Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/umodem/@/dev/sound/pcm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/umodem/@/dev/sound/pcm/feeder.c |
/*- * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include <dev/sound/pcm/sound.h> #include "feeder_if.h" SND_DECLARE_FILE("$FreeBSD: release/9.1.0/sys/dev/sound/pcm/feeder.c 193640 2009-06-07 19:12:08Z ariff $"); MALLOC_DEFINE(M_FEEDER, "feeder", "pcm feeder"); #define MAXFEEDERS 256 #undef FEEDER_DEBUG struct feedertab_entry { SLIST_ENTRY(feedertab_entry) link; struct feeder_class *feederclass; struct pcm_feederdesc *desc; int idx; }; static SLIST_HEAD(, feedertab_entry) feedertab; /*****************************************************************************/ void feeder_register(void *p) { static int feedercnt = 0; struct feeder_class *fc = p; struct feedertab_entry *fte; int i; if (feedercnt == 0) { KASSERT(fc->desc == NULL, ("first feeder not root: %s", fc->name)); SLIST_INIT(&feedertab); fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO); if (fte == NULL) { printf("can't allocate memory for root feeder: %s\n", fc->name); return; } fte->feederclass = fc; fte->desc = NULL; fte->idx = feedercnt; SLIST_INSERT_HEAD(&feedertab, fte, link); feedercnt++; /* initialize global variables */ if (snd_verbose < 0 || snd_verbose > 4) snd_verbose = 1; /* initialize unit numbering */ snd_unit_init(); if (snd_unit < 0 || snd_unit > PCMMAXUNIT) snd_unit = -1; if (snd_maxautovchans < 0 || snd_maxautovchans > SND_MAXVCHANS) snd_maxautovchans = 0; if (chn_latency < CHN_LATENCY_MIN || chn_latency > CHN_LATENCY_MAX) chn_latency = CHN_LATENCY_DEFAULT; if (chn_latency_profile < CHN_LATENCY_PROFILE_MIN || chn_latency_profile > CHN_LATENCY_PROFILE_MAX) chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; if (feeder_rate_min < FEEDRATE_MIN || feeder_rate_max < FEEDRATE_MIN || feeder_rate_min > FEEDRATE_MAX || feeder_rate_max > FEEDRATE_MAX || !(feeder_rate_min < feeder_rate_max)) { feeder_rate_min = FEEDRATE_RATEMIN; feeder_rate_max = FEEDRATE_RATEMAX; } if (feeder_rate_round < FEEDRATE_ROUNDHZ_MIN || feeder_rate_round > FEEDRATE_ROUNDHZ_MAX) feeder_rate_round = FEEDRATE_ROUNDHZ; if (bootverbose) printf("%s: snd_unit=%d snd_maxautovchans=%d " "latency=%d " "feeder_rate_min=%d feeder_rate_max=%d " "feeder_rate_round=%d\n", __func__, snd_unit, snd_maxautovchans, chn_latency, feeder_rate_min, feeder_rate_max, feeder_rate_round); /* we've got our root feeder so don't veto pcm loading anymore */ pcm_veto_load = 0; return; } KASSERT(fc->desc != NULL, ("feeder '%s' has no descriptor", fc->name)); /* beyond this point failure is non-fatal but may result in some translations being unavailable */ i = 0; while ((feedercnt < MAXFEEDERS) && (fc->desc[i].type > 0)) { /* printf("adding feeder %s, %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out); */ fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO); if (fte == NULL) { printf("can't allocate memory for feeder '%s', %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out); return; } fte->feederclass = fc; fte->desc = &fc->desc[i]; fte->idx = feedercnt; fte->desc->idx = feedercnt; SLIST_INSERT_HEAD(&feedertab, fte, link); i++; } feedercnt++; if (feedercnt >= MAXFEEDERS) printf("MAXFEEDERS (%d >= %d) exceeded\n", feedercnt, MAXFEEDERS); } static void feeder_unregisterall(void *p) { struct feedertab_entry *fte, *next; next = SLIST_FIRST(&feedertab); while (next != NULL) { fte = next; next = SLIST_NEXT(fte, link); free(fte, M_FEEDER); } } static int cmpdesc(struct pcm_feederdesc *n, struct pcm_feederdesc *m) { return ((n->type == m->type) && ((n->in == 0) || (n->in == m->in)) && ((n->out == 0) || (n->out == m->out)) && (n->flags == m->flags)); } static void feeder_destroy(struct pcm_feeder *f) { FEEDER_FREE(f); kobj_delete((kobj_t)f, M_FEEDER); } static struct pcm_feeder * feeder_create(struct feeder_class *fc, struct pcm_feederdesc *desc) { struct pcm_feeder *f; int err; f = (struct pcm_feeder *)kobj_create((kobj_class_t)fc, M_FEEDER, M_NOWAIT | M_ZERO); if (f == NULL) return NULL; f->data = fc->data; f->source = NULL; f->parent = NULL; f->class = fc; f->desc = &(f->desc_static); if (desc) { *(f->desc) = *desc; } else { f->desc->type = FEEDER_ROOT; f->desc->in = 0; f->desc->out = 0; f->desc->flags = 0; f->desc->idx = 0; } err = FEEDER_INIT(f); if (err) { printf("feeder_init(%p) on %s returned %d\n", f, fc->name, err); feeder_destroy(f); return NULL; } return f; } struct feeder_class * feeder_getclass(struct pcm_feederdesc *desc) { struct feedertab_entry *fte; SLIST_FOREACH(fte, &feedertab, link) { if ((desc == NULL) && (fte->desc == NULL)) return fte->feederclass; if ((fte->desc != NULL) && (desc != NULL) && cmpdesc(desc, fte->desc)) return fte->feederclass; } return NULL; } int chn_addfeeder(struct pcm_channel *c, struct feeder_class *fc, struct pcm_feederdesc *desc) { struct pcm_feeder *nf; nf = feeder_create(fc, desc); if (nf == NULL) return ENOSPC; nf->source = c->feeder; if (c->feeder != NULL) c->feeder->parent = nf; c->feeder = nf; return 0; } int chn_removefeeder(struct pcm_channel *c) { struct pcm_feeder *f; if (c->feeder == NULL) return -1; f = c->feeder; c->feeder = c->feeder->source; feeder_destroy(f); return 0; } struct pcm_feeder * chn_findfeeder(struct pcm_channel *c, u_int32_t type) { struct pcm_feeder *f; f = c->feeder; while (f != NULL) { if (f->desc->type == type) return f; f = f->source; } return NULL; } /* * 14bit format scoring * -------------------- * * 13 12 11 10 9 8 2 1 0 offset * +---+---+---+---+---+---+-------------+---+---+ * | X | X | X | X | X | X | X X X X X X | X | X | * +---+---+---+---+---+---+-------------+---+---+ * | | | | | | | | | * | | | | | | | | +--> signed? * | | | | | | | | * | | | | | | | +------> bigendian? * | | | | | | | * | | | | | | +---------------> total channels * | | | | | | * | | | | | +------------------------> AFMT_A_LAW * | | | | | * | | | | +----------------------------> AFMT_MU_LAW * | | | | * | | | +--------------------------------> AFMT_8BIT * | | | * | | +------------------------------------> AFMT_16BIT * | | * | +----------------------------------------> AFMT_24BIT * | * +--------------------------------------------> AFMT_32BIT */ #define score_signeq(s1, s2) (((s1) & 0x1) == ((s2) & 0x1)) #define score_endianeq(s1, s2) (((s1) & 0x2) == ((s2) & 0x2)) #define score_cheq(s1, s2) (((s1) & 0xfc) == ((s2) & 0xfc)) #define score_chgt(s1, s2) (((s1) & 0xfc) > ((s2) & 0xfc)) #define score_chlt(s1, s2) (((s1) & 0xfc) < ((s2) & 0xfc)) #define score_val(s1) ((s1) & 0x3f00) #define score_cse(s1) ((s1) & 0x7f) u_int32_t snd_fmtscore(u_int32_t fmt) { u_int32_t ret; ret = 0; if (fmt & AFMT_SIGNED) ret |= 1 << 0; if (fmt & AFMT_BIGENDIAN) ret |= 1 << 1; /*if (fmt & AFMT_STEREO) ret |= (2 & 0x3f) << 2; else ret |= (1 & 0x3f) << 2;*/ ret |= (AFMT_CHANNEL(fmt) & 0x3f) << 2; if (fmt & AFMT_A_LAW) ret |= 1 << 8; else if (fmt & AFMT_MU_LAW) ret |= 1 << 9; else if (fmt & AFMT_8BIT) ret |= 1 << 10; else if (fmt & AFMT_16BIT) ret |= 1 << 11; else if (fmt & AFMT_24BIT) ret |= 1 << 12; else if (fmt & AFMT_32BIT) ret |= 1 << 13; return ret; } static u_int32_t snd_fmtbestfunc(u_int32_t fmt, u_int32_t *fmts, int cheq) { u_int32_t best, score, score2, oldscore; int i; if (fmt == 0 || fmts == NULL || fmts[0] == 0) return 0; if (snd_fmtvalid(fmt, fmts)) return fmt; best = 0; score = snd_fmtscore(fmt); oldscore = 0; for (i = 0; fmts[i] != 0; i++) { score2 = snd_fmtscore(fmts[i]); if (cheq && !score_cheq(score, score2) && (score_chlt(score2, score) || (oldscore != 0 && score_chgt(score2, oldscore)))) continue; if (oldscore == 0 || (score_val(score2) == score_val(score)) || (score_val(score2) == score_val(oldscore)) || (score_val(score2) > score_val(oldscore) && score_val(score2) < score_val(score)) || (score_val(score2) < score_val(oldscore) && score_val(score2) > score_val(score)) || (score_val(oldscore) < score_val(score) && score_val(score2) > score_val(oldscore))) { if (score_val(oldscore) != score_val(score2) || score_cse(score) == score_cse(score2) || ((score_cse(oldscore) != score_cse(score) && !score_endianeq(score, oldscore) && (score_endianeq(score, score2) || (!score_signeq(score, oldscore) && score_signeq(score, score2)))))) { best = fmts[i]; oldscore = score2; } } } return best; } u_int32_t snd_fmtbestbit(u_int32_t fmt, u_int32_t *fmts) { return snd_fmtbestfunc(fmt, fmts, 0); } u_int32_t snd_fmtbestchannel(u_int32_t fmt, u_int32_t *fmts) { return snd_fmtbestfunc(fmt, fmts, 1); } u_int32_t snd_fmtbest(u_int32_t fmt, u_int32_t *fmts) { u_int32_t best1, best2; u_int32_t score, score1, score2; if (snd_fmtvalid(fmt, fmts)) return fmt; best1 = snd_fmtbestchannel(fmt, fmts); best2 = snd_fmtbestbit(fmt, fmts); if (best1 != 0 && best2 != 0 && best1 != best2) { /*if (fmt & AFMT_STEREO)*/ if (AFMT_CHANNEL(fmt) > 1) return best1; else { score = score_val(snd_fmtscore(fmt)); score1 = score_val(snd_fmtscore(best1)); score2 = score_val(snd_fmtscore(best2)); if (score1 == score2 || score1 == score) return best1; else if (score2 == score) return best2; else if (score1 > score2) return best1; return best2; } } else if (best2 == 0) return best1; else return best2; } void feeder_printchain(struct pcm_feeder *head) { struct pcm_feeder *f; printf("feeder chain (head @%p)\n", head); f = head; while (f != NULL) { printf("%s/%d @ %p\n", f->class->name, f->desc->idx, f); f = f->source; } printf("[end]\n\n"); } /*****************************************************************************/ static int feed_root(struct pcm_feeder *feeder, struct pcm_channel *ch, u_int8_t *buffer, u_int32_t count, void *source) { struct snd_dbuf *src = source; int l, offset; KASSERT(count > 0, ("feed_root: count == 0")); if (++ch->feedcount == 0) ch->feedcount = 2; l = min(count, sndbuf_getready(src)); /* When recording only return as much data as available */ if (ch->direction == PCMDIR_REC) { sndbuf_dispose(src, buffer, l); return l; } offset = count - l; if (offset > 0) { if (snd_verbose > 3) printf("%s: (%s) %spending %d bytes " "(count=%d l=%d feed=%d)\n", __func__, (ch->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", (ch->feedcount == 1) ? "pre" : "ap", offset, count, l, ch->feedcount); if (ch->feedcount == 1) { memset(buffer, sndbuf_zerodata(sndbuf_getfmt(src)), offset); if (l > 0) sndbuf_dispose(src, buffer + offset, l); else ch->feedcount--; } else { if (l > 0) sndbuf_dispose(src, buffer, l); memset(buffer + l, sndbuf_zerodata(sndbuf_getfmt(src)), offset); if (!(ch->flags & CHN_F_CLOSING)) ch->xruns++; } } else if (l > 0) sndbuf_dispose(src, buffer, l); return count; } static kobj_method_t feeder_root_methods[] = { KOBJMETHOD(feeder_feed, feed_root), KOBJMETHOD_END }; static struct feeder_class feeder_root_class = { .name = "feeder_root", .methods = feeder_root_methods, .size = sizeof(struct pcm_feeder), .desc = NULL, .data = NULL, }; SYSINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_register, &feeder_root_class); SYSUNINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_unregisterall, NULL);