Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uplcom/@/amd64/amd64/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uplcom/@/amd64/amd64/machdep.c |
/*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/amd64/amd64/machdep.c 235260 2012-05-11 04:10:23Z attilio $"); #include "opt_atalk.h" #include "opt_atpic.h" #include "opt_compat.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_ipx.h" #include "opt_isa.h" #include "opt_kstack_pages.h" #include "opt_maxmem.h" #include "opt_mp_watchdog.h" #include "opt_perfmon.h" #include "opt_sched.h" #include "opt_kdtrace.h" #include <sys/param.h> #include <sys/proc.h> #include <sys/systm.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/bus.h> #include <sys/callout.h> #include <sys/cons.h> #include <sys/cpu.h> #include <sys/eventhandler.h> #include <sys/exec.h> #include <sys/imgact.h> #include <sys/kdb.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/linker.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/msgbuf.h> #include <sys/mutex.h> #include <sys/pcpu.h> #include <sys/ptrace.h> #include <sys/reboot.h> #include <sys/sched.h> #include <sys/signalvar.h> #ifdef SMP #include <sys/smp.h> #endif #include <sys/syscallsubr.h> #include <sys/sysctl.h> #include <sys/sysent.h> #include <sys/sysproto.h> #include <sys/ucontext.h> #include <sys/vmmeter.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/vm_kern.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <vm/vm_object.h> #include <vm/vm_pager.h> #include <vm/vm_param.h> #ifdef DDB #ifndef KDB #error KDB must be enabled in order for DDB to work! #endif #include <ddb/ddb.h> #include <ddb/db_sym.h> #endif #include <net/netisr.h> #include <machine/clock.h> #include <machine/cpu.h> #include <machine/cputypes.h> #include <machine/intr_machdep.h> #include <x86/mca.h> #include <machine/md_var.h> #include <machine/metadata.h> #include <machine/mp_watchdog.h> #include <machine/pc/bios.h> #include <machine/pcb.h> #include <machine/proc.h> #include <machine/reg.h> #include <machine/sigframe.h> #include <machine/specialreg.h> #ifdef PERFMON #include <machine/perfmon.h> #endif #include <machine/tss.h> #ifdef SMP #include <machine/smp.h> #endif #ifdef DEV_ATPIC #include <x86/isa/icu.h> #else #include <machine/apicvar.h> #endif #include <isa/isareg.h> #include <isa/rtc.h> /* Sanity check for __curthread() */ CTASSERT(offsetof(struct pcpu, pc_curthread) == 0); extern u_int64_t hammer_time(u_int64_t, u_int64_t); extern void printcpuinfo(void); /* XXX header file */ extern void identify_cpu(void); extern void panicifcpuunsupported(void); #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) static void cpu_startup(void *); static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len); static int set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate, size_t xfpustate_len); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); /* * The file "conf/ldscript.amd64" defines the symbol "kernphys". Its value is * the physical address at which the kernel is loaded. */ extern char kernphys[]; #ifdef DDB extern vm_offset_t ksym_start, ksym_end; #endif struct msgbuf *msgbufp; /* Intel ICH registers */ #define ICH_PMBASE 0x400 #define ICH_SMI_EN ICH_PMBASE + 0x30 int _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel; int cold = 1; long Maxmem = 0; long realmem = 0; /* * The number of PHYSMAP entries must be one less than the number of * PHYSSEG entries because the PHYSMAP entry that spans the largest * physical address that is accessible by ISA DMA is split into two * PHYSSEG entries. */ #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1)) vm_paddr_t phys_avail[PHYSMAP_SIZE + 2]; vm_paddr_t dump_avail[PHYSMAP_SIZE + 2]; /* must be 2 less so 0 0 can signal end of chunks */ #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2) #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2) struct kva_md_info kmi; static struct trapframe proc0_tf; struct region_descriptor r_gdt, r_idt; struct pcpu __pcpu[MAXCPU]; struct mtx icu_lock; struct mtx dt_lock; /* lock for GDT and LDT */ static void cpu_startup(dummy) void *dummy; { uintmax_t memsize; char *sysenv; /* * On MacBooks, we need to disallow the legacy USB circuit to * generate an SMI# because this can cause several problems, * namely: incorrect CPU frequency detection and failure to * start the APs. * We do this by disabling a bit in the SMI_EN (SMI Control and * Enable register) of the Intel ICH LPC Interface Bridge. */ sysenv = getenv("smbios.system.product"); if (sysenv != NULL) { if (strncmp(sysenv, "MacBook1,1", 10) == 0 || strncmp(sysenv, "MacBook3,1", 10) == 0 || strncmp(sysenv, "MacBookPro1,1", 13) == 0 || strncmp(sysenv, "MacBookPro1,2", 13) == 0 || strncmp(sysenv, "MacBookPro3,1", 13) == 0 || strncmp(sysenv, "Macmini1,1", 10) == 0) { if (bootverbose) printf("Disabling LEGACY_USB_EN bit on " "Intel ICH.\n"); outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8); } freeenv(sysenv); } /* * Good {morning,afternoon,evening,night}. */ startrtclock(); printcpuinfo(); panicifcpuunsupported(); #ifdef PERFMON perfmon_init(); #endif realmem = Maxmem; /* * Display physical memory if SMBIOS reports reasonable amount. */ memsize = 0; sysenv = getenv("smbios.memory.enabled"); if (sysenv != NULL) { memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10; freeenv(sysenv); } if (memsize < ptoa((uintmax_t)cnt.v_free_count)) memsize = ptoa((uintmax_t)Maxmem); printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { vm_paddr_t size; size = phys_avail[indx + 1] - phys_avail[indx]; printf( "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n", (uintmax_t)phys_avail[indx], (uintmax_t)phys_avail[indx + 1] - 1, (uintmax_t)size, (uintmax_t)size / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ju (%ju MB)\n", ptoa((uintmax_t)cnt.v_free_count), ptoa((uintmax_t)cnt.v_free_count) / 1048576); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); cpu_setregs(); /* * Add BSP as an interrupt target. */ intr_add_cpu(0); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by call * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct sigframe sf, *sfp; struct pcb *pcb; struct proc *p; struct thread *td; struct sigacts *psp; char *sp; struct trapframe *regs; char *xfpusave; size_t xfpusave_len; int sig; int oonstack; td = curthread; pcb = td->td_pcb; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) { xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu); xfpusave = __builtin_alloca(xfpusave_len); } else { xfpusave_len = 0; xfpusave = NULL; } /* Save user context. */ bzero(&sf, sizeof(sf)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs)); sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */ get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len); fpstate_drop(td); sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase; sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase; bzero(sf.sf_uc.uc_mcontext.mc_spare, sizeof(sf.sf_uc.uc_mcontext.mc_spare)); bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__)); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size; #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else sp = (char *)regs->tf_rsp - 128; if (xfpusave != NULL) { sp -= xfpusave_len; sp = (char *)((unsigned long)sp & ~0x3Ful); sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp; } sp -= sizeof(struct sigframe); /* Align to 16 bytes. */ sfp = (struct sigframe *)((unsigned long)sp & ~0xFul); /* Translate the signal if appropriate. */ if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; /* Build the argument list for the signal handler. */ regs->tf_rdi = sig; /* arg 1 in %rdi */ regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */ bzero(&sf.sf_si, sizeof(sf.sf_si)); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */ sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; /* Fill in POSIX parts */ sf.sf_si = ksi->ksi_info; sf.sf_si.si_signo = sig; /* maybe a translated signal */ regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */ } else { /* Old FreeBSD-style arguments. */ regs->tf_rsi = ksi->ksi_code; /* arg 2 in %rsi */ regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */ sf.sf_ahu.sf_handler = catcher; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0 || (xfpusave != NULL && copyout(xfpusave, (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len) != 0)) { #ifdef DEBUG printf("process %ld has trashed its stack\n", (long)p->p_pid); #endif PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_rsp = (long)sfp; regs->tf_rip = p->p_sysent->sv_sigcode_base; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; set_pcb_flags(pcb, PCB_FULL_IRET); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * state to gain improper privileges. * * MPSAFE */ int sys_sigreturn(td, uap) struct thread *td; struct sigreturn_args /* { const struct __ucontext *sigcntxp; } */ *uap; { ucontext_t uc; struct pcb *pcb; struct proc *p; struct trapframe *regs; ucontext_t *ucp; char *xfpustate; size_t xfpustate_len; long rflags; int cs, error, ret; ksiginfo_t ksi; pcb = td->td_pcb; p = td->td_proc; error = copyin(uap->sigcntxp, &uc, sizeof(uc)); if (error != 0) { uprintf("pid %d (%s): sigreturn copyin failed\n", p->p_pid, td->td_name); return (error); } ucp = &uc; if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) { uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid, td->td_name, ucp->uc_mcontext.mc_flags); return (EINVAL); } regs = td->td_frame; rflags = ucp->uc_mcontext.mc_rflags; /* * Don't allow users to change privileged or reserved flags. */ /* * XXX do allow users to change the privileged flag PSL_RF. * The cpu sets PSL_RF in tf_rflags for faults. Debuggers * should sometimes set it there too. tf_rflags is kept in * the signal context during signal handling and there is no * other place to remember it, so the PSL_RF bit may be * corrupted by the signal handler without us knowing. * Corruption of the PSL_RF bit at worst causes one more or * one less debugger trap, so allowing it is fairly harmless. */ if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) { uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid, td->td_name, rflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ cs = ucp->uc_mcontext.mc_cs; if (!CS_SECURE(cs)) { uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid, td->td_name, cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return (EINVAL); } if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) { xfpustate_len = uc.uc_mcontext.mc_xfpustate_len; if (xfpustate_len > cpu_max_ext_state_size - sizeof(struct savefpu)) { uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n", p->p_pid, td->td_name, xfpustate_len); return (EINVAL); } xfpustate = __builtin_alloca(xfpustate_len); error = copyin((const void *)uc.uc_mcontext.mc_xfpustate, xfpustate, xfpustate_len); if (error != 0) { uprintf( "pid %d (%s): sigreturn copying xfpustate failed\n", p->p_pid, td->td_name); return (error); } } else { xfpustate = NULL; xfpustate_len = 0; } ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len); if (ret != 0) { uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n", p->p_pid, td->td_name, ret); return (ret); } bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs)); pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase; pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase; #if defined(COMPAT_43) if (ucp->uc_mcontext.mc_onstack & 1) td->td_sigstk.ss_flags |= SS_ONSTACK; else td->td_sigstk.ss_flags &= ~SS_ONSTACK; #endif kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); set_pcb_flags(pcb, PCB_FULL_IRET); return (EJUSTRETURN); } #ifdef COMPAT_FREEBSD4 int freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap) { return sys_sigreturn(td, (struct sigreturn_args *)uap); } #endif /* * Machine dependent boot() routine * * I haven't seen anything to put here yet * Possibly some stuff might be grafted back here from boot() */ void cpu_boot(int howto) { } /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { /* Not applicable */ } /* Get current clock frequency for the given cpu id. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { uint64_t tsc1, tsc2; uint64_t acnt, mcnt, perf; register_t reg; if (pcpu_find(cpu_id) == NULL || rate == NULL) return (EINVAL); /* * If TSC is P-state invariant and APERF/MPERF MSRs do not exist, * DELAY(9) based logic fails. */ if (tsc_is_invariant && !tsc_perf_stat) return (EOPNOTSUPP); #ifdef SMP if (smp_cpus > 1) { /* Schedule ourselves on the indicated cpu. */ thread_lock(curthread); sched_bind(curthread, cpu_id); thread_unlock(curthread); } #endif /* Calibrate by measuring a short delay. */ reg = intr_disable(); if (tsc_is_invariant) { wrmsr(MSR_MPERF, 0); wrmsr(MSR_APERF, 0); tsc1 = rdtsc(); DELAY(1000); mcnt = rdmsr(MSR_MPERF); acnt = rdmsr(MSR_APERF); tsc2 = rdtsc(); intr_restore(reg); perf = 1000 * acnt / mcnt; *rate = (tsc2 - tsc1) * perf; } else { tsc1 = rdtsc(); DELAY(1000); tsc2 = rdtsc(); intr_restore(reg); *rate = (tsc2 - tsc1) * 1000; } #ifdef SMP if (smp_cpus > 1) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } #endif return (0); } /* * Shutdown the CPU as much as possible */ void cpu_halt(void) { for (;;) __asm__ ("hlt"); } void (*cpu_idle_hook)(void) = NULL; /* ACPI idle hook. */ static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */ static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */ TUNABLE_INT("machdep.idle_mwait", &idle_mwait); SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait, 0, "Use MONITOR/MWAIT for short idle"); #define STATE_RUNNING 0x0 #define STATE_MWAIT 0x1 #define STATE_SLEEPING 0x2 static void cpu_idle_acpi(int busy) { int *state; state = (int *)PCPU_PTR(monitorbuf); *state = STATE_SLEEPING; disable_intr(); if (sched_runnable()) enable_intr(); else if (cpu_idle_hook) cpu_idle_hook(); else __asm __volatile("sti; hlt"); *state = STATE_RUNNING; } static void cpu_idle_hlt(int busy) { int *state; state = (int *)PCPU_PTR(monitorbuf); *state = STATE_SLEEPING; /* * We must absolutely guarentee that hlt is the next instruction * after sti or we introduce a timing window. */ disable_intr(); if (sched_runnable()) enable_intr(); else __asm __volatile("sti; hlt"); *state = STATE_RUNNING; } /* * MWAIT cpu power states. Lower 4 bits are sub-states. */ #define MWAIT_C0 0xf0 #define MWAIT_C1 0x00 #define MWAIT_C2 0x10 #define MWAIT_C3 0x20 #define MWAIT_C4 0x30 static void cpu_idle_mwait(int busy) { int *state; state = (int *)PCPU_PTR(monitorbuf); *state = STATE_MWAIT; if (!sched_runnable()) { cpu_monitor(state, 0, 0); if (*state == STATE_MWAIT) cpu_mwait(0, MWAIT_C1); } *state = STATE_RUNNING; } static void cpu_idle_spin(int busy) { int *state; int i; state = (int *)PCPU_PTR(monitorbuf); *state = STATE_RUNNING; for (i = 0; i < 1000; i++) { if (sched_runnable()) return; cpu_spinwait(); } } /* * C1E renders the local APIC timer dead, so we disable it by * reading the Interrupt Pending Message register and clearing * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27). * * Reference: * "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors" * #32559 revision 3.00+ */ #define MSR_AMDK8_IPM 0xc0010055 #define AMDK8_SMIONCMPHALT (1ULL << 27) #define AMDK8_C1EONCMPHALT (1ULL << 28) #define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT) static void cpu_probe_amdc1e(void) { /* * Detect the presence of C1E capability mostly on latest * dual-cores (or future) k8 family. */ if (cpu_vendor_id == CPU_VENDOR_AMD && (cpu_id & 0x00000f00) == 0x00000f00 && (cpu_id & 0x0fff0000) >= 0x00040000) { cpu_ident_amdc1e = 1; } } void (*cpu_idle_fn)(int) = cpu_idle_acpi; void cpu_idle(int busy) { uint64_t msr; CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu); #ifdef MP_WATCHDOG ap_watchdog(PCPU_GET(cpuid)); #endif /* If we are busy - try to use fast methods. */ if (busy) { if ((cpu_feature2 & CPUID2_MON) && idle_mwait) { cpu_idle_mwait(busy); goto out; } } /* If we have time - switch timers into idle mode. */ if (!busy) { critical_enter(); cpu_idleclock(); } /* Apply AMD APIC timer C1E workaround. */ if (cpu_ident_amdc1e && cpu_disable_deep_sleep) { msr = rdmsr(MSR_AMDK8_IPM); if (msr & AMDK8_CMPHALT) wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT); } /* Call main idle method. */ cpu_idle_fn(busy); /* Switch timers mack into active mode. */ if (!busy) { cpu_activeclock(); critical_exit(); } out: CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu); } int cpu_idle_wakeup(int cpu) { struct pcpu *pcpu; int *state; pcpu = pcpu_find(cpu); state = (int *)pcpu->pc_monitorbuf; /* * This doesn't need to be atomic since missing the race will * simply result in unnecessary IPIs. */ if (*state == STATE_SLEEPING) return (0); if (*state == STATE_MWAIT) *state = STATE_RUNNING; return (1); } /* * Ordered by speed/power consumption. */ struct { void *id_fn; char *id_name; } idle_tbl[] = { { cpu_idle_spin, "spin" }, { cpu_idle_mwait, "mwait" }, { cpu_idle_hlt, "hlt" }, { cpu_idle_acpi, "acpi" }, { NULL, NULL } }; static int idle_sysctl_available(SYSCTL_HANDLER_ARGS) { char *avail, *p; int error; int i; avail = malloc(256, M_TEMP, M_WAITOK); p = avail; for (i = 0; idle_tbl[i].id_name != NULL; i++) { if (strstr(idle_tbl[i].id_name, "mwait") && (cpu_feature2 & CPUID2_MON) == 0) continue; if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; p += sprintf(p, "%s%s", p != avail ? ", " : "", idle_tbl[i].id_name); } error = sysctl_handle_string(oidp, avail, 0, req); free(avail, M_TEMP); return (error); } SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD, 0, 0, idle_sysctl_available, "A", "list of available idle functions"); static int idle_sysctl(SYSCTL_HANDLER_ARGS) { char buf[16]; int error; char *p; int i; p = "unknown"; for (i = 0; idle_tbl[i].id_name != NULL; i++) { if (idle_tbl[i].id_fn == cpu_idle_fn) { p = idle_tbl[i].id_name; break; } } strncpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); for (i = 0; idle_tbl[i].id_name != NULL; i++) { if (strstr(idle_tbl[i].id_name, "mwait") && (cpu_feature2 & CPUID2_MON) == 0) continue; if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; if (strcmp(idle_tbl[i].id_name, buf)) continue; cpu_idle_fn = idle_tbl[i].id_fn; return (0); } return (EINVAL); } SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0, idle_sysctl, "A", "currently selected idle function"); /* * Reset registers to default values on exec. */ void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *regs = td->td_frame; struct pcb *pcb = td->td_pcb; mtx_lock(&dt_lock); if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); else mtx_unlock(&dt_lock); pcb->pcb_fsbase = 0; pcb->pcb_gsbase = 0; clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT); pcb->pcb_initial_fpucw = __INITIAL_FPUCW__; set_pcb_flags(pcb, PCB_FULL_IRET); bzero((char *)regs, sizeof(struct trapframe)); regs->tf_rip = imgp->entry_addr; regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; regs->tf_rdi = stack; /* argv */ regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T); regs->tf_ss = _udatasel; regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; td->td_retval[1] = 0; /* * Reset the hardware debug registers if they were in use. * They won't have any meaning for the newly exec'd process. */ if (pcb->pcb_flags & PCB_DBREGS) { pcb->pcb_dr0 = 0; pcb->pcb_dr1 = 0; pcb->pcb_dr2 = 0; pcb->pcb_dr3 = 0; pcb->pcb_dr6 = 0; pcb->pcb_dr7 = 0; if (pcb == PCPU_GET(curpcb)) { /* * Clear the debug registers on the running * CPU, otherwise they will end up affecting * the next process we switch to. */ reset_dbregs(); } clear_pcb_flags(pcb, PCB_DBREGS); } /* * Drop the FP state if we hold it, so that the process gets a * clean FP state if it uses the FPU again. */ fpstate_drop(td); } void cpu_setregs(void) { register_t cr0; cr0 = rcr0(); /* * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the * BSP. See the comments there about why we set them. */ cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM; load_cr0(cr0); } /* * Initialize amd64 and configure to run kernel */ /* * Initialize segments & interrupt table */ struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */ static struct gate_descriptor idt0[NIDT]; struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */ static char dblfault_stack[PAGE_SIZE] __aligned(16); static char nmi0_stack[PAGE_SIZE] __aligned(16); CTASSERT(sizeof(struct nmi_pcpu) == 16); struct amd64tss common_tss[MAXCPU]; /* * Software prototypes -- in more palatable form. * * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same * slots as corresponding segments for i386 kernel. */ struct soft_segment_descriptor gdt_segs[] = { /* GNULL_SEL 0 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GNULL2_SEL 1 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUFS32_SEL 2 32 bit %gs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUGS32_SEL 3 32 bit %fs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GCODE_SEL 4 Code Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GDATA_SEL 5 Data Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GUCODE32_SEL 6 32 bit Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUDATA_SEL 7 32/64 bit Data Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUCODE_SEL 8 64 bit Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_long = 1, .ssd_def32 = 0, .ssd_gran = 1 }, /* GPROC0_SEL 9 Proc 0 Tss Descriptor */ { .ssd_base = 0x0, .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1, .ssd_type = SDT_SYSTSS, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Actually, the TSS is a system descriptor which is double size */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 11 LDT Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 12 LDT Descriptor, double size */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_long = 0, .ssd_def32 = 0, .ssd_gran = 0 }, }; void setidt(idx, func, typ, dpl, ist) int idx; inthand_t *func; int typ; int dpl; int ist; { struct gate_descriptor *ip; ip = idt + idx; ip->gd_looffset = (uintptr_t)func; ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL); ip->gd_ist = ist; ip->gd_xx = 0; ip->gd_type = typ; ip->gd_dpl = dpl; ip->gd_p = 1; ip->gd_hioffset = ((uintptr_t)func)>>16 ; } extern inthand_t IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm), IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), IDTVEC(xmm), IDTVEC(dblfault), #ifdef KDTRACE_HOOKS IDTVEC(dtrace_ret), #endif IDTVEC(fast_syscall), IDTVEC(fast_syscall32); #ifdef DDB /* * Display the index and function name of any IDT entries that don't use * the default 'rsvd' entry point. */ DB_SHOW_COMMAND(idt, db_show_idt) { struct gate_descriptor *ip; int idx; uintptr_t func; ip = idt; for (idx = 0; idx < NIDT && !db_pager_quit; idx++) { func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset); if (func != (uintptr_t)&IDTVEC(rsvd)) { db_printf("%3d\t", idx); db_printsym(func, DB_STGY_PROC); db_printf("\n"); } ip++; } } #endif void sdtossd(sd, ssd) struct user_segment_descriptor *sd; struct soft_segment_descriptor *ssd; { ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; ssd->ssd_type = sd->sd_type; ssd->ssd_dpl = sd->sd_dpl; ssd->ssd_p = sd->sd_p; ssd->ssd_long = sd->sd_long; ssd->ssd_def32 = sd->sd_def32; ssd->ssd_gran = sd->sd_gran; } void ssdtosd(ssd, sd) struct soft_segment_descriptor *ssd; struct user_segment_descriptor *sd; { sd->sd_lobase = (ssd->ssd_base) & 0xffffff; sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff; sd->sd_lolimit = (ssd->ssd_limit) & 0xffff; sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf; sd->sd_type = ssd->ssd_type; sd->sd_dpl = ssd->ssd_dpl; sd->sd_p = ssd->ssd_p; sd->sd_long = ssd->ssd_long; sd->sd_def32 = ssd->ssd_def32; sd->sd_gran = ssd->ssd_gran; } void ssdtosyssd(ssd, sd) struct soft_segment_descriptor *ssd; struct system_segment_descriptor *sd; { sd->sd_lobase = (ssd->ssd_base) & 0xffffff; sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful; sd->sd_lolimit = (ssd->ssd_limit) & 0xffff; sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf; sd->sd_type = ssd->ssd_type; sd->sd_dpl = ssd->ssd_dpl; sd->sd_p = ssd->ssd_p; sd->sd_gran = ssd->ssd_gran; } #if !defined(DEV_ATPIC) && defined(DEV_ISA) #include <isa/isavar.h> #include <isa/isareg.h> /* * Return a bitmap of the current interrupt requests. This is 8259-specific * and is only suitable for use at probe time. * This is only here to pacify sio. It is NOT FATAL if this doesn't work. * It shouldn't be here. There should probably be an APIC centric * implementation in the apic driver code, if at all. */ intrmask_t isa_irq_pending(void) { u_char irr1; u_char irr2; irr1 = inb(IO_ICU1); irr2 = inb(IO_ICU2); return ((irr2 << 8) | irr1); } #endif u_int basemem; static int add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp) { int i, insert_idx, physmap_idx; physmap_idx = *physmap_idxp; if (boothowto & RB_VERBOSE) printf("SMAP type=%02x base=%016lx len=%016lx\n", smap->type, smap->base, smap->length); if (smap->type != SMAP_TYPE_MEMORY) return (1); if (smap->length == 0) return (0); /* * Find insertion point while checking for overlap. Start off by * assuming the new entry will be added to the end. */ insert_idx = physmap_idx + 2; for (i = 0; i <= physmap_idx; i += 2) { if (smap->base < physmap[i + 1]) { if (smap->base + smap->length <= physmap[i]) { insert_idx = i; break; } if (boothowto & RB_VERBOSE) printf( "Overlapping memory regions, ignoring second region\n"); return (1); } } /* See if we can prepend to the next entry. */ if (insert_idx <= physmap_idx && smap->base + smap->length == physmap[insert_idx]) { physmap[insert_idx] = smap->base; return (1); } /* See if we can append to the previous entry. */ if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) { physmap[insert_idx - 1] += smap->length; return (1); } physmap_idx += 2; *physmap_idxp = physmap_idx; if (physmap_idx == PHYSMAP_SIZE) { printf( "Too many segments in the physical address map, giving up\n"); return (0); } /* * Move the last 'N' entries down to make room for the new * entry if needed. */ for (i = physmap_idx; i > insert_idx; i -= 2) { physmap[i] = physmap[i - 2]; physmap[i + 1] = physmap[i - 1]; } /* Insert the new entry. */ physmap[insert_idx] = smap->base; physmap[insert_idx + 1] = smap->base + smap->length; return (1); } /* * Populate the (physmap) array with base/bound pairs describing the * available physical memory in the system, then test this memory and * build the phys_avail array describing the actually-available memory. * * Total memory size may be set by the kernel environment variable * hw.physmem or the compile-time define MAXMEM. * * XXX first should be vm_paddr_t. */ static void getmemsize(caddr_t kmdp, u_int64_t first) { int i, physmap_idx, pa_indx, da_indx; vm_paddr_t pa, physmap[PHYSMAP_SIZE]; u_long physmem_start, physmem_tunable, memtest; pt_entry_t *pte; struct bios_smap *smapbase, *smap, *smapend; u_int32_t smapsize; quad_t dcons_addr, dcons_size; bzero(physmap, sizeof(physmap)); basemem = 0; physmap_idx = 0; /* * get memory map from INT 15:E820, kindly supplied by the loader. * * subr_module.c says: * "Consumer may safely assume that size value precedes data." * ie: an int32_t immediately precedes smap. */ smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (smapbase == NULL) panic("No BIOS smap info from loader!"); smapsize = *((u_int32_t *)smapbase - 1); smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize); for (smap = smapbase; smap < smapend; smap++) if (!add_smap_entry(smap, physmap, &physmap_idx)) break; /* * Find the 'base memory' segment for SMP */ basemem = 0; for (i = 0; i <= physmap_idx; i += 2) { if (physmap[i] == 0x00000000) { basemem = physmap[i + 1] / 1024; break; } } if (basemem == 0) panic("BIOS smap did not include a basemem segment!"); #ifdef SMP /* make hole for AP bootstrap code */ physmap[1] = mp_bootaddress(physmap[1] / 1024); #endif /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". We may adjust this * based on ``hw.physmem'' and the results of the memory test. */ Maxmem = atop(physmap[physmap_idx + 1]); #ifdef MAXMEM Maxmem = MAXMEM / 4; #endif if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable)) Maxmem = atop(physmem_tunable); /* * By default enable the memory test on real hardware, and disable * it if we appear to be running in a VM. This avoids touching all * pages unnecessarily, which doesn't matter on real hardware but is * bad for shared VM hosts. Use a general name so that * one could eventually do more with the code than just disable it. */ memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1; TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest); /* * Don't allow MAXMEM or hw.physmem to extend the amount of memory * in the system. */ if (Maxmem > atop(physmap[physmap_idx + 1])) Maxmem = atop(physmap[physmap_idx + 1]); if (atop(physmap[physmap_idx + 1]) != Maxmem && (boothowto & RB_VERBOSE)) printf("Physical memory use set to %ldK\n", Maxmem * 4); /* call pmap initialization to make new kernel address space */ pmap_bootstrap(&first); /* * Size up each available chunk of physical memory. * * XXX Some BIOSes corrupt low 64KB between suspend and resume. * By default, mask off the first 16 pages unless we appear to be * running in a VM. */ physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT; TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start); if (physmem_start < PAGE_SIZE) physmap[0] = PAGE_SIZE; else if (physmem_start >= physmap[1]) physmap[0] = round_page(physmap[1] - PAGE_SIZE); else physmap[0] = round_page(physmem_start); pa_indx = 0; da_indx = 1; phys_avail[pa_indx++] = physmap[0]; phys_avail[pa_indx] = physmap[0]; dump_avail[da_indx] = physmap[0]; pte = CMAP1; /* * Get dcons buffer address */ if (getenv_quad("dcons.addr", &dcons_addr) == 0 || getenv_quad("dcons.size", &dcons_size) == 0) dcons_addr = 0; /* * physmap is in bytes, so when converting to page boundaries, * round up the start address and round down the end address. */ for (i = 0; i <= physmap_idx; i += 2) { vm_paddr_t end; end = ptoa((vm_paddr_t)Maxmem); if (physmap[i + 1] < end) end = trunc_page(physmap[i + 1]); for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { int tmp, page_bad, full; int *ptr = (int *)CADDR1; full = FALSE; /* * block out kernel memory as not available. */ if (pa >= (vm_paddr_t)kernphys && pa < first) goto do_dump_avail; /* * block out dcons buffer */ if (dcons_addr > 0 && pa >= trunc_page(dcons_addr) && pa < dcons_addr + dcons_size) goto do_dump_avail; page_bad = FALSE; if (memtest == 0) goto skip_memtest; /* * map page into kernel: valid, read/write,non-cacheable */ *pte = pa | PG_V | PG_RW | PG_N; invltlb(); tmp = *(int *)ptr; /* * Test for alternating 1's and 0's */ *(volatile int *)ptr = 0xaaaaaaaa; if (*(volatile int *)ptr != 0xaaaaaaaa) page_bad = TRUE; /* * Test for alternating 0's and 1's */ *(volatile int *)ptr = 0x55555555; if (*(volatile int *)ptr != 0x55555555) page_bad = TRUE; /* * Test for all 1's */ *(volatile int *)ptr = 0xffffffff; if (*(volatile int *)ptr != 0xffffffff) page_bad = TRUE; /* * Test for all 0's */ *(volatile int *)ptr = 0x0; if (*(volatile int *)ptr != 0x0) page_bad = TRUE; /* * Restore original value. */ *(int *)ptr = tmp; skip_memtest: /* * Adjust array of valid/good pages. */ if (page_bad == TRUE) continue; /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. * If we're also doing a speculative memory * test and we at or past the end, bump up Maxmem * so that we keep going. The first bad page * will terminate the loop. */ if (phys_avail[pa_indx] == pa) { phys_avail[pa_indx] += PAGE_SIZE; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ARRAY_END) { printf( "Too many holes in the physical address space, giving up\n"); pa_indx--; full = TRUE; goto do_dump_avail; } phys_avail[pa_indx++] = pa; /* start */ phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ } physmem++; do_dump_avail: if (dump_avail[da_indx] == pa) { dump_avail[da_indx] += PAGE_SIZE; } else { da_indx++; if (da_indx == DUMP_AVAIL_ARRAY_END) { da_indx--; goto do_next; } dump_avail[da_indx++] = pa; /* start */ dump_avail[da_indx] = pa + PAGE_SIZE; /* end */ } do_next: if (full) break; } } *pte = 0; invltlb(); /* * XXX * The last chunk must contain at least one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(msgbufsize) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(msgbufsize); /* Map the message buffer. */ msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]); } u_int64_t hammer_time(u_int64_t modulep, u_int64_t physfree) { caddr_t kmdp; int gsel_tss, x; struct pcpu *pc; struct nmi_pcpu *np; struct xstate_hdr *xhdr; u_int64_t msr; char *env; size_t kstack0_sz; thread0.td_kstack = physfree + KERNBASE; thread0.td_kstack_pages = KSTACK_PAGES; kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE; bzero((void *)thread0.td_kstack, kstack0_sz); physfree += kstack0_sz; /* * This may be done better later if it gets more high level * components in it. If so just link td->td_proc here. */ proc_linkup0(&proc0, &thread0); preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE); preload_bootstrap_relocate(KERNBASE); kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE; #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); #endif /* Init basic tunables, hz etc */ init_param1(); /* * make gdt memory segments */ for (x = 0; x < NGDT; x++) { if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) && x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1) ssdtosd(&gdt_segs[x], &gdt[x]); } gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0]; ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]); r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; r_gdt.rd_base = (long) gdt; lgdt(&r_gdt); pc = &__pcpu[0]; wrmsr(MSR_FSBASE, 0); /* User value */ wrmsr(MSR_GSBASE, (u_int64_t)pc); wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */ pcpu_init(pc, 0, sizeof(struct pcpu)); dpcpu_init((void *)(physfree + KERNBASE), 0); physfree += DPCPU_SIZE; PCPU_SET(prvspace, pc); PCPU_SET(curthread, &thread0); PCPU_SET(tssp, &common_tss[0]); PCPU_SET(commontssp, &common_tss[0]); PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]); PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]); PCPU_SET(fs32p, &gdt[GUFS32_SEL]); PCPU_SET(gs32p, &gdt[GUGS32_SEL]); /* * Initialize mutexes. * * icu_lock: in order to allow an interrupt to occur in a critical * section, to set pcpu->ipending (etc...) properly, we * must be able to get the icu lock, so it can't be * under witness. */ mutex_init(); mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS); mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF); /* exceptions */ for (x = 0; x < NIDT; x++) setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 2); setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0); setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1); setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0); #ifdef KDTRACE_HOOKS setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0); #endif r_idt.rd_limit = sizeof(idt0) - 1; r_idt.rd_base = (long) idt; lidt(&r_idt); /* * Initialize the i8254 before the console so that console * initialization can use DELAY(). */ i8254_init(); /* * Initialize the console before we print anything out. */ cninit(); #ifdef DEV_ISA #ifdef DEV_ATPIC elcr_probe(); atpic_startup(); #else /* Reset and mask the atpics and leave them shut down. */ atpic_reset(); /* * Point the ICU spurious interrupt vectors at the APIC spurious * interrupt handler. */ setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0); setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0); #endif #else #error "have you forgotten the isa device?"; #endif kdb_init(); #ifdef KDB if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); #endif identify_cpu(); /* Final stage of CPU initialization */ initializecpu(); /* Initialize CPU registers */ initializecpucache(); /* doublefault stack space, runs on ist1 */ common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)]; /* * NMI stack, runs on ist2. The pcpu pointer is stored just * above the start of the ist2 stack. */ np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1; np->np_pcpu = (register_t) pc; common_tss[0].tss_ist2 = (long) np; /* Set the IO permission bitmap (empty due to tss seg limit) */ common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE; gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); ltr(gsel_tss); /* Set up the fast syscall stuff */ msr = rdmsr(MSR_EFER) | EFER_SCE; wrmsr(MSR_EFER, msr); wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall)); wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32)); msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) | ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48); wrmsr(MSR_STAR, msr); wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D); getmemsize(kmdp, physfree); init_param2(physmem); /* now running on new page tables, configured,and u/iom is accessible */ msgbufinit(msgbufp, msgbufsize); fpuinit(); /* * Set up thread0 pcb after fpuinit calculated pcb + fpu save * area size. Zero out the extended state header in fpu save * area. */ thread0.td_pcb = get_pcb_td(&thread0); bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size); if (use_xsave) { xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) + 1); xhdr->xstate_bv = xsave_mask; } /* make an initial tss so cpu can get interrupt stack on syscall! */ common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb; /* Ensure the stack is aligned to 16 bytes */ common_tss[0].tss_rsp0 &= ~0xFul; PCPU_SET(rsp0, common_tss[0].tss_rsp0); PCPU_SET(curpcb, thread0.td_pcb); /* transfer to user mode */ _ucodesel = GSEL(GUCODE_SEL, SEL_UPL); _udatasel = GSEL(GUDATA_SEL, SEL_UPL); _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL); _ufssel = GSEL(GUFS32_SEL, SEL_UPL); _ugssel = GSEL(GUGS32_SEL, SEL_UPL); load_ds(_udatasel); load_es(_udatasel); load_fs(_ufssel); /* setup proc 0's pcb */ thread0.td_pcb->pcb_flags = 0; thread0.td_pcb->pcb_cr3 = KPML4phys; thread0.td_frame = &proc0_tf; env = getenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); #ifdef XENHVM if (inw(0x10) == 0x49d2) { if (bootverbose) printf("Xen detected: disabling emulated block and network devices\n"); outw(0x10, 3); } #endif cpu_probe_amdc1e(); /* Location of kernel stack for locore */ return ((u_int64_t)thread0.td_pcb); } void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { pcpu->pc_acpi_id = 0xffffffff; } void spinlock_enter(void) { struct thread *td; register_t flags; td = curthread; if (td->td_md.md_spinlock_count == 0) { flags = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = flags; } else td->td_md.md_spinlock_count++; critical_enter(); } void spinlock_exit(void) { struct thread *td; register_t flags; td = curthread; critical_exit(); flags = td->td_md.md_saved_flags; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) intr_restore(flags); } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_r12 = tf->tf_r12; pcb->pcb_r13 = tf->tf_r13; pcb->pcb_r14 = tf->tf_r14; pcb->pcb_r15 = tf->tf_r15; pcb->pcb_rbp = tf->tf_rbp; pcb->pcb_rbx = tf->tf_rbx; pcb->pcb_rip = tf->tf_rip; pcb->pcb_rsp = tf->tf_rsp; } int ptrace_set_pc(struct thread *td, unsigned long addr) { td->td_frame->tf_rip = addr; return (0); } int ptrace_single_step(struct thread *td) { td->td_frame->tf_rflags |= PSL_T; return (0); } int ptrace_clear_single_step(struct thread *td) { td->td_frame->tf_rflags &= ~PSL_T; return (0); } int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *tp; tp = td->td_frame; return (fill_frame_regs(tp, regs)); } int fill_frame_regs(struct trapframe *tp, struct reg *regs) { regs->r_r15 = tp->tf_r15; regs->r_r14 = tp->tf_r14; regs->r_r13 = tp->tf_r13; regs->r_r12 = tp->tf_r12; regs->r_r11 = tp->tf_r11; regs->r_r10 = tp->tf_r10; regs->r_r9 = tp->tf_r9; regs->r_r8 = tp->tf_r8; regs->r_rdi = tp->tf_rdi; regs->r_rsi = tp->tf_rsi; regs->r_rbp = tp->tf_rbp; regs->r_rbx = tp->tf_rbx; regs->r_rdx = tp->tf_rdx; regs->r_rcx = tp->tf_rcx; regs->r_rax = tp->tf_rax; regs->r_rip = tp->tf_rip; regs->r_cs = tp->tf_cs; regs->r_rflags = tp->tf_rflags; regs->r_rsp = tp->tf_rsp; regs->r_ss = tp->tf_ss; if (tp->tf_flags & TF_HASSEGS) { regs->r_ds = tp->tf_ds; regs->r_es = tp->tf_es; regs->r_fs = tp->tf_fs; regs->r_gs = tp->tf_gs; } else { regs->r_ds = 0; regs->r_es = 0; regs->r_fs = 0; regs->r_gs = 0; } return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *tp; register_t rflags; tp = td->td_frame; rflags = regs->r_rflags & 0xffffffff; if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs)) return (EINVAL); tp->tf_r15 = regs->r_r15; tp->tf_r14 = regs->r_r14; tp->tf_r13 = regs->r_r13; tp->tf_r12 = regs->r_r12; tp->tf_r11 = regs->r_r11; tp->tf_r10 = regs->r_r10; tp->tf_r9 = regs->r_r9; tp->tf_r8 = regs->r_r8; tp->tf_rdi = regs->r_rdi; tp->tf_rsi = regs->r_rsi; tp->tf_rbp = regs->r_rbp; tp->tf_rbx = regs->r_rbx; tp->tf_rdx = regs->r_rdx; tp->tf_rcx = regs->r_rcx; tp->tf_rax = regs->r_rax; tp->tf_rip = regs->r_rip; tp->tf_cs = regs->r_cs; tp->tf_rflags = rflags; tp->tf_rsp = regs->r_rsp; tp->tf_ss = regs->r_ss; if (0) { /* XXXKIB */ tp->tf_ds = regs->r_ds; tp->tf_es = regs->r_es; tp->tf_fs = regs->r_fs; tp->tf_gs = regs->r_gs; tp->tf_flags = TF_HASSEGS; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); } return (0); } /* XXX check all this stuff! */ /* externalize from sv_xmm */ static void fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs) { struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env; struct envxmm *penv_xmm = &sv_xmm->sv_env; int i; /* pcb -> fpregs */ bzero(fpregs, sizeof(*fpregs)); /* FPU control/status */ penv_fpreg->en_cw = penv_xmm->en_cw; penv_fpreg->en_sw = penv_xmm->en_sw; penv_fpreg->en_tw = penv_xmm->en_tw; penv_fpreg->en_opcode = penv_xmm->en_opcode; penv_fpreg->en_rip = penv_xmm->en_rip; penv_fpreg->en_rdp = penv_xmm->en_rdp; penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr; penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask; /* FPU registers */ for (i = 0; i < 8; ++i) bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10); /* SSE registers */ for (i = 0; i < 16; ++i) bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16); } /* internalize from fpregs into sv_xmm */ static void set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm) { struct envxmm *penv_xmm = &sv_xmm->sv_env; struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env; int i; /* fpregs -> pcb */ /* FPU control/status */ penv_xmm->en_cw = penv_fpreg->en_cw; penv_xmm->en_sw = penv_fpreg->en_sw; penv_xmm->en_tw = penv_fpreg->en_tw; penv_xmm->en_opcode = penv_fpreg->en_opcode; penv_xmm->en_rip = penv_fpreg->en_rip; penv_xmm->en_rdp = penv_fpreg->en_rdp; penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr; penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask; /* FPU registers */ for (i = 0; i < 8; ++i) bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10); /* SSE registers */ for (i = 0; i < 16; ++i) bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16); } /* externalize from td->pcb */ int fill_fpregs(struct thread *td, struct fpreg *fpregs) { KASSERT(td == curthread || TD_IS_SUSPENDED(td) || P_SHOULDSTOP(td->td_proc), ("not suspended thread %p", td)); fpugetregs(td); fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs); return (0); } /* internalize to td->pcb */ int set_fpregs(struct thread *td, struct fpreg *fpregs) { set_fpregs_xmm(fpregs, get_pcb_user_save_td(td)); fpuuserinited(td); return (0); } /* * Get machine context. */ int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct pcb *pcb; struct trapframe *tp; pcb = td->td_pcb; tp = td->td_frame; PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(tp->tf_rsp); PROC_UNLOCK(curthread->td_proc); mcp->mc_r15 = tp->tf_r15; mcp->mc_r14 = tp->tf_r14; mcp->mc_r13 = tp->tf_r13; mcp->mc_r12 = tp->tf_r12; mcp->mc_r11 = tp->tf_r11; mcp->mc_r10 = tp->tf_r10; mcp->mc_r9 = tp->tf_r9; mcp->mc_r8 = tp->tf_r8; mcp->mc_rdi = tp->tf_rdi; mcp->mc_rsi = tp->tf_rsi; mcp->mc_rbp = tp->tf_rbp; mcp->mc_rbx = tp->tf_rbx; mcp->mc_rcx = tp->tf_rcx; mcp->mc_rflags = tp->tf_rflags; if (flags & GET_MC_CLEAR_RET) { mcp->mc_rax = 0; mcp->mc_rdx = 0; mcp->mc_rflags &= ~PSL_C; } else { mcp->mc_rax = tp->tf_rax; mcp->mc_rdx = tp->tf_rdx; } mcp->mc_rip = tp->tf_rip; mcp->mc_cs = tp->tf_cs; mcp->mc_rsp = tp->tf_rsp; mcp->mc_ss = tp->tf_ss; mcp->mc_ds = tp->tf_ds; mcp->mc_es = tp->tf_es; mcp->mc_fs = tp->tf_fs; mcp->mc_gs = tp->tf_gs; mcp->mc_flags = tp->tf_flags; mcp->mc_len = sizeof(*mcp); get_fpcontext(td, mcp, NULL, 0); mcp->mc_fsbase = pcb->pcb_fsbase; mcp->mc_gsbase = pcb->pcb_gsbase; mcp->mc_xfpustate = 0; mcp->mc_xfpustate_len = 0; bzero(mcp->mc_spare, sizeof(mcp->mc_spare)); return (0); } /* * Set machine context. * * However, we don't set any but the user modifiable flags, and we won't * touch the cs selector. */ int set_mcontext(struct thread *td, const mcontext_t *mcp) { struct pcb *pcb; struct trapframe *tp; char *xfpustate; long rflags; int ret; pcb = td->td_pcb; tp = td->td_frame; if (mcp->mc_len != sizeof(*mcp) || (mcp->mc_flags & ~_MC_FLAG_MASK) != 0) return (EINVAL); rflags = (mcp->mc_rflags & PSL_USERCHANGE) | (tp->tf_rflags & ~PSL_USERCHANGE); if (mcp->mc_flags & _MC_HASFPXSTATE) { if (mcp->mc_xfpustate_len > cpu_max_ext_state_size - sizeof(struct savefpu)) return (EINVAL); xfpustate = __builtin_alloca(mcp->mc_xfpustate_len); ret = copyin((void *)mcp->mc_xfpustate, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); } else xfpustate = NULL; ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); tp->tf_r15 = mcp->mc_r15; tp->tf_r14 = mcp->mc_r14; tp->tf_r13 = mcp->mc_r13; tp->tf_r12 = mcp->mc_r12; tp->tf_r11 = mcp->mc_r11; tp->tf_r10 = mcp->mc_r10; tp->tf_r9 = mcp->mc_r9; tp->tf_r8 = mcp->mc_r8; tp->tf_rdi = mcp->mc_rdi; tp->tf_rsi = mcp->mc_rsi; tp->tf_rbp = mcp->mc_rbp; tp->tf_rbx = mcp->mc_rbx; tp->tf_rdx = mcp->mc_rdx; tp->tf_rcx = mcp->mc_rcx; tp->tf_rax = mcp->mc_rax; tp->tf_rip = mcp->mc_rip; tp->tf_rflags = rflags; tp->tf_rsp = mcp->mc_rsp; tp->tf_ss = mcp->mc_ss; tp->tf_flags = mcp->mc_flags; if (tp->tf_flags & TF_HASSEGS) { tp->tf_ds = mcp->mc_ds; tp->tf_es = mcp->mc_es; tp->tf_fs = mcp->mc_fs; tp->tf_gs = mcp->mc_gs; } if (mcp->mc_flags & _MC_HASBASES) { pcb->pcb_fsbase = mcp->mc_fsbase; pcb->pcb_gsbase = mcp->mc_gsbase; } set_pcb_flags(pcb, PCB_FULL_IRET); return (0); } static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len) { size_t max_len, len; mcp->mc_ownedfp = fpugetregs(td); bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate, sizeof(mcp->mc_fpstate)); mcp->mc_fpformat = fpuformat(); if (!use_xsave || xfpusave_len == 0) return; max_len = cpu_max_ext_state_size - sizeof(struct savefpu); len = xfpusave_len; if (len > max_len) { len = max_len; bzero(xfpusave + max_len, len - max_len); } mcp->mc_flags |= _MC_HASFPXSTATE; mcp->mc_xfpustate_len = len; bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len); } static int set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate, size_t xfpustate_len) { struct savefpu *fpstate; int error; if (mcp->mc_fpformat == _MC_FPFMT_NODEV) return (0); else if (mcp->mc_fpformat != _MC_FPFMT_XMM) return (EINVAL); else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) { /* We don't care what state is left in the FPU or PCB. */ fpstate_drop(td); error = 0; } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU || mcp->mc_ownedfp == _MC_FPOWNED_PCB) { fpstate = (struct savefpu *)&mcp->mc_fpstate; fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask; error = fpusetregs(td, fpstate, xfpustate, xfpustate_len); } else return (EINVAL); return (error); } void fpstate_drop(struct thread *td) { KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu")); critical_enter(); if (PCPU_GET(fpcurthread) == td) fpudrop(); /* * XXX force a full drop of the fpu. The above only drops it if we * owned it. * * XXX I don't much like fpugetuserregs()'s semantics of doing a full * drop. Dropping only to the pcb matches fnsave's behaviour. * We only need to drop to !PCB_INITDONE in sendsig(). But * sendsig() is the only caller of fpugetuserregs()... perhaps we just * have too many layers. */ clear_pcb_flags(curthread->td_pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE); critical_exit(); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; if (td == NULL) { dbregs->dr[0] = rdr0(); dbregs->dr[1] = rdr1(); dbregs->dr[2] = rdr2(); dbregs->dr[3] = rdr3(); dbregs->dr[6] = rdr6(); dbregs->dr[7] = rdr7(); } else { pcb = td->td_pcb; dbregs->dr[0] = pcb->pcb_dr0; dbregs->dr[1] = pcb->pcb_dr1; dbregs->dr[2] = pcb->pcb_dr2; dbregs->dr[3] = pcb->pcb_dr3; dbregs->dr[6] = pcb->pcb_dr6; dbregs->dr[7] = pcb->pcb_dr7; } dbregs->dr[4] = 0; dbregs->dr[5] = 0; dbregs->dr[8] = 0; dbregs->dr[9] = 0; dbregs->dr[10] = 0; dbregs->dr[11] = 0; dbregs->dr[12] = 0; dbregs->dr[13] = 0; dbregs->dr[14] = 0; dbregs->dr[15] = 0; return (0); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; int i; if (td == NULL) { load_dr0(dbregs->dr[0]); load_dr1(dbregs->dr[1]); load_dr2(dbregs->dr[2]); load_dr3(dbregs->dr[3]); load_dr6(dbregs->dr[6]); load_dr7(dbregs->dr[7]); } else { /* * Don't let an illegal value for dr7 get set. Specifically, * check for undefined settings. Setting these bit patterns * result in undefined behaviour and can lead to an unexpected * TRCTRAP or a general protection fault right here. * Upper bits of dr6 and dr7 must not be set */ for (i = 0; i < 4; i++) { if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02) return (EINVAL); if (td->td_frame->tf_cs == _ucode32sel && DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8) return (EINVAL); } if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 || (dbregs->dr[7] & 0xffffffff00000000ul) != 0) return (EINVAL); pcb = td->td_pcb; /* * Don't let a process set a breakpoint that is not within the * process's address space. If a process could do this, it * could halt the system by setting a breakpoint in the kernel * (if ddb was enabled). Thus, we need to check to make sure * that no breakpoints are being enabled for addresses outside * process's address space. * * XXX - what about when the watched area of the user's * address space is written into from within the kernel * ... wouldn't that still cause a breakpoint to be generated * from within kernel mode? */ if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) { /* dr0 is enabled */ if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) { /* dr1 is enabled */ if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) { /* dr2 is enabled */ if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) { /* dr3 is enabled */ if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS) return (EINVAL); } pcb->pcb_dr0 = dbregs->dr[0]; pcb->pcb_dr1 = dbregs->dr[1]; pcb->pcb_dr2 = dbregs->dr[2]; pcb->pcb_dr3 = dbregs->dr[3]; pcb->pcb_dr6 = dbregs->dr[6]; pcb->pcb_dr7 = dbregs->dr[7]; set_pcb_flags(pcb, PCB_DBREGS); } return (0); } void reset_dbregs(void) { load_dr7(0); /* Turn off the control bits first */ load_dr0(0); load_dr1(0); load_dr2(0); load_dr3(0); load_dr6(0); } /* * Return > 0 if a hardware breakpoint has been hit, and the * breakpoint was in user space. Return 0, otherwise. */ int user_dbreg_trap(void) { u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */ u_int64_t bp; /* breakpoint bits extracted from dr6 */ int nbp; /* number of breakpoints that triggered */ caddr_t addr[4]; /* breakpoint addresses */ int i; dr7 = rdr7(); if ((dr7 & 0x000000ff) == 0) { /* * all GE and LE bits in the dr7 register are zero, * thus the trap couldn't have been caused by the * hardware debug registers */ return 0; } nbp = 0; dr6 = rdr6(); bp = dr6 & 0x0000000f; if (!bp) { /* * None of the breakpoint bits are set meaning this * trap was not caused by any of the debug registers */ return 0; } /* * at least one of the breakpoints were hit, check to see * which ones and if any of them are user space addresses */ if (bp & 0x01) { addr[nbp++] = (caddr_t)rdr0(); } if (bp & 0x02) { addr[nbp++] = (caddr_t)rdr1(); } if (bp & 0x04) { addr[nbp++] = (caddr_t)rdr2(); } if (bp & 0x08) { addr[nbp++] = (caddr_t)rdr3(); } for (i = 0; i < nbp; i++) { if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) { /* * addr[i] is in user space */ return nbp; } } /* * None of the breakpoints are in user space. */ return 0; } #ifdef KDB /* * Provide inb() and outb() as functions. They are normally only available as * inline functions, thus cannot be called from the debugger. */ /* silence compiler warnings */ u_char inb_(u_short); void outb_(u_short, u_char); u_char inb_(u_short port) { return inb(port); } void outb_(u_short port, u_char data) { outb(port, data); } #endif /* KDB */