Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ums/@/netinet/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ums/@/netinet/raw_ip.c |
/*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/netinet/raw_ip.c 227423 2011-11-10 19:10:53Z andre $"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include <sys/param.h> #include <sys/jail.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/protosw.h> #include <sys/rwlock.h> #include <sys/signalvar.h> #include <sys/socket.h> #include <sys/socketvar.h> #include <sys/sx.h> #include <sys/sysctl.h> #include <sys/systm.h> #include <vm/uma.h> #include <net/if.h> #include <net/route.h> #include <net/vnet.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/in_pcb.h> #include <netinet/in_var.h> #include <netinet/if_ether.h> #include <netinet/ip.h> #include <netinet/ip_var.h> #include <netinet/ip_mroute.h> #ifdef IPSEC #include <netipsec/ipsec.h> #endif /*IPSEC*/ #include <security/mac/mac_framework.h> VNET_DEFINE(int, ip_defttl) = IPDEFTTL; SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, &VNET_NAME(ip_defttl), 0, "Maximum TTL on IP packets"); VNET_DEFINE(struct inpcbhead, ripcb); VNET_DEFINE(struct inpcbinfo, ripcbinfo); #define V_ripcb VNET(ripcb) #define V_ripcbinfo VNET(ripcbinfo) /* * Control and data hooks for ipfw, dummynet, divert and so on. * The data hooks are not used here but it is convenient * to keep them all in one place. */ VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL; VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL; int (*ip_dn_ctl_ptr)(struct sockopt *); int (*ip_dn_io_ptr)(struct mbuf **, int, struct ip_fw_args *); void (*ip_divert_ptr)(struct mbuf *, int); int (*ng_ipfw_input_p)(struct mbuf **, int, struct ip_fw_args *, int); /* Hook for telling pf that the destination address changed */ void (*m_addr_chg_pf_p)(struct mbuf *m); #ifdef INET /* * Hooks for multicast routing. They all default to NULL, so leave them not * initialized and rely on BSS being set to 0. */ /* * The socket used to communicate with the multicast routing daemon. */ VNET_DEFINE(struct socket *, ip_mrouter); /* * The various mrouter and rsvp functions. */ int (*ip_mrouter_set)(struct socket *, struct sockopt *); int (*ip_mrouter_get)(struct socket *, struct sockopt *); int (*ip_mrouter_done)(void); int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); int (*mrt_ioctl)(u_long, caddr_t, int); int (*legal_vif_num)(int); u_long (*ip_mcast_src)(int); void (*rsvp_input_p)(struct mbuf *m, int off); int (*ip_rsvp_vif)(struct socket *, struct sockopt *); void (*ip_rsvp_force_done)(struct socket *); #endif /* INET */ u_long rip_sendspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW, &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); u_long rip_recvspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW, &rip_recvspace, 0, "Maximum space for incoming raw IP datagrams"); /* * Hash functions */ #define INP_PCBHASH_RAW_SIZE 256 #define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \ (((proto) + (laddr) + (faddr)) % (mask) + 1) #ifdef INET static void rip_inshash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *pcbhash; int hash; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_WLOCK_ASSERT(inp); if (inp->inp_ip_p != 0 && inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != INADDR_ANY) { hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask); } else hash = 0; pcbhash = &pcbinfo->ipi_hashbase[hash]; LIST_INSERT_HEAD(pcbhash, inp, inp_hash); } static void rip_delhash(struct inpcb *inp) { INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_WLOCK_ASSERT(inp); LIST_REMOVE(inp, inp_hash); } #endif /* INET */ /* * Raw interface to IP protocol. */ /* * Initialize raw connection block q. */ static void rip_zone_change(void *tag) { uma_zone_set_max(V_ripcbinfo.ipi_zone, maxsockets); } static int rip_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "rawinp"); return (0); } void rip_init(void) { in_pcbinfo_init(&V_ripcbinfo, "rip", &V_ripcb, INP_PCBHASH_RAW_SIZE, 1, "ripcb", rip_inpcb_init, NULL, UMA_ZONE_NOFREE, IPI_HASHFIELDS_NONE); EVENTHANDLER_REGISTER(maxsockets_change, rip_zone_change, NULL, EVENTHANDLER_PRI_ANY); } #ifdef VIMAGE void rip_destroy(void) { in_pcbinfo_destroy(&V_ripcbinfo); } #endif #ifdef INET static int rip_append(struct inpcb *last, struct ip *ip, struct mbuf *n, struct sockaddr_in *ripsrc) { int policyfail = 0; INP_LOCK_ASSERT(last); #ifdef IPSEC /* check AH/ESP integrity. */ if (ipsec4_in_reject(n, last)) { policyfail = 1; } #endif /* IPSEC */ #ifdef MAC if (!policyfail && mac_inpcb_check_deliver(last, n) != 0) policyfail = 1; #endif /* Check the minimum TTL for socket. */ if (last->inp_ip_minttl && last->inp_ip_minttl > ip->ip_ttl) policyfail = 1; if (!policyfail) { struct mbuf *opts = NULL; struct socket *so; so = last->inp_socket; if ((last->inp_flags & INP_CONTROLOPTS) || (so->so_options & (SO_TIMESTAMP | SO_BINTIME))) ip_savecontrol(last, &opts, ip, n); SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)ripsrc, n, opts) == 0) { /* should notify about lost packet */ m_freem(n); if (opts) m_freem(opts); SOCKBUF_UNLOCK(&so->so_rcv); } else sorwakeup_locked(so); } else m_freem(n); return (policyfail); } /* * Setup generic address and protocol structures for raw_input routine, then * pass them along with mbuf chain. */ void rip_input(struct mbuf *m, int off) { struct ifnet *ifp; struct ip *ip = mtod(m, struct ip *); int proto = ip->ip_p; struct inpcb *inp, *last; struct sockaddr_in ripsrc; int hash; bzero(&ripsrc, sizeof(ripsrc)); ripsrc.sin_len = sizeof(ripsrc); ripsrc.sin_family = AF_INET; ripsrc.sin_addr = ip->ip_src; last = NULL; ifp = m->m_pkthdr.rcvif; hash = INP_PCBHASH_RAW(proto, ip->ip_src.s_addr, ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask); INP_INFO_RLOCK(&V_ripcbinfo); LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[hash], inp_hash) { if (inp->inp_ip_p != proto) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; if (inp->inp_faddr.s_addr != ip->ip_src.s_addr) continue; if (jailed_without_vnet(inp->inp_cred)) { /* * XXX: If faddr was bound to multicast group, * jailed raw socket will drop datagram. */ if (prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) continue; } if (last != NULL) { struct mbuf *n; n = m_copy(m, 0, (int)M_COPYALL); if (n != NULL) (void) rip_append(last, ip, n, &ripsrc); /* XXX count dropped packet */ INP_RUNLOCK(last); } INP_RLOCK(inp); last = inp; } LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[0], inp_hash) { if (inp->inp_ip_p && inp->inp_ip_p != proto) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (!in_nullhost(inp->inp_laddr) && !in_hosteq(inp->inp_laddr, ip->ip_dst)) continue; if (!in_nullhost(inp->inp_faddr) && !in_hosteq(inp->inp_faddr, ip->ip_src)) continue; if (jailed_without_vnet(inp->inp_cred)) { /* * Allow raw socket in jail to receive multicast; * assume process had PRIV_NETINET_RAW at attach, * and fall through into normal filter path if so. */ if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) continue; } /* * If this raw socket has multicast state, and we * have received a multicast, check if this socket * should receive it, as multicast filtering is now * the responsibility of the transport layer. */ if (inp->inp_moptions != NULL && IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { /* * If the incoming datagram is for IGMP, allow it * through unconditionally to the raw socket. * * In the case of IGMPv2, we may not have explicitly * joined the group, and may have set IFF_ALLMULTI * on the interface. imo_multi_filter() may discard * control traffic we actually need to see. * * Userland multicast routing daemons should continue * filter the control traffic appropriately. */ int blocked; blocked = MCAST_PASS; if (proto != IPPROTO_IGMP) { struct sockaddr_in group; bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(inp->inp_moptions, ifp, (struct sockaddr *)&group, (struct sockaddr *)&ripsrc); } if (blocked != MCAST_PASS) { IPSTAT_INC(ips_notmember); continue; } } if (last != NULL) { struct mbuf *n; n = m_copy(m, 0, (int)M_COPYALL); if (n != NULL) (void) rip_append(last, ip, n, &ripsrc); /* XXX count dropped packet */ INP_RUNLOCK(last); } INP_RLOCK(inp); last = inp; } INP_INFO_RUNLOCK(&V_ripcbinfo); if (last != NULL) { if (rip_append(last, ip, m, &ripsrc) != 0) IPSTAT_INC(ips_delivered); INP_RUNLOCK(last); } else { m_freem(m); IPSTAT_INC(ips_noproto); IPSTAT_DEC(ips_delivered); } } /* * Generate IP header and pass packet to ip_output. Tack on options user may * have setup with control call. */ int rip_output(struct mbuf *m, struct socket *so, u_long dst) { struct ip *ip; int error; struct inpcb *inp = sotoinpcb(so); int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST; /* * If the user handed us a complete IP packet, use it. Otherwise, * allocate an mbuf for a header and fill it in. */ if ((inp->inp_flags & INP_HDRINCL) == 0) { if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } M_PREPEND(m, sizeof(struct ip), M_DONTWAIT); if (m == NULL) return(ENOBUFS); INP_RLOCK(inp); ip = mtod(m, struct ip *); ip->ip_tos = inp->inp_ip_tos; if (inp->inp_flags & INP_DONTFRAG) ip->ip_off = IP_DF; else ip->ip_off = 0; ip->ip_p = inp->inp_ip_p; ip->ip_len = m->m_pkthdr.len; ip->ip_src = inp->inp_laddr; if (jailed(inp->inp_cred)) { /* * prison_local_ip4() would be good enough but would * let a source of INADDR_ANY pass, which we do not * want to see from jails. We do not go through the * pain of in_pcbladdr() for raw sockets. */ if (ip->ip_src.s_addr == INADDR_ANY) error = prison_get_ip4(inp->inp_cred, &ip->ip_src); else error = prison_local_ip4(inp->inp_cred, &ip->ip_src); if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } } ip->ip_dst.s_addr = dst; ip->ip_ttl = inp->inp_ip_ttl; } else { if (m->m_pkthdr.len > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } INP_RLOCK(inp); ip = mtod(m, struct ip *); error = prison_check_ip4(inp->inp_cred, &ip->ip_src); if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Don't allow both user specified and setsockopt options, * and don't allow packet length sizes that will crash. */ if (((ip->ip_hl != (sizeof (*ip) >> 2)) && inp->inp_options) || (ip->ip_len > m->m_pkthdr.len) || (ip->ip_len < (ip->ip_hl << 2))) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } if (ip->ip_id == 0) ip->ip_id = ip_newid(); /* * XXX prevent ip_output from overwriting header fields. */ flags |= IP_RAWOUTPUT; IPSTAT_INC(ips_rawout); } if (inp->inp_flags & INP_ONESBCAST) flags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif error = ip_output(m, inp->inp_options, NULL, flags, inp->inp_moptions, inp); INP_RUNLOCK(inp); return (error); } /* * Raw IP socket option processing. * * IMPORTANT NOTE regarding access control: Traditionally, raw sockets could * only be created by a privileged process, and as such, socket option * operations to manage system properties on any raw socket were allowed to * take place without explicit additional access control checks. However, * raw sockets can now also be created in jail(), and therefore explicit * checks are now required. Likewise, raw sockets can be used by a process * after it gives up privilege, so some caution is required. For options * passed down to the IP layer via ip_ctloutput(), checks are assumed to be * performed in ip_ctloutput() and therefore no check occurs here. * Unilaterally checking priv_check() here breaks normal IP socket option * operations on raw sockets. * * When adding new socket options here, make sure to add access control * checks here as necessary. */ int rip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; if (sopt->sopt_level != IPPROTO_IP) { if ((sopt->sopt_level == SOL_SOCKET) && (sopt->sopt_name == SO_SETFIB)) { inp->inp_inc.inc_fibnum = so->so_fibnum; return (0); } return (EINVAL); } error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case IP_HDRINCL: optval = inp->inp_flags & INP_HDRINCL; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: /* ADD actually returns the body... */ case IP_FW_GET: case IP_FW_TABLE_GETSIZE: case IP_FW_TABLE_LIST: case IP_FW_NAT_GET_CONFIG: case IP_FW_NAT_GET_LOG: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_GET: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT; break ; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_get ? ip_mrouter_get(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; case SOPT_SET: switch (sopt->sopt_name) { case IP_HDRINCL: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_HDRINCL; else inp->inp_flags &= ~INP_HDRINCL; break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: case IP_FW_DEL: case IP_FW_FLUSH: case IP_FW_ZERO: case IP_FW_RESETLOG: case IP_FW_TABLE_ADD: case IP_FW_TABLE_DEL: case IP_FW_TABLE_FLUSH: case IP_FW_NAT_CFG: case IP_FW_NAT_DEL: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: case IP_DUMMYNET_FLUSH: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT ; break ; case IP_RSVP_ON: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_init(so); break; case IP_RSVP_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_done(); break; case IP_RSVP_VIF_ON: case IP_RSVP_VIF_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_vif ? ip_rsvp_vif(so, sopt) : EINVAL; break; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_set ? ip_mrouter_set(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; } return (error); } /* * This function exists solely to receive the PRC_IFDOWN messages which are * sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls * in_ifadown() to remove all routes corresponding to that address. It also * receives the PRC_IFUP messages from if_up() and reinstalls the interface * routes. */ void rip_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct in_ifaddr *ia; struct ifnet *ifp; int err; int flags; switch (cmd) { case PRC_IFDOWN: IN_IFADDR_RLOCK(); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifa.ifa_addr == sa && (ia->ia_flags & IFA_ROUTE)) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(); /* * in_ifscrub kills the interface route. */ in_ifscrub(ia->ia_ifp, ia, 0); /* * in_ifadown gets rid of all the rest of the * routes. This is not quite the right thing * to do, but at least if we are running a * routing process they will come back. */ in_ifadown(&ia->ia_ifa, 0); ifa_free(&ia->ia_ifa); break; } } if (ia == NULL) /* If ia matched, already unlocked. */ IN_IFADDR_RUNLOCK(); break; case PRC_IFUP: IN_IFADDR_RLOCK(); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifa.ifa_addr == sa) break; } if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) { IN_IFADDR_RUNLOCK(); return; } ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(); flags = RTF_UP; ifp = ia->ia_ifa.ifa_ifp; if ((ifp->if_flags & IFF_LOOPBACK) || (ifp->if_flags & IFF_POINTOPOINT)) flags |= RTF_HOST; err = ifa_del_loopback_route((struct ifaddr *)ia, sa); if (err == 0) ia->ia_flags &= ~IFA_RTSELF; err = rtinit(&ia->ia_ifa, RTM_ADD, flags); if (err == 0) ia->ia_flags |= IFA_ROUTE; err = ifa_add_loopback_route((struct ifaddr *)ia, sa); if (err == 0) ia->ia_flags |= IFA_RTSELF; ifa_free(&ia->ia_ifa); break; } } static int rip_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("rip_attach: inp != NULL")); error = priv_check(td, PRIV_NETINET_RAW); if (error) return (error); if (proto >= IPPROTO_MAX || proto < 0) return EPROTONOSUPPORT; error = soreserve(so, rip_sendspace, rip_recvspace); if (error) return (error); INP_INFO_WLOCK(&V_ripcbinfo); error = in_pcballoc(so, &V_ripcbinfo); if (error) { INP_INFO_WUNLOCK(&V_ripcbinfo); return (error); } inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV4; inp->inp_ip_p = proto; inp->inp_ip_ttl = V_ip_defttl; rip_inshash(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static void rip_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("rip_detach: not closed")); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); if (so == V_ip_mrouter && ip_mrouter_done) ip_mrouter_done(); if (ip_rsvp_force_done) ip_rsvp_force_done(so); if (so == V_ip_rsvpd) ip_rsvp_done(); in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); } static void rip_dodisconnect(struct socket *so, struct inpcb *inp) { struct inpcbinfo *pcbinfo; pcbinfo = inp->inp_pcbinfo; INP_INFO_WLOCK(pcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_faddr.s_addr = INADDR_ANY; rip_inshash(inp); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(pcbinfo); } static void rip_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_abort: inp == NULL")); rip_dodisconnect(so, inp); } static void rip_close(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_close: inp == NULL")); rip_dodisconnect(so, inp); } static int rip_disconnect(struct socket *so) { struct inpcb *inp; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_disconnect: inp == NULL")); rip_dodisconnect(so, inp); return (0); } static int rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; int error; if (nam->sa_len != sizeof(*addr)) return (EINVAL); error = prison_check_ip4(td->td_ucred, &addr->sin_addr); if (error != 0) return (error); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_bind: inp == NULL")); if (TAILQ_EMPTY(&V_ifnet) || (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) || (addr->sin_addr.s_addr && (inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)addr) == 0)) return (EADDRNOTAVAIL); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_laddr = addr->sin_addr; rip_inshash(inp); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); return (0); } static int rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; if (nam->sa_len != sizeof(*addr)) return (EINVAL); if (TAILQ_EMPTY(&V_ifnet)) return (EADDRNOTAVAIL); if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) return (EAFNOSUPPORT); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_connect: inp == NULL")); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_faddr = addr->sin_addr; rip_inshash(inp); soisconnected(so); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); return (0); } static int rip_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } static int rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct inpcb *inp; u_long dst; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_send: inp == NULL")); /* * Note: 'dst' reads below are unlocked. */ if (so->so_state & SS_ISCONNECTED) { if (nam) { m_freem(m); return (EISCONN); } dst = inp->inp_faddr.s_addr; /* Unlocked read. */ } else { if (nam == NULL) { m_freem(m); return (ENOTCONN); } dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr; } return (rip_output(m, so, dst)); } #endif /* INET */ static int rip_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == 0) { n = V_ripcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if (req->newptr != 0) return (EPERM); /* * OK, now we're committed to doing something. */ INP_INFO_RLOCK(&V_ripcbinfo); gencnt = V_ripcbinfo.ipi_gencnt; n = V_ripcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_ripcbinfo); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) return (ENOMEM); INP_INFO_RLOCK(&V_ripcbinfo); for (inp = LIST_FIRST(V_ripcbinfo.ipi_listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { INP_WLOCK(inp); if (inp->inp_gencnt <= gencnt && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { in_pcbref(inp); inp_list[i++] = inp; } INP_WUNLOCK(inp); } INP_INFO_RUNLOCK(&V_ripcbinfo); n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (inp->inp_gencnt <= gencnt) { struct xinpcb xi; bzero(&xi, sizeof(xi)); xi.xi_len = sizeof xi; /* XXX should avoid extra copy */ bcopy(inp, &xi.xi_inp, sizeof *inp); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi.xi_socket); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); } else INP_RUNLOCK(inp); } INP_INFO_WLOCK(&V_ripcbinfo); for (i = 0; i < n; i++) { inp = inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_WUNLOCK(&V_ripcbinfo); if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ INP_INFO_RLOCK(&V_ripcbinfo); xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_ripcbinfo.ipi_count; INP_INFO_RUNLOCK(&V_ripcbinfo); error = SYSCTL_OUT(req, &xig, sizeof xig); } free(inp_list, M_TEMP); return (error); } SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); #ifdef INET struct pr_usrreqs rip_usrreqs = { .pru_abort = rip_abort, .pru_attach = rip_attach, .pru_bind = rip_bind, .pru_connect = rip_connect, .pru_control = in_control, .pru_detach = rip_detach, .pru_disconnect = rip_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = rip_send, .pru_shutdown = rip_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = rip_close, }; #endif /* INET */