	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
	return;
}


/****************************************************************************/
/* Main transmit routine when called from another routine without a lock.   */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_start(struct ifnet *ifp)
{
	struct bce_softc *sc = ifp->if_softc;

	DBENTER(BCE_VERBOSE_SEND);

	BCE_LOCK(sc);
	bce_start_locked(ifp);
	BCE_UNLOCK(sc);

	DBEXIT(BCE_VERBOSE_SEND);
}


/****************************************************************************/
/* Handles any IOCTL calls from the operating system.                       */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
	struct bce_softc *sc = ifp->if_softc;
	struct ifreq *ifr = (struct ifreq *) data;
	struct mii_data *mii;
	int mask, error = 0;

	DBENTER(BCE_VERBOSE_MISC);

	switch(command) {

	/* Set the interface MTU. */
	case SIOCSIFMTU:
		/* Check that the MTU setting is supported. */
		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
			error = EINVAL;
			break;
		}

		DBPRINT(sc, BCE_INFO_MISC,
		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);

		BCE_LOCK(sc);
		ifp->if_mtu = ifr->ifr_mtu;
		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
			bce_init_locked(sc);
		}
		BCE_UNLOCK(sc);
		break;

	/* Set interface flags. */
	case SIOCSIFFLAGS:
		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");

		BCE_LOCK(sc);

		/* Check if the interface is up. */
		if (ifp->if_flags & IFF_UP) {
			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
				/* Change promiscuous/multicast flags as necessary. */
				bce_set_rx_mode(sc);
			} else {
				/* Start the HW */
				bce_init_locked(sc);
			}
		} else {
			/* The interface is down, check if driver is running. */
			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
				bce_stop(sc);

				/* If MFW is running, restart the controller a bit. */
				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
					bce_chipinit(sc);
					bce_mgmt_init_locked(sc);
				}
			}
		}

		BCE_UNLOCK(sc);
		break;

	/* Add/Delete multicast address */
	case SIOCADDMULTI:
	case SIOCDELMULTI:
		DBPRINT(sc, BCE_VERBOSE_MISC,
		    "Received SIOCADDMULTI/SIOCDELMULTI\n");

		BCE_LOCK(sc);
		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
			bce_set_rx_mode(sc);
		BCE_UNLOCK(sc);

		break;

	/* Set/Get Interface media */
	case SIOCSIFMEDIA:
	case SIOCGIFMEDIA:
		DBPRINT(sc, BCE_VERBOSE_MISC,
		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
			    command);
		else {
			mii = device_get_softc(sc->bce_miibus);
			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
			    command);
		}
		break;

	/* Set interface capability */
	case SIOCSIFCAP:
		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
		DBPRINT(sc, BCE_INFO_MISC,
		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);

		/* Toggle the TX checksum capabilities enable flag. */
		if (mask & IFCAP_TXCSUM &&
		    ifp->if_capabilities & IFCAP_TXCSUM) {
			ifp->if_capenable ^= IFCAP_TXCSUM;
			if (IFCAP_TXCSUM & ifp->if_capenable)
				ifp->if_hwassist |= BCE_IF_HWASSIST;
			else
				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
		}

		/* Toggle the RX checksum capabilities enable flag. */
		if (mask & IFCAP_RXCSUM &&
		    ifp->if_capabilities & IFCAP_RXCSUM)
			ifp->if_capenable ^= IFCAP_RXCSUM;

		/* Toggle the TSO capabilities enable flag. */
		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
		    ifp->if_capabilities & IFCAP_TSO4) {
			ifp->if_capenable ^= IFCAP_TSO4;
			if (IFCAP_TSO4 & ifp->if_capenable)
				ifp->if_hwassist |= CSUM_TSO;
			else
				ifp->if_hwassist &= ~CSUM_TSO;
		}

		if (mask & IFCAP_VLAN_HWCSUM &&
		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;

		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
		/*
		 * Don't actually disable VLAN tag stripping as
		 * management firmware (ASF/IPMI/UMP) requires the
		 * feature. If VLAN tag stripping is disabled driver
		 * will manually reconstruct the VLAN frame by
		 * appending stripped VLAN tag.
		 */
		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
			    == 0)
				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
		}
		VLAN_CAPABILITIES(ifp);
		break;
	default:
		/* We don't know how to handle the IOCTL, pass it on. */
		error = ether_ioctl(ifp, command, data);
		break;
	}

	DBEXIT(BCE_VERBOSE_MISC);
	return(error);
}


/****************************************************************************/
/* Transmit timeout handler.                                                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_watchdog(struct bce_softc *sc)
{
	DBENTER(BCE_EXTREME_SEND);

	BCE_LOCK_ASSERT(sc);

	/* If the watchdog timer hasn't expired then just exit. */
	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
		goto bce_watchdog_exit;

	/* If pause frames are active then don't reset the hardware. */
	/* ToDo: Should we reset the timer here? */
	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
		goto bce_watchdog_exit;

	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
	    __FILE__, __LINE__);

	DBRUNMSG(BCE_INFO,
	    bce_dump_driver_state(sc);
	    bce_dump_status_block(sc);
	    bce_dump_stats_block(sc);
	    bce_dump_ftqs(sc);
	    bce_dump_txp_state(sc, 0);
	    bce_dump_rxp_state(sc, 0);
	    bce_dump_tpat_state(sc, 0);
	    bce_dump_cp_state(sc, 0);
	    bce_dump_com_state(sc, 0));

	DBRUN(bce_breakpoint(sc));

	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;

	bce_init_locked(sc);
	sc->bce_ifp->if_oerrors++;

bce_watchdog_exit:
	DBEXIT(BCE_EXTREME_SEND);
}


/*
 * Interrupt handler.
 */
/****************************************************************************/
/* Main interrupt entry point.  Verifies that the controller generated the  */
/* interrupt and then calls a separate routine for handle the various       */
/* interrupt causes (PHY, TX, RX).                                          */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static void
bce_intr(void *xsc)
{
	struct bce_softc *sc;
	struct ifnet *ifp;
	u32 status_attn_bits;
	u16 hw_rx_cons, hw_tx_cons;

	sc = xsc;
	ifp = sc->bce_ifp;

	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));

	BCE_LOCK(sc);

	DBRUN(sc->interrupts_generated++);

	/* Synchnorize before we read from interface's status block */
	bus_dmamap_sync(sc->status_tag, sc->status_map,
	    BUS_DMASYNC_POSTREAD);

	/*
	 * If the hardware status block index
	 * matches the last value read by the
	 * driver and we haven't asserted our
	 * interrupt then there's nothing to do.
	 */
	if ((sc->status_block->status_idx == sc->last_status_idx) &&
	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
		    __FUNCTION__);
		goto bce_intr_exit;
	}

	/* Ack the interrupt and stop others from occuring. */
	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);

	/* Check if the hardware has finished any work. */
	hw_rx_cons = bce_get_hw_rx_cons(sc);
	hw_tx_cons = bce_get_hw_tx_cons(sc);

	/* Keep processing data as long as there is work to do. */
	for (;;) {

		status_attn_bits = sc->status_block->status_attn_bits;

		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
		    BCE_PRINTF("Simulating unexpected status attention "
		    "bit set.");
		    sc->unexpected_attention_sim_count++;
		    status_attn_bits = status_attn_bits |
		    STATUS_ATTN_BITS_PARITY_ERROR);

		/* Was it a link change interrupt? */
		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
		    (sc->status_block->status_attn_bits_ack &
		     STATUS_ATTN_BITS_LINK_STATE)) {
			bce_phy_intr(sc);

			/* Clear transient updates during link state change. */
			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
			REG_RD(sc, BCE_HC_COMMAND);
		}

		/* If any other attention is asserted, the chip is toast. */
		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
		    (sc->status_block->status_attn_bits_ack &
		    ~STATUS_ATTN_BITS_LINK_STATE))) {

			sc->unexpected_attention_count++;

			BCE_PRINTF("%s(%d): Fatal attention detected: "
			    "0x%08X\n",	__FILE__, __LINE__,
			    sc->status_block->status_attn_bits);

			DBRUNMSG(BCE_FATAL,
			    if (unexpected_attention_sim_control == 0)
				bce_breakpoint(sc));

			bce_init_locked(sc);
			goto bce_intr_exit;
		}

		/* Check for any completed RX frames. */
		if (hw_rx_cons != sc->hw_rx_cons)
			bce_rx_intr(sc);

		/* Check for any completed TX frames. */
		if (hw_tx_cons != sc->hw_tx_cons)
			bce_tx_intr(sc);

		/* Save status block index value for the next interrupt. */
		sc->last_status_idx = sc->status_block->status_idx;

 		/*
 		 * Prevent speculative reads from getting
 		 * ahead of the status block.
		 */
		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
		    BUS_SPACE_BARRIER_READ);

 		/*
 		 * If there's no work left then exit the
 		 * interrupt service routine.
		 */
		hw_rx_cons = bce_get_hw_rx_cons(sc);
		hw_tx_cons = bce_get_hw_tx_cons(sc);

		if ((hw_rx_cons == sc->hw_rx_cons) &&
		    (hw_tx_cons == sc->hw_tx_cons))
			break;

	}

	bus_dmamap_sync(sc->status_tag,	sc->status_map,
	    BUS_DMASYNC_PREREAD);

	/* Re-enable interrupts. */
	bce_enable_intr(sc, 0);

	/* Handle any frames that arrived while handling the interrupt. */
	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
		bce_start_locked(ifp);

bce_intr_exit:
	BCE_UNLOCK(sc);

	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
}


/****************************************************************************/
/* Programs the various packet receive modes (broadcast and multicast).     */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_set_rx_mode(struct bce_softc *sc)
{
	struct ifnet *ifp;
	struct ifmultiaddr *ifma;
	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
	u32 rx_mode, sort_mode;
	int h, i;

	DBENTER(BCE_VERBOSE_MISC);

	BCE_LOCK_ASSERT(sc);

	ifp = sc->bce_ifp;

	/* Initialize receive mode default settings. */
	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;

	/*
	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
	 * be enbled.
	 */
	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;

	/*
	 * Check for promiscuous, all multicast, or selected
	 * multicast address filtering.
	 */
	if (ifp->if_flags & IFF_PROMISC) {
		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");

		/* Enable promiscuous mode. */
		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
	} else if (ifp->if_flags & IFF_ALLMULTI) {
		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");

		/* Enable all multicast addresses. */
		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
       	}
		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
	} else {
		/* Accept one or more multicast(s). */
		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");

		if_maddr_rlock(ifp);
		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
			if (ifma->ifma_addr->sa_family != AF_LINK)
				continue;
			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
		}
		if_maddr_runlock(ifp);

		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);

		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
	}

	/* Only make changes if the recive mode has actually changed. */
	if (rx_mode != sc->rx_mode) {
		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
		    "0x%08X\n", rx_mode);

		sc->rx_mode = rx_mode;
		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
	}

	/* Disable and clear the exisitng sort before enabling a new sort. */
	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);

	DBEXIT(BCE_VERBOSE_MISC);
}


/****************************************************************************/
/* Called periodically to updates statistics from the controllers           */
/* statistics block.                                                        */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_stats_update(struct bce_softc *sc)
{
	struct ifnet *ifp;
	struct statistics_block *stats;

	DBENTER(BCE_EXTREME_MISC);

	ifp = sc->bce_ifp;

	stats = (struct statistics_block *) sc->stats_block;

	/*
	 * Certain controllers don't report
	 * carrier sense errors correctly.
	 * See errata E11_5708CA0_1165.
	 */
	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
		ifp->if_oerrors +=
		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;

	/*
	 * Update the sysctl statistics from the
	 * hardware statistics.
	 */
	sc->stat_IfHCInOctets =
	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
	     (u64) stats->stat_IfHCInOctets_lo;

	sc->stat_IfHCInBadOctets =
	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
	     (u64) stats->stat_IfHCInBadOctets_lo;

	sc->stat_IfHCOutOctets =
	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
	     (u64) stats->stat_IfHCOutOctets_lo;

	sc->stat_IfHCOutBadOctets =
	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
	     (u64) stats->stat_IfHCOutBadOctets_lo;

	sc->stat_IfHCInUcastPkts =
	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
	     (u64) stats->stat_IfHCInUcastPkts_lo;

	sc->stat_IfHCInMulticastPkts =
	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
	     (u64) stats->stat_IfHCInMulticastPkts_lo;

	sc->stat_IfHCInBroadcastPkts =
	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
	     (u64) stats->stat_IfHCInBroadcastPkts_lo;

	sc->stat_IfHCOutUcastPkts =
	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
	     (u64) stats->stat_IfHCOutUcastPkts_lo;

	sc->stat_IfHCOutMulticastPkts =
	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
	     (u64) stats->stat_IfHCOutMulticastPkts_lo;

	sc->stat_IfHCOutBroadcastPkts =
	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;

	/* ToDo: Preserve counters beyond 32 bits? */
	/* ToDo: Read the statistics from auto-clear regs? */

	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;

	sc->stat_Dot3StatsCarrierSenseErrors =
	    stats->stat_Dot3StatsCarrierSenseErrors;

	sc->stat_Dot3StatsFCSErrors =
	    stats->stat_Dot3StatsFCSErrors;

	sc->stat_Dot3StatsAlignmentErrors =
	    stats->stat_Dot3StatsAlignmentErrors;

	sc->stat_Dot3StatsSingleCollisionFrames =
	    stats->stat_Dot3StatsSingleCollisionFrames;

	sc->stat_Dot3StatsMultipleCollisionFrames =
	    stats->stat_Dot3StatsMultipleCollisionFrames;

	sc->stat_Dot3StatsDeferredTransmissions =
	    stats->stat_Dot3StatsDeferredTransmissions;

	sc->stat_Dot3StatsExcessiveCollisions =
	    stats->stat_Dot3StatsExcessiveCollisions;

	sc->stat_Dot3StatsLateCollisions =
	    stats->stat_Dot3StatsLateCollisions;

	sc->stat_EtherStatsCollisions =
	    stats->stat_EtherStatsCollisions;

	sc->stat_EtherStatsFragments =
	    stats->stat_EtherStatsFragments;

	sc->stat_EtherStatsJabbers =
	    stats->stat_EtherStatsJabbers;

	sc->stat_EtherStatsUndersizePkts =
	    stats->stat_EtherStatsUndersizePkts;

	sc->stat_EtherStatsOversizePkts =
	     stats->stat_EtherStatsOversizePkts;

	sc->stat_EtherStatsPktsRx64Octets =
	    stats->stat_EtherStatsPktsRx64Octets;

	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;

	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;

	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;

	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;

	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;

	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;

	sc->stat_EtherStatsPktsTx64Octets =
	    stats->stat_EtherStatsPktsTx64Octets;

	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;

	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;

	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;

	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;

	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;

	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;

	sc->stat_XonPauseFramesReceived =
	    stats->stat_XonPauseFramesReceived;

	sc->stat_XoffPauseFramesReceived =
	    stats->stat_XoffPauseFramesReceived;

	sc->stat_OutXonSent =
	    stats->stat_OutXonSent;

	sc->stat_OutXoffSent =
	    stats->stat_OutXoffSent;

	sc->stat_FlowControlDone =
	    stats->stat_FlowControlDone;

	sc->stat_MacControlFramesReceived =
	    stats->stat_MacControlFramesReceived;

	sc->stat_XoffStateEntered =
	    stats->stat_XoffStateEntered;

	sc->stat_IfInFramesL2FilterDiscards =
	    stats->stat_IfInFramesL2FilterDiscards;

	sc->stat_IfInRuleCheckerDiscards =
	    stats->stat_IfInRuleCheckerDiscards;

	sc->stat_IfInFTQDiscards =
	    stats->stat_IfInFTQDiscards;

	sc->stat_IfInMBUFDiscards =
	    stats->stat_IfInMBUFDiscards;

	sc->stat_IfInRuleCheckerP4Hit =
	    stats->stat_IfInRuleCheckerP4Hit;

	sc->stat_CatchupInRuleCheckerDiscards =
	    stats->stat_CatchupInRuleCheckerDiscards;

	sc->stat_CatchupInFTQDiscards =
	    stats->stat_CatchupInFTQDiscards;

	sc->stat_CatchupInMBUFDiscards =
	    stats->stat_CatchupInMBUFDiscards;

	sc->stat_CatchupInRuleCheckerP4Hit =
	    stats->stat_CatchupInRuleCheckerP4Hit;

	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);

	/*
	 * Update the interface statistics from the
	 * hardware statistics.
	 */
	ifp->if_collisions =
	    (u_long) sc->stat_EtherStatsCollisions;

	/* ToDo: This method loses soft errors. */
	ifp->if_ierrors =
	    (u_long) sc->stat_EtherStatsUndersizePkts +
	    (u_long) sc->stat_EtherStatsOversizePkts +
	    (u_long) sc->stat_IfInMBUFDiscards +
	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
	    (u_long) sc->stat_Dot3StatsFCSErrors +
	    (u_long) sc->stat_IfInRuleCheckerDiscards +
	    (u_long) sc->stat_IfInFTQDiscards +
	    (u_long) sc->com_no_buffers;

	/* ToDo: This method loses soft errors. */
	ifp->if_oerrors =
	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
	    (u_long) sc->stat_Dot3StatsLateCollisions;

	/* ToDo: Add additional statistics? */

	DBEXIT(BCE_EXTREME_MISC);
}


/****************************************************************************/
/* Periodic function to notify the bootcode that the driver is still        */
/* present.                                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_pulse(void *xsc)
{
	struct bce_softc *sc = xsc;
	u32 msg;

	DBENTER(BCE_EXTREME_MISC);

	BCE_LOCK_ASSERT(sc);

	/* Tell the firmware that the driver is still running. */
	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);

	/* Update the bootcode condition. */
	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);

	/* Report whether the bootcode still knows the driver is running. */
	if (bce_verbose || bootverbose) {
		if (sc->bce_drv_cardiac_arrest == FALSE) {
			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
				sc->bce_drv_cardiac_arrest = TRUE;
				BCE_PRINTF("%s(): Warning: bootcode "
				    "thinks driver is absent! "
				    "(bc_state = 0x%08X)\n",
				    __FUNCTION__, sc->bc_state);
			}
		} else {
			/*
			 * Not supported by all bootcode versions.
			 * (v5.0.11+ and v5.2.1+)  Older bootcode
			 * will require the driver to reset the
			 * controller to clear this condition.
			 */
			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
				sc->bce_drv_cardiac_arrest = FALSE;
				BCE_PRINTF("%s(): Bootcode found the "
				    "driver pulse! (bc_state = 0x%08X)\n",
				    __FUNCTION__, sc->bc_state);
			}
		}
	}


	/* Schedule the next pulse. */
	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);

	DBEXIT(BCE_EXTREME_MISC);
}


/****************************************************************************/
/* Periodic function to perform maintenance tasks.                          */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static void
bce_tick(void *xsc)
{
	struct bce_softc *sc = xsc;
	struct mii_data *mii;
	struct ifnet *ifp;
	struct ifmediareq ifmr;

	ifp = sc->bce_ifp;

	DBENTER(BCE_EXTREME_MISC);

	BCE_LOCK_ASSERT(sc);

	/* Schedule the next tick. */
	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);

	/* Update the statistics from the hardware statistics block. */
	bce_stats_update(sc);

 	/*
 	 * ToDo: This is a safety measure.  Need to re-evaluate
 	 * high	level processing logic and eliminate this code.
 	 */
	/* Top off the receive and page chains. */
	if (bce_hdr_split == TRUE)
		bce_fill_pg_chain(sc);
	bce_fill_rx_chain(sc);

	/* Check that chip hasn't hung. */
	bce_watchdog(sc);

	/* If link is up already up then we're done. */
	if (sc->bce_link_up == TRUE)
		goto bce_tick_exit;

	/* Link is down.  Check what the PHY's doing. */
	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
		bzero(&ifmr, sizeof(ifmr));
		bce_ifmedia_sts_rphy(sc, &ifmr);
		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
		    (IFM_ACTIVE | IFM_AVALID)) {
			sc->bce_link_up = TRUE;
			bce_miibus_statchg(sc->bce_dev);
		}
	} else {
		mii = device_get_softc(sc->bce_miibus);
		mii_tick(mii);
		/* Check if the link has come up. */
		if ((mii->mii_media_status & IFM_ACTIVE) &&
		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
			    __FUNCTION__);
			sc->bce_link_up = TRUE;
			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
			    (bce_verbose || bootverbose))
				BCE_PRINTF("Gigabit link up!\n");
		}

	}
	if (sc->bce_link_up == TRUE) {
		/* Now that link is up, handle any outstanding TX traffic. */
		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
			    "pending TX traffic.\n", __FUNCTION__);
			bce_start_locked(ifp);
		}
	}

bce_tick_exit:
	DBEXIT(BCE_EXTREME_MISC);
	return;
}

static void
bce_fw_cap_init(struct bce_softc *sc)
{
	u32 ack, cap, link;

	ack = 0;
	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
	    BCE_FW_CAP_SIGNATURE_MAGIC)
		return;
	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
		    BCE_FW_CAP_REMOTE_PHY_CAP;
	}

	if (ack != 0)
		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
}


#ifdef BCE_DEBUG
/****************************************************************************/
/* Allows the driver state to be dumped through the sysctl interface.       */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_driver_state(sc);
	}

	return error;
}


/****************************************************************************/
/* Allows the hardware state to be dumped through the sysctl interface.     */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_hw_state(sc);
	}

	return error;
}


/****************************************************************************/
/* Allows the status block to be dumped through the sysctl interface.       */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_status_block(sc);
	}

	return error;
}


/****************************************************************************/
/* Allows the stats block to be dumped through the sysctl interface.        */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_stats_block(sc);
	}

	return error;
}


/****************************************************************************/
/* Allows the stat counters to be cleared without unloading/reloading the   */
/* driver.                                                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		struct statistics_block *stats;

		stats = (struct statistics_block *) sc->stats_block;
		bzero(stats, sizeof(struct statistics_block));

		/* Clear the internal H/W statistics counters. */
		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);

		/* Reset the driver maintained statistics. */
		sc->interrupts_rx =
		    sc->interrupts_tx = 0;
		sc->tso_frames_requested =
		    sc->tso_frames_completed =
		    sc->tso_frames_failed = 0;
		sc->rx_empty_count =
		    sc->tx_full_count = 0;
		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
		sc->tx_hi_watermark = 0;
		sc->l2fhdr_error_count =
		    sc->l2fhdr_error_sim_count = 0;
		sc->mbuf_alloc_failed_count =
		    sc->mbuf_alloc_failed_sim_count = 0;
		sc->dma_map_addr_rx_failed_count =
		    sc->dma_map_addr_tx_failed_count = 0;
		sc->mbuf_frag_count = 0;
		sc->csum_offload_tcp_udp =
		    sc->csum_offload_ip = 0;
		sc->vlan_tagged_frames_rcvd =
		    sc->vlan_tagged_frames_stripped = 0;
		sc->split_header_frames_rcvd =
		    sc->split_header_tcp_frames_rcvd = 0;

		/* Clear firmware maintained statistics. */
		REG_WR_IND(sc, 0x120084, 0);
	}

	return error;
}


/****************************************************************************/
/* Allows the shared memory contents to be dumped through the sysctl  .     */
/* interface.                                                               */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_shmem_state(sc);
	}

	return error;
}


/****************************************************************************/
/* Allows the bootcode state to be dumped through the sysctl interface.     */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_bc_state(sc);
	}

	return error;
}


/****************************************************************************/
/* Provides a sysctl interface to allow dumping the RX BD chain.            */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
	}

	return error;
}


/****************************************************************************/
/* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
	}

	return error;
}


/****************************************************************************/
/* Provides a sysctl interface to allow dumping the TX chain.               */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
	}

	return error;
}


/****************************************************************************/
/* Provides a sysctl interface to allow dumping the page chain.             */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
	}

	return error;
}

/****************************************************************************/
/* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
{
	struct bce_softc *sc = (struct bce_softc *)arg1;
	int error;
	u32 result;
	u32 val[1];
	u8 *data = (u8 *) val;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);
	if (error || (req->newptr == NULL))
		return (error);

	error = bce_nvram_read(sc, result, data, 4);

	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));

	return (error);
}


/****************************************************************************/
/* Provides a sysctl interface to allow reading arbitrary registers in the  */
/* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
{
	struct bce_softc *sc = (struct bce_softc *)arg1;
	int error;
	u32 val, result;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);
	if (error || (req->newptr == NULL))
		return (error);

	/* Make sure the register is accessible. */
	if (result < 0x8000) {
		val = REG_RD(sc, result);
		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
	} else if (result < 0x0280000) {
		val = REG_RD_IND(sc, result);
		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
	}

	return (error);
}


/****************************************************************************/
/* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
/* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
{
	struct bce_softc *sc;
	device_t dev;
	int error, result;
	u16 val;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);
	if (error || (req->newptr == NULL))
		return (error);

	/* Make sure the register is accessible. */
	if (result < 0x20) {
		sc = (struct bce_softc *)arg1;
		dev = sc->bce_dev;
		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
	}
	return (error);
}


/****************************************************************************/
/* Provides a sysctl interface for dumping the nvram contents.              */
/* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
/*									    */
/* Returns:								    */
/*   0 for success, positive errno for failure.				    */
/****************************************************************************/
static int
bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
{
	struct bce_softc *sc = (struct bce_softc *)arg1;
	int error, i;

	if (sc->nvram_buf == NULL)
		sc->nvram_buf = malloc(sc->bce_flash_size,
				    M_TEMP, M_ZERO | M_WAITOK);

	error = 0;
	if (req->oldlen == sc->bce_flash_size) {
		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
	}

	if (error == 0)
		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);

	return error;
}

#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Provides a sysctl interface for writing to nvram.                        */
/* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
/*									    */
/* Returns:								    */
/*   0 for success, positive errno for failure.				    */
/****************************************************************************/
static int
bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
{
	struct bce_softc *sc = (struct bce_softc *)arg1;
	int error;

	if (sc->nvram_buf == NULL)
		sc->nvram_buf = malloc(sc->bce_flash_size,
				    M_TEMP, M_ZERO | M_WAITOK);
	else
		bzero(sc->nvram_buf, sc->bce_flash_size);

	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
	if (error == 0)
		return (error);

	if (req->newlen == sc->bce_flash_size)
		error = bce_nvram_write(sc, 0, sc->nvram_buf,
			    sc->bce_flash_size);


	return error;
}
#endif


/****************************************************************************/
/* Provides a sysctl interface to allow reading a CID.                      */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
{
	struct bce_softc *sc;
	int error, result;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);
	if (error || (req->newptr == NULL))
		return (error);

	/* Make sure the register is accessible. */
	if (result <= TX_CID) {
		sc = (struct bce_softc *)arg1;
		bce_dump_ctx(sc, result);
	}

	return (error);
}


/****************************************************************************/
/* Provides a sysctl interface to forcing the driver to dump state and      */
/* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static int
bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
{
	int error;
	int result;
	struct bce_softc *sc;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);

	if (error || !req->newptr)
		return (error);

	if (result == 1) {
		sc = (struct bce_softc *)arg1;
		bce_breakpoint(sc);
	}

	return error;
}
#endif

/****************************************************************************/
/* Adds any sysctl parameters for tuning or debugging purposes.             */
/*                                                                          */
/* Returns:                                                                 */
/*   0 for success, positive value for failure.                             */
/****************************************************************************/
static void
bce_add_sysctls(struct bce_softc *sc)
{
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid_list *children;

	DBENTER(BCE_VERBOSE_MISC);

	ctx = device_get_sysctl_ctx(sc->bce_dev);
	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));

#ifdef BCE_DEBUG
	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "l2fhdr_error_sim_control",
	    CTLFLAG_RW, &l2fhdr_error_sim_control,
	    0, "Debug control to force l2fhdr errors");

	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "l2fhdr_error_sim_count",
	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
	    0, "Number of simulated l2_fhdr errors");
#endif

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "l2fhdr_error_count",
	    CTLFLAG_RD, &sc->l2fhdr_error_count,
	    0, "Number of l2_fhdr errors");

#ifdef BCE_DEBUG
	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "mbuf_alloc_failed_sim_control",
	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
	    0, "Debug control to force mbuf allocation failures");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "mbuf_alloc_failed_sim_count",
	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
	    0, "Number of simulated mbuf cluster allocation failures");
#endif

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "mbuf_alloc_failed_count",
	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
	    0, "Number of mbuf allocation failures");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "mbuf_frag_count",
	    CTLFLAG_RD, &sc->mbuf_frag_count,
	    0, "Number of fragmented mbufs");

#ifdef BCE_DEBUG
	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "dma_map_addr_failed_sim_control",
	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
	    0, "Debug control to force DMA mapping failures");

	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "dma_map_addr_failed_sim_count",
	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
	    0, "Number of simulated DMA mapping failures");

#endif

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "dma_map_addr_rx_failed_count",
	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
	    0, "Number of RX DMA mapping failures");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "dma_map_addr_tx_failed_count",
	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
	    0, "Number of TX DMA mapping failures");

#ifdef BCE_DEBUG
	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "unexpected_attention_sim_control",
	    CTLFLAG_RW, &unexpected_attention_sim_control,
	    0, "Debug control to simulate unexpected attentions");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "unexpected_attention_sim_count",
	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
	    0, "Number of simulated unexpected attentions");
#endif

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "unexpected_attention_count",
	    CTLFLAG_RW, &sc->unexpected_attention_count,
	    0, "Number of unexpected attentions");

#ifdef BCE_DEBUG
	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "debug_bootcode_running_failure",
	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
	    0, "Debug control to force bootcode running failures");

	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "rx_low_watermark",
	    CTLFLAG_RD, &sc->rx_low_watermark,
	    0, "Lowest level of free rx_bd's");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "rx_empty_count",
	    CTLFLAG_RD, &sc->rx_empty_count,
	    "Number of times the RX chain was empty");

	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
	    "tx_hi_watermark",
	    CTLFLAG_RD, &sc->tx_hi_watermark,
	    0, "Highest level of used tx_bd's");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "tx_full_count",
	    CTLFLAG_RD, &sc->tx_full_count,
	    "Number of times the TX chain was full");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "tso_frames_requested",
	    CTLFLAG_RD, &sc->tso_frames_requested,
	    "Number of TSO frames requested");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "tso_frames_completed",
	    CTLFLAG_RD, &sc->tso_frames_completed,
	    "Number of TSO frames completed");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "tso_frames_failed",
	    CTLFLAG_RD, &sc->tso_frames_failed,
	    "Number of TSO frames failed");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "csum_offload_ip",
	    CTLFLAG_RD, &sc->csum_offload_ip,
	    "Number of IP checksum offload frames");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "csum_offload_tcp_udp",
	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
	    "Number of TCP/UDP checksum offload frames");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "vlan_tagged_frames_rcvd",
	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
	    "Number of VLAN tagged frames received");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "vlan_tagged_frames_stripped",
	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
	    "Number of VLAN tagged frames stripped");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "interrupts_rx",
	    CTLFLAG_RD, &sc->interrupts_rx,
	    "Number of RX interrupts");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "interrupts_tx",
	    CTLFLAG_RD, &sc->interrupts_tx,
	    "Number of TX interrupts");

	if (bce_hdr_split == TRUE) {
		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
		    "split_header_frames_rcvd",
		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
		    "Number of split header frames received");

		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
		    "split_header_tcp_frames_rcvd",
		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
		    "Number of split header TCP frames received");
	}

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
	    (void *)sc, 0,
	    bce_sysctl_nvram_dump, "S", "");

#ifdef BCE_NVRAM_WRITE_SUPPORT
	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
	    (void *)sc, 0,
	    bce_sysctl_nvram_write, "S", "");
#endif
#endif /* BCE_DEBUG */

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHcInOctets",
	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
	    "Bytes received");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCInBadOctets",
	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
	    "Bad bytes received");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCOutOctets",
	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
	    "Bytes sent");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCOutBadOctets",
	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
	    "Bad bytes sent");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCInUcastPkts",
	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
	    "Unicast packets received");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCInMulticastPkts",
	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
	    "Multicast packets received");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCInBroadcastPkts",
	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
	    "Broadcast packets received");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCOutUcastPkts",
	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
	    "Unicast packets sent");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCOutMulticastPkts",
	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
	    "Multicast packets sent");

	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
	    "stat_IfHCOutBroadcastPkts",
	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
	    "Broadcast packets sent");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
	    0, "Internal MAC transmit errors");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsCarrierSenseErrors",
	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
	    0, "Carrier sense errors");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsFCSErrors",
	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
	    0, "Frame check sequence errors");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsAlignmentErrors",
	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
	    0, "Alignment errors");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsSingleCollisionFrames",
	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
	    0, "Single Collision Frames");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsMultipleCollisionFrames",
	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
	    0, "Multiple Collision Frames");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsDeferredTransmissions",
	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
	    0, "Deferred Transmissions");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsExcessiveCollisions",
	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
	    0, "Excessive Collisions");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_Dot3StatsLateCollisions",
	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
	    0, "Late Collisions");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsCollisions",
	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
	    0, "Collisions");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsFragments",
	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
	    0, "Fragments");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsJabbers",
	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
	    0, "Jabbers");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsUndersizePkts",
	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
	    0, "Undersize packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsOversizePkts",
	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
	    0, "stat_EtherStatsOversizePkts");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx64Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
	    0, "Bytes received in 64 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx65Octetsto127Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
	    0, "Bytes received in 65 to 127 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx128Octetsto255Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
	    0, "Bytes received in 128 to 255 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx256Octetsto511Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
	    0, "Bytes received in 256 to 511 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
	    0, "Bytes received in 512 to 1023 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
	    0, "Bytes received in 1024 t0 1522 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
	    0, "Bytes received in 1523 to 9022 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx64Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
	    0, "Bytes sent in 64 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx65Octetsto127Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
	    0, "Bytes sent in 65 to 127 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx128Octetsto255Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
	    0, "Bytes sent in 128 to 255 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx256Octetsto511Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
	    0, "Bytes sent in 256 to 511 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
	    0, "Bytes sent in 512 to 1023 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
	    0, "Bytes sent in 1024 to 1522 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
	    0, "Bytes sent in 1523 to 9022 byte packets");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_XonPauseFramesReceived",
	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
	    0, "XON pause frames receved");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_XoffPauseFramesReceived",
	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
	    0, "XOFF pause frames received");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_OutXonSent",
	    CTLFLAG_RD, &sc->stat_OutXonSent,
	    0, "XON pause frames sent");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_OutXoffSent",
	    CTLFLAG_RD, &sc->stat_OutXoffSent,
	    0, "XOFF pause frames sent");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_FlowControlDone",
	    CTLFLAG_RD, &sc->stat_FlowControlDone,
	    0, "Flow control done");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_MacControlFramesReceived",
	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
	    0, "MAC control frames received");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_XoffStateEntered",
	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
	    0, "XOFF state entered");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_IfInFramesL2FilterDiscards",
	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
	    0, "Received L2 packets discarded");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_IfInRuleCheckerDiscards",
	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
	    0, "Received packets discarded by rule");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_IfInFTQDiscards",
	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
	    0, "Received packet FTQ discards");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_IfInMBUFDiscards",
	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
	    0, "Received packets discarded due to lack "
	    "of controller buffer memory");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_IfInRuleCheckerP4Hit",
	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
	    0, "Received packets rule checker hits");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_CatchupInRuleCheckerDiscards",
	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
	    0, "Received packets discarded in Catchup path");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_CatchupInFTQDiscards",
	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
	    0, "Received packets discarded in FTQ in Catchup path");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_CatchupInMBUFDiscards",
	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
	    0, "Received packets discarded in controller "
	    "buffer memory in Catchup path");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "stat_CatchupInRuleCheckerP4Hit",
	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
	    0, "Received packets rule checker hits in Catchup path");

	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
	    "com_no_buffers",
	    CTLFLAG_RD, &sc->com_no_buffers,
	    0, "Valid packets received but no RX buffers available");

#ifdef BCE_DEBUG
	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_driver_state, "I", "Drive state information");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_hw_state, "I", "Hardware state information");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_status_block, "I", "Dump status block");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_stats_block, "I", "Dump statistics block");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_stats_clear, "I", "Clear statistics block");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_shmem_state, "I", "Shared memory state information");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_bc_state, "I", "Bootcode state information");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");

	if (bce_hdr_split == TRUE) {
		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
		    (void *)sc, 0,
		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
	}

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_dump_ctx, "I", "Dump context memory");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_breakpoint, "I", "Driver breakpoint");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_reg_read, "I", "Register read");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_nvram_read, "I", "NVRAM read");

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
	    (void *)sc, 0,
	    bce_sysctl_phy_read, "I", "PHY register read");

#endif

	DBEXIT(BCE_VERBOSE_MISC);
}


/****************************************************************************/
/* BCE Debug Routines                                                       */
/****************************************************************************/
#ifdef BCE_DEBUG

/****************************************************************************/
/* Freezes the controller to allow for a cohesive state dump.               */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_freeze_controller(struct bce_softc *sc)
{
	u32 val;
	val = REG_RD(sc, BCE_MISC_COMMAND);
	val |= BCE_MISC_COMMAND_DISABLE_ALL;
	REG_WR(sc, BCE_MISC_COMMAND, val);
}


/****************************************************************************/
/* Unfreezes the controller after a freeze operation.  This may not always  */
/* work and the controller will require a reset!                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_unfreeze_controller(struct bce_softc *sc)
{
	u32 val;
	val = REG_RD(sc, BCE_MISC_COMMAND);
	val |= BCE_MISC_COMMAND_ENABLE_ALL;
	REG_WR(sc, BCE_MISC_COMMAND, val);
}


/****************************************************************************/
/* Prints out Ethernet frame information from an mbuf.                      */
/*                                                                          */
/* Partially decode an Ethernet frame to look at some important headers.    */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
{
	struct ether_vlan_header *eh;
	u16 etype;
	int ehlen;
	struct ip *ip;
	struct tcphdr *th;
	struct udphdr *uh;
	struct arphdr *ah;

	BCE_PRINTF(
	    "-----------------------------"
	    " Frame Decode "
	    "-----------------------------\n");

	eh = mtod(m, struct ether_vlan_header *);

	/* Handle VLAN encapsulation if present. */
	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
		etype = ntohs(eh->evl_proto);
		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
	} else {
		etype = ntohs(eh->evl_encap_proto);
		ehlen = ETHER_HDR_LEN;
	}

	/* ToDo: Add VLAN output. */
	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);

	switch (etype) {
	case ETHERTYPE_IP:
		ip = (struct ip *)(m->m_data + ehlen);
		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));

		switch (ip->ip_p) {
		case IPPROTO_TCP:
			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
			    ntohs(th->th_dport), ntohs(th->th_sport),
			    (th->th_off << 2), th->th_flags,
			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
			    "\02SYN\01FIN", ntohs(th->th_sum));
			break;
		case IPPROTO_UDP:
			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
			    ntohs(uh->uh_sum));
			break;
		case IPPROTO_ICMP:
			BCE_PRINTF("icmp:\n");
			break;
		default:
			BCE_PRINTF("----: Other IP protocol.\n");
			}
		break;
	case ETHERTYPE_IPV6:
		BCE_PRINTF("ipv6: No decode supported.\n");
		break;
	case ETHERTYPE_ARP:
		BCE_PRINTF("-arp: ");
		ah = (struct arphdr *) (m->m_data + ehlen);
		switch (ntohs(ah->ar_op)) {
		case ARPOP_REVREQUEST:
			printf("reverse ARP request\n");
			break;
		case ARPOP_REVREPLY:
			printf("reverse ARP reply\n");
			break;
		case ARPOP_REQUEST:
			printf("ARP request\n");
			break;
		case ARPOP_REPLY:
			printf("ARP reply\n");
			break;
		default:
			printf("other ARP operation\n");
		}
		break;
	default:
		BCE_PRINTF("----: Other protocol.\n");
	}

	BCE_PRINTF(
		"-----------------------------"
		"--------------"
		"-----------------------------\n");
}


/****************************************************************************/
/* Prints out information about an mbuf.                                    */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
{
	struct mbuf *mp = m;

	if (m == NULL) {
		BCE_PRINTF("mbuf: null pointer\n");
		return;
	}

	while (mp) {
		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);

		if (mp->m_flags & M_PKTHDR) {
			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
			    "csum_flags = %b\n", mp->m_pkthdr.len,
			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
			    "\22M_PROMISC\23M_NOFREE",
			    mp->m_pkthdr.csum_flags,
			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
			    "\14CSUM_PSEUDO_HDR");
		}

		if (mp->m_flags & M_EXT) {
			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
			switch (mp->m_ext.ext_type) {
			case EXT_CLUSTER:
				printf("EXT_CLUSTER\n"); break;
			case EXT_SFBUF:
				printf("EXT_SFBUF\n"); break;
			case EXT_JUMBO9:
				printf("EXT_JUMBO9\n"); break;
			case EXT_JUMBO16:
				printf("EXT_JUMBO16\n"); break;
			case EXT_PACKET:
				printf("EXT_PACKET\n"); break;
			case EXT_MBUF:
				printf("EXT_MBUF\n"); break;
			case EXT_NET_DRV:
				printf("EXT_NET_DRV\n"); break;
			case EXT_MOD_TYPE:
				printf("EXT_MDD_TYPE\n"); break;
			case EXT_DISPOSABLE:
				printf("EXT_DISPOSABLE\n"); break;
			case EXT_EXTREF:
				printf("EXT_EXTREF\n"); break;
			default:
				printf("UNKNOWN\n");
			}
		}

		mp = mp->m_next;
	}
}


/****************************************************************************/
/* Prints out the mbufs in the TX mbuf chain.                               */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
{
	struct mbuf *m;

	BCE_PRINTF(
		"----------------------------"
		"  tx mbuf data  "
		"----------------------------\n");

	for (int i = 0; i < count; i++) {
	 	m = sc->tx_mbuf_ptr[chain_prod];
		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
		bce_dump_mbuf(sc, m);
		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
	}

	BCE_PRINTF(
		"----------------------------"
		"----------------"
		"----------------------------\n");
}


/****************************************************************************/
/* Prints out the mbufs in the RX mbuf chain.                               */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
{
	struct mbuf *m;

	BCE_PRINTF(
		"----------------------------"
		"  rx mbuf data  "
		"----------------------------\n");

	for (int i = 0; i < count; i++) {
	 	m = sc->rx_mbuf_ptr[chain_prod];
		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
		bce_dump_mbuf(sc, m);
		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
	}


	BCE_PRINTF(
		"----------------------------"
		"----------------"
		"----------------------------\n");
}


/****************************************************************************/
/* Prints out the mbufs in the mbuf page chain.                             */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
{
	struct mbuf *m;

	BCE_PRINTF(
		"----------------------------"
		"  pg mbuf data  "
		"----------------------------\n");

	for (int i = 0; i < count; i++) {
	 	m = sc->pg_mbuf_ptr[chain_prod];
		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
		bce_dump_mbuf(sc, m);
		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
	}


	BCE_PRINTF(
		"----------------------------"
		"----------------"
		"----------------------------\n");
}


/****************************************************************************/
/* Prints out a tx_bd structure.                                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
{
	int i = 0;

	if (idx > MAX_TX_BD_ALLOC)
		/* Index out of range. */
		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
		/* TX Chain page pointer. */
		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
		    txbd->tx_bd_haddr_lo);
	else {
		/* Normal tx_bd entry. */
		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);

		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
			if (i>0)
				printf("|");
			printf("CONN_FAULT");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
			if (i>0)
				printf("|");
			printf("TCP_UDP_CKSUM");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
			if (i>0)
				printf("|");
			printf("IP_CKSUM");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
			if (i>0)
				printf("|");
			printf("VLAN");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
			if (i>0)
				printf("|");
			printf("COAL_NOW");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
			if (i>0)
				printf("|");
			printf("DONT_GEN_CRC");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
			if (i>0)
				printf("|");
			printf("START");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
			if (i>0)
				printf("|");
			printf("END");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
			if (i>0)
				printf("|");
			printf("LSO");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
			if (i>0)
				printf("|");
			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
			if (i>0)
				printf("|");
			printf("SW_FLAGS");
			i++;
		}

		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
			if (i>0)
				printf("|");
			printf("SNAP)");
		} else {
			printf(")\n");
		}
	}
}


/****************************************************************************/
/* Prints out a rx_bd structure.                                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
{
	if (idx > MAX_RX_BD_ALLOC)
		/* Index out of range. */
		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
		/* RX Chain page pointer. */
		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
		    rxbd->rx_bd_haddr_lo);
	else
		/* Normal rx_bd entry. */
		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
		    rxbd->rx_bd_flags);
}


/****************************************************************************/
/* Prints out a rx_bd structure in the page chain.                          */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
{
	if (idx > MAX_PG_BD_ALLOC)
		/* Index out of range. */
		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
		/* Page Chain page pointer. */
		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
	else
		/* Normal rx_bd entry. */
		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
			"flags = 0x%08X\n", idx,
			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
			pgbd->rx_bd_len, pgbd->rx_bd_flags);
}


/****************************************************************************/
/* Prints out a l2_fhdr structure.                                          */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
{
	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
		"tcp_udp_xsum = 0x%04X\n", idx,
		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
}


/****************************************************************************/
/* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_ctx(struct bce_softc *sc, u16 cid)
{
	if (cid > TX_CID) {
		BCE_PRINTF(" Unknown CID\n");
		return;
	}

	BCE_PRINTF(
	    "----------------------------"
	    "    CTX Data    "
	    "----------------------------\n");

	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);

	if (cid == RX_CID) {
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
		   "producer index\n",
		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_HOST_BSEQ));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
		    "descriptor address\n",
 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
		    "descriptor address\n",
		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_NX_BDIDX));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_HOST_PG_BDIDX));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_PG_BUF_SIZE));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
		    BCE_L2CTX_RX_NX_PG_BDIDX));
	} else if (cid == TX_CID) {
		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_TYPE_XI));
			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_CMD_TYPE_XI));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
			    "h/w buffer descriptor address\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
			    "h/w buffer	descriptor address\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
			    "host producer index\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_HOST_BIDX_XI));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
			    "host byte sequence\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_HOST_BSEQ_XI));
		} else {
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_CMD_TYPE));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
			    "h/w buffer	descriptor address\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
			    "h/w buffer	descriptor address\n",
			    CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_HOST_BIDX));
			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
			    BCE_L2CTX_TX_HOST_BSEQ));
		}
	}

	BCE_PRINTF(
	   "----------------------------"
	   "    Raw CTX     "
	   "----------------------------\n");

	for (int i = 0x0; i < 0x300; i += 0x10) {
		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
		   CTX_RD(sc, GET_CID_ADDR(cid), i),
		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
	}


	BCE_PRINTF(
	   "----------------------------"
	   "----------------"
	   "----------------------------\n");
}


/****************************************************************************/
/* Prints out the FTQ data.                                                 */
/*                                                                          */
/* Returns:                                                                */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_ftqs(struct bce_softc *sc)
{
	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;

	BCE_PRINTF(
	    "----------------------------"
	    "    FTQ Data    "
	    "----------------------------\n");

	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
	    "Max_Depth  Valid_Cnt \n");
	BCE_PRINTF(" ------- ---------- ---------- ---------- "
	    "---------- ----------\n");

	/* Setup the generic statistic counters for the FTQ valid count. */
	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);

	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);

	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);

	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);

	/* Input queue to the Receive Lookup state machine */
	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Receive Processor */
	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Recevie Processor */
	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Receive Virtual to Physical state machine */
	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Recevie Virtual to Physical state machine */
	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Receive Virtual to Physical state machine */
	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Receive DMA state machine */
	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Transmit Scheduler state machine */
	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Transmit Buffer Descriptor state machine */
	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Transmit Processor */
	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Transmit DMA state machine */
	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Transmit Patch-Up Processor */
	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Transmit Assembler state machine */
	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Completion Processor */
	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Completion Processor */
	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Completion Processor */
	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Setup the generic statistic counters for the FTQ valid count. */
	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);

	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
		val = val |
		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
		     24);
	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);

	/* Input queue to the Management Control Processor */
	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Command Processor */
	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	/* Input queue to the Completion Scheduler state machine */
	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
	    cmd, ctl, cur_depth, max_depth, valid_cnt);

	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
		/* Input queue to the RV2P Command Scheduler */
		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
		cur_depth = (ctl & 0xFFC00000) >> 22;
		max_depth = (ctl & 0x003FF000) >> 12;
		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
		    cmd, ctl, cur_depth, max_depth, valid_cnt);
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the TX chain.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
{
	struct tx_bd *txbd;

	/* First some info about the tx_bd chain structure. */
	BCE_PRINTF(
	    "----------------------------"
	    "  tx_bd  chain  "
	    "----------------------------\n");

	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);

	BCE_PRINTF(
	    "----------------------------"
	    "   tx_bd data   "
	    "----------------------------\n");

	/* Now print out a decoded list of TX buffer descriptors. */
	for (int i = 0; i < count; i++) {
	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
		bce_dump_txbd(sc, tx_prod, txbd);
		tx_prod++;
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the RX chain.                                                 */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
{
	struct rx_bd *rxbd;

	/* First some info about the rx_bd chain structure. */
	BCE_PRINTF(
	    "----------------------------"
	    "  rx_bd  chain  "
	    "----------------------------\n");

	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);

	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);

	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);

	BCE_PRINTF(
	    "----------------------------"
	    "   rx_bd data   "
	    "----------------------------\n");

	/* Now print out the rx_bd's themselves. */
	for (int i = 0; i < count; i++) {
		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
		bce_dump_rxbd(sc, rx_prod, rxbd);
		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the page chain.                                               */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
{
	struct rx_bd *pgbd;

	/* First some info about the page chain structure. */
	BCE_PRINTF(
	    "----------------------------"
	    "   page chain   "
	    "----------------------------\n");

	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);

	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);

	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);

	BCE_PRINTF(
	    "----------------------------"
	    "   page data    "
	    "----------------------------\n");

	/* Now print out the rx_bd's themselves. */
	for (int i = 0; i < count; i++) {
		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
		bce_dump_pgbd(sc, pg_prod, pgbd);
		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


#define BCE_PRINT_RX_CONS(arg)						\
if (sblk->status_rx_quick_consumer_index##arg)				\
	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
	    arg);


#define BCE_PRINT_TX_CONS(arg)						\
if (sblk->status_tx_quick_consumer_index##arg)				\
	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
	    arg);

/****************************************************************************/
/* Prints out the status block from host memory.                            */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_status_block(struct bce_softc *sc)
{
	struct status_block *sblk;

	sblk = sc->status_block;

	BCE_PRINTF(
	    "----------------------------"
	    "  Status Block  "
	    "----------------------------\n");

	/* Theses indices are used for normal L2 drivers. */
	BCE_PRINTF("    0x%08X - attn_bits\n",
	    sblk->status_attn_bits);

	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
	    sblk->status_attn_bits_ack);

	BCE_PRINT_RX_CONS(0);
	BCE_PRINT_TX_CONS(0)

	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);

	/* Theses indices are not used for normal L2 drivers. */
	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);

	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);

	if (sblk->status_completion_producer_index ||
	    sblk->status_cmd_consumer_index)
		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
		    sblk->status_completion_producer_index,
		    sblk->status_cmd_consumer_index);

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


#define BCE_PRINT_64BIT_STAT(arg) 				\
if (sblk->arg##_lo || sblk->arg##_hi)				\
	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
	    sblk->arg##_lo, #arg);

#define BCE_PRINT_32BIT_STAT(arg)				\
if (sblk->arg)							\
	BCE_PRINTF("         0x%08X : %s\n", 			\
	    sblk->arg, #arg);

/****************************************************************************/
/* Prints out the statistics block from host memory.                        */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_stats_block(struct bce_softc *sc)
{
	struct statistics_block *sblk;

	sblk = sc->stats_block;

	BCE_PRINTF(
	    "---------------"
	    " Stats Block  (All Stats Not Shown Are 0) "
	    "---------------\n");

	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
	BCE_PRINT_32BIT_STAT(
	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out a summary of the driver state.                                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_driver_state(struct bce_softc *sc)
{
	u32 val_hi, val_lo;

	BCE_PRINTF(
	    "-----------------------------"
	    " Driver State "
	    "-----------------------------\n");

	val_hi = BCE_ADDR_HI(sc);
	val_lo = BCE_ADDR_LO(sc);
	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
	    "address\n", val_hi, val_lo);

	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
	    "address\n", val_hi, val_lo);

	val_hi = BCE_ADDR_HI(sc->status_block);
	val_lo = BCE_ADDR_LO(sc->status_block);
	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
	    "virtual address\n",	val_hi, val_lo);

	val_hi = BCE_ADDR_HI(sc->stats_block);
	val_lo = BCE_ADDR_LO(sc->stats_block);
	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
	    "virtual address\n", val_hi, val_lo);

	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
	    "virtual adddress\n", val_hi, val_lo);

	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
	    "virtual address\n", val_hi, val_lo);

	if (bce_hdr_split == TRUE) {
		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
		    "virtual address\n", val_hi, val_lo);
	}

	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
	    "virtual address\n",	val_hi, val_lo);

	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
	    "virtual address\n", val_hi, val_lo);

	if (bce_hdr_split == TRUE) {
		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
		    "virtual address\n", val_hi, val_lo);
	}

	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
	    "h/w intrs\n",
	    (long long unsigned int) sc->interrupts_generated);

	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
	    "rx interrupts handled\n",
	    (long long unsigned int) sc->interrupts_rx);

	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
	    "tx interrupts handled\n",
	    (long long unsigned int) sc->interrupts_tx);

	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
	    "phy interrupts handled\n",
	    (long long unsigned int) sc->phy_interrupts);

	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
	    "status block index\n", sc->last_status_idx);

	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));

	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));

	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
	    "byte seq index\n",	sc->tx_prod_bseq);

	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);

	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
	    "tx_bd's\n", sc->used_tx_bd);

	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);

	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));

	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));

	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
	    "byte seq index\n",	sc->rx_prod_bseq);

	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);

	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);

	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
	    "rx_bd's\n", sc->free_rx_bd);

	if (bce_hdr_split == TRUE) {
		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));

		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));

		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
	}

	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
	    "rx_bd's\n", sc->free_pg_bd);

	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);

	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);

	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
	    "bce mac flags\n", sc->bce_flags);

	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
	    "bce phy flags\n", sc->bce_phy_flags);

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the hardware state through a summary of important register,   */
/* followed by a complete register dump.                                    */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_hw_state(struct bce_softc *sc)
{
	u32 val;

	BCE_PRINTF(
	    "----------------------------"
	    " Hardware State "
	    "----------------------------\n");

	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);

	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
	    val, BCE_MISC_ENABLE_STATUS_BITS);

	val = REG_RD(sc, BCE_DMA_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
	    val, BCE_DMA_STATUS);

	val = REG_RD(sc, BCE_CTX_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
	    val, BCE_CTX_STATUS);

	val = REG_RD(sc, BCE_EMAC_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
	    val, BCE_EMAC_STATUS);

	val = REG_RD(sc, BCE_RPM_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
	    val, BCE_RPM_STATUS);

	/* ToDo: Create a #define for this constant. */
	val = REG_RD(sc, 0x2004);
	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
	    val, 0x2004);

	val = REG_RD(sc, BCE_RV2P_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
	    val, BCE_RV2P_STATUS);

	/* ToDo: Create a #define for this constant. */
	val = REG_RD(sc, 0x2c04);
	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
	    val, 0x2c04);

	val = REG_RD(sc, BCE_TBDR_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
	    val, BCE_TBDR_STATUS);

	val = REG_RD(sc, BCE_TDMA_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
	    val, BCE_TDMA_STATUS);

	val = REG_RD(sc, BCE_HC_STATUS);
	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
	    val, BCE_HC_STATUS);

	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
	    val, BCE_TXP_CPU_STATE);

	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
	    val, BCE_TPAT_CPU_STATE);

	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
	    val, BCE_RXP_CPU_STATE);

	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
	    val, BCE_COM_CPU_STATE);

	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
	    val, BCE_MCP_CPU_STATE);

	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
	    val, BCE_CP_CPU_STATE);

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");

	BCE_PRINTF(
	    "----------------------------"
	    " Register  Dump "
	    "----------------------------\n");

	for (int i = 0x400; i < 0x8000; i += 0x10) {
		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the contentst of shared memory which is used for host driver  */
/* to bootcode firmware communication.                                      */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_shmem_state(struct bce_softc *sc)
{
	BCE_PRINTF(
	    "----------------------------"
	    " Hardware State "
	    "----------------------------\n");

	BCE_PRINTF("0x%08X - Shared memory base address\n",
	    sc->bce_shmem_base);
	BCE_PRINTF("%s - bootcode version\n",
	    sc->bce_bc_ver);

	BCE_PRINTF(
	    "----------------------------"
	    "   Shared Mem   "
	    "----------------------------\n");

	for (int i = 0x0; i < 0x200; i += 0x10) {
		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the mailbox queue registers.                                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_mq_regs(struct bce_softc *sc)
{
	BCE_PRINTF(
	    "----------------------------"
	    "    MQ Regs     "
	    "----------------------------\n");

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");

	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the bootcode state.                                           */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_bc_state(struct bce_softc *sc)
{
	u32 val;

	BCE_PRINTF(
	    "----------------------------"
	    " Bootcode State "
	    "----------------------------\n");

	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);

	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
	    val, BCE_BC_RESET_TYPE);

	val = bce_shmem_rd(sc, BCE_BC_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) state\n",
	    val, BCE_BC_STATE);

	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
	    val, BCE_BC_STATE_CONDITION);

	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
	    val, BCE_BC_STATE_DEBUG_CMD);

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the TXP processor state.                                      */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_txp_state(struct bce_softc *sc, int regs)
{
	u32 val;
	u32 fw_version[3];

	BCE_PRINTF(
	    "----------------------------"
	    "   TXP  State   "
	    "----------------------------\n");

	for (int i = 0; i < 3; i++)
		fw_version[i] = htonl(REG_RD_IND(sc,
		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);

	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
	    val, BCE_TXP_CPU_MODE);

	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
	    val, BCE_TXP_CPU_STATE);

	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
	    val, BCE_TXP_CPU_EVENT_MASK);

	if (regs) {
		BCE_PRINTF(
		    "----------------------------"
		    " Register  Dump "
		    "----------------------------\n");

		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
			/* Skip the big blank spaces */
			if (i < 0x454000 && i > 0x5ffff)
				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
				    "0x%08X 0x%08X\n", i,
				    REG_RD_IND(sc, i),
				    REG_RD_IND(sc, i + 0x4),
				    REG_RD_IND(sc, i + 0x8),
				    REG_RD_IND(sc, i + 0xC));
		}
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the RXP processor state.                                      */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rxp_state(struct bce_softc *sc, int regs)
{
	u32 val;
	u32 fw_version[3];

	BCE_PRINTF(
	    "----------------------------"
	    "   RXP  State   "
	    "----------------------------\n");

	for (int i = 0; i < 3; i++)
		fw_version[i] = htonl(REG_RD_IND(sc,
		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));

	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);

	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
	    val, BCE_RXP_CPU_MODE);

	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
	    val, BCE_RXP_CPU_STATE);

	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
	    val, BCE_RXP_CPU_EVENT_MASK);

	if (regs) {
		BCE_PRINTF(
		    "----------------------------"
		    " Register  Dump "
		    "----------------------------\n");

		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
			/* Skip the big blank sapces */
			if (i < 0xc5400 && i > 0xdffff)
				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
				    "0x%08X 0x%08X\n", i,
				    REG_RD_IND(sc, i),
				    REG_RD_IND(sc, i + 0x4),
				    REG_RD_IND(sc, i + 0x8),
				    REG_RD_IND(sc, i + 0xC));
		}
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the TPAT processor state.                                     */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_tpat_state(struct bce_softc *sc, int regs)
{
	u32 val;
	u32 fw_version[3];

	BCE_PRINTF(
	    "----------------------------"
	    "   TPAT State   "
	    "----------------------------\n");

	for (int i = 0; i < 3; i++)
		fw_version[i] = htonl(REG_RD_IND(sc,
		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));

	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);

	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
	    val, BCE_TPAT_CPU_MODE);

	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
	    val, BCE_TPAT_CPU_STATE);

	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
	    val, BCE_TPAT_CPU_EVENT_MASK);

	if (regs) {
		BCE_PRINTF(
		    "----------------------------"
		    " Register  Dump "
		    "----------------------------\n");

		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
			/* Skip the big blank spaces */
			if (i < 0x854000 && i > 0x9ffff)
				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
				    "0x%08X 0x%08X\n", i,
				    REG_RD_IND(sc, i),
				    REG_RD_IND(sc, i + 0x4),
				    REG_RD_IND(sc, i + 0x8),
				    REG_RD_IND(sc, i + 0xC));
		}
	}

	BCE_PRINTF(
		"----------------------------"
		"----------------"
		"----------------------------\n");
}


/****************************************************************************/
/* Prints out the Command Procesor (CP) state.                              */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_cp_state(struct bce_softc *sc, int regs)
{
	u32 val;
	u32 fw_version[3];

	BCE_PRINTF(
	    "----------------------------"
	    "    CP State    "
	    "----------------------------\n");

	for (int i = 0; i < 3; i++)
		fw_version[i] = htonl(REG_RD_IND(sc,
		    (BCE_CP_SCRATCH + 0x10 + i * 4)));

	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);

	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
	    val, BCE_CP_CPU_MODE);

	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
	    val, BCE_CP_CPU_STATE);

	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
	    BCE_CP_CPU_EVENT_MASK);

	if (regs) {
		BCE_PRINTF(
		    "----------------------------"
		    " Register  Dump "
		    "----------------------------\n");

		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
			/* Skip the big blank spaces */
			if (i < 0x185400 && i > 0x19ffff)
				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
				    "0x%08X 0x%08X\n", i,
				    REG_RD_IND(sc, i),
				    REG_RD_IND(sc, i + 0x4),
				    REG_RD_IND(sc, i + 0x8),
				    REG_RD_IND(sc, i + 0xC));
		}
	}

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the Completion Procesor (COM) state.                          */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_com_state(struct bce_softc *sc, int regs)
{
	u32 val;
	u32 fw_version[4];

	BCE_PRINTF(
	    "----------------------------"
	    "   COM State    "
	    "----------------------------\n");

	for (int i = 0; i < 3; i++)
		fw_version[i] = htonl(REG_RD_IND(sc,
		    (BCE_COM_SCRATCH + 0x10 + i * 4)));

	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);

	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
	    val, BCE_COM_CPU_MODE);

	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
	    val, BCE_COM_CPU_STATE);

	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
	    BCE_COM_CPU_EVENT_MASK);

	if (regs) {
		BCE_PRINTF(
		    "----------------------------"
		    " Register  Dump "
		    "----------------------------\n");

		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
			    "0x%08X 0x%08X\n", i,
			    REG_RD_IND(sc, i),
			    REG_RD_IND(sc, i + 0x4),
			    REG_RD_IND(sc, i + 0x8),
			    REG_RD_IND(sc, i + 0xC));
		}
	}

	BCE_PRINTF(
		"----------------------------"
		"----------------"
		"----------------------------\n");
}


/****************************************************************************/
/* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_dump_rv2p_state(struct bce_softc *sc)
{
	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;

	BCE_PRINTF(
	    "----------------------------"
	    "   RV2P State   "
	    "----------------------------\n");

	/* Stall the RV2P processors. */
	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);

	/* Read the firmware version. */
	val = 0x00000001;
	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
	    BCE_RV2P_INSTR_HIGH_HIGH;
	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
	    fw_ver_high, fw_ver_low);

	val = 0x00000001;
	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
	    BCE_RV2P_INSTR_HIGH_HIGH;
	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
	    fw_ver_high, fw_ver_low);

	/* Resume the RV2P processors. */
	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);

	/* Fetch the program counter value. */
	val = 0x68007800;
	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);

	/* Fetch the program counter value again to see if it is advancing. */
	val = 0x68007800;
	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);

	BCE_PRINTF(
	    "----------------------------"
	    "----------------"
	    "----------------------------\n");
}


/****************************************************************************/
/* Prints out the driver state and then enters the debugger.                */
/*                                                                          */
/* Returns:                                                                 */
/*   Nothing.                                                               */
/****************************************************************************/
static __attribute__ ((noinline)) void
bce_breakpoint(struct bce_softc *sc)
{

	/*
	 * Unreachable code to silence compiler warnings
	 * about unused functions.
	 */
	if (0) {
		bce_freeze_controller(sc);
		bce_unfreeze_controller(sc);
		bce_dump_enet(sc, NULL);
		bce_dump_txbd(sc, 0, NULL);
		bce_dump_rxbd(sc, 0, NULL);
		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
		bce_dump_l2fhdr(sc, 0, NULL);
		bce_dump_ctx(sc, RX_CID);
		bce_dump_ftqs(sc);
		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
		bce_dump_status_block(sc);
		bce_dump_stats_block(sc);
		bce_dump_driver_state(sc);
		bce_dump_hw_state(sc);
		bce_dump_bc_state(sc);
		bce_dump_txp_state(sc, 0);
		bce_dump_rxp_state(sc, 0);
		bce_dump_tpat_state(sc, 0);
		bce_dump_cp_state(sc, 0);
		bce_dump_com_state(sc, 0);
		bce_dump_rv2p_state(sc);
		bce_dump_pgbd(sc, 0, NULL);
	}

	bce_dump_status_block(sc);
	bce_dump_driver_state(sc);

	/* Call the debugger. */
	breakpoint();

	return;
}
#endif


Man Man