Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urio/@/amd64/compile/hs32/modules/usr/src/sys/modules/rdma/iwcm/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urio/@/amd64/compile/hs32/modules/usr/src/sys/modules/rdma/iwcm/@/contrib/octeon-sdk/cvmx-pcieepx-defs.h |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * cvmx-pcieepx-defs.h * * Configuration and status register (CSR) type definitions for * Octeon pcieepx. * * This file is auto generated. Do not edit. * * <hr>$Revision$<hr> * */ #ifndef __CVMX_PCIEEPX_TYPEDEFS_H__ #define __CVMX_PCIEEPX_TYPEDEFS_H__ #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG000(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG000(%lu) is invalid on this chip\n", block_id); return 0x0000000000000000ull; } #else #define CVMX_PCIEEPX_CFG000(block_id) (0x0000000000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG001(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG001(%lu) is invalid on this chip\n", block_id); return 0x0000000000000004ull; } #else #define CVMX_PCIEEPX_CFG001(block_id) (0x0000000000000004ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG002(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG002(%lu) is invalid on this chip\n", block_id); return 0x0000000000000008ull; } #else #define CVMX_PCIEEPX_CFG002(block_id) (0x0000000000000008ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG003(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG003(%lu) is invalid on this chip\n", block_id); return 0x000000000000000Cull; } #else #define CVMX_PCIEEPX_CFG003(block_id) (0x000000000000000Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG004(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG004(%lu) is invalid on this chip\n", block_id); return 0x0000000000000010ull; } #else #define CVMX_PCIEEPX_CFG004(block_id) (0x0000000000000010ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG004_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG004_MASK(%lu) is invalid on this chip\n", block_id); return 0x0000000080000010ull; } #else #define CVMX_PCIEEPX_CFG004_MASK(block_id) (0x0000000080000010ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG005(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG005(%lu) is invalid on this chip\n", block_id); return 0x0000000000000014ull; } #else #define CVMX_PCIEEPX_CFG005(block_id) (0x0000000000000014ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG005_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG005_MASK(%lu) is invalid on this chip\n", block_id); return 0x0000000080000014ull; } #else #define CVMX_PCIEEPX_CFG005_MASK(block_id) (0x0000000080000014ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG006(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG006(%lu) is invalid on this chip\n", block_id); return 0x0000000000000018ull; } #else #define CVMX_PCIEEPX_CFG006(block_id) (0x0000000000000018ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG006_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG006_MASK(%lu) is invalid on this chip\n", block_id); return 0x0000000080000018ull; } #else #define CVMX_PCIEEPX_CFG006_MASK(block_id) (0x0000000080000018ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG007(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG007(%lu) is invalid on this chip\n", block_id); return 0x000000000000001Cull; } #else #define CVMX_PCIEEPX_CFG007(block_id) (0x000000000000001Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG007_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG007_MASK(%lu) is invalid on this chip\n", block_id); return 0x000000008000001Cull; } #else #define CVMX_PCIEEPX_CFG007_MASK(block_id) (0x000000008000001Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG008(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG008(%lu) is invalid on this chip\n", block_id); return 0x0000000000000020ull; } #else #define CVMX_PCIEEPX_CFG008(block_id) (0x0000000000000020ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG008_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG008_MASK(%lu) is invalid on this chip\n", block_id); return 0x0000000080000020ull; } #else #define CVMX_PCIEEPX_CFG008_MASK(block_id) (0x0000000080000020ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG009(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG009(%lu) is invalid on this chip\n", block_id); return 0x0000000000000024ull; } #else #define CVMX_PCIEEPX_CFG009(block_id) (0x0000000000000024ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG009_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG009_MASK(%lu) is invalid on this chip\n", block_id); return 0x0000000080000024ull; } #else #define CVMX_PCIEEPX_CFG009_MASK(block_id) (0x0000000080000024ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG010(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG010(%lu) is invalid on this chip\n", block_id); return 0x0000000000000028ull; } #else #define CVMX_PCIEEPX_CFG010(block_id) (0x0000000000000028ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG011(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG011(%lu) is invalid on this chip\n", block_id); return 0x000000000000002Cull; } #else #define CVMX_PCIEEPX_CFG011(block_id) (0x000000000000002Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG012(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG012(%lu) is invalid on this chip\n", block_id); return 0x0000000000000030ull; } #else #define CVMX_PCIEEPX_CFG012(block_id) (0x0000000000000030ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG012_MASK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG012_MASK(%lu) is invalid on this chip\n", block_id); return 0x0000000080000030ull; } #else #define CVMX_PCIEEPX_CFG012_MASK(block_id) (0x0000000080000030ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG013(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG013(%lu) is invalid on this chip\n", block_id); return 0x0000000000000034ull; } #else #define CVMX_PCIEEPX_CFG013(block_id) (0x0000000000000034ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG015(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG015(%lu) is invalid on this chip\n", block_id); return 0x000000000000003Cull; } #else #define CVMX_PCIEEPX_CFG015(block_id) (0x000000000000003Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG016(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG016(%lu) is invalid on this chip\n", block_id); return 0x0000000000000040ull; } #else #define CVMX_PCIEEPX_CFG016(block_id) (0x0000000000000040ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG017(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG017(%lu) is invalid on this chip\n", block_id); return 0x0000000000000044ull; } #else #define CVMX_PCIEEPX_CFG017(block_id) (0x0000000000000044ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG020(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG020(%lu) is invalid on this chip\n", block_id); return 0x0000000000000050ull; } #else #define CVMX_PCIEEPX_CFG020(block_id) (0x0000000000000050ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG021(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG021(%lu) is invalid on this chip\n", block_id); return 0x0000000000000054ull; } #else #define CVMX_PCIEEPX_CFG021(block_id) (0x0000000000000054ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG022(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG022(%lu) is invalid on this chip\n", block_id); return 0x0000000000000058ull; } #else #define CVMX_PCIEEPX_CFG022(block_id) (0x0000000000000058ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG023(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG023(%lu) is invalid on this chip\n", block_id); return 0x000000000000005Cull; } #else #define CVMX_PCIEEPX_CFG023(block_id) (0x000000000000005Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG028(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG028(%lu) is invalid on this chip\n", block_id); return 0x0000000000000070ull; } #else #define CVMX_PCIEEPX_CFG028(block_id) (0x0000000000000070ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG029(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG029(%lu) is invalid on this chip\n", block_id); return 0x0000000000000074ull; } #else #define CVMX_PCIEEPX_CFG029(block_id) (0x0000000000000074ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG030(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG030(%lu) is invalid on this chip\n", block_id); return 0x0000000000000078ull; } #else #define CVMX_PCIEEPX_CFG030(block_id) (0x0000000000000078ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG031(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG031(%lu) is invalid on this chip\n", block_id); return 0x000000000000007Cull; } #else #define CVMX_PCIEEPX_CFG031(block_id) (0x000000000000007Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG032(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG032(%lu) is invalid on this chip\n", block_id); return 0x0000000000000080ull; } #else #define CVMX_PCIEEPX_CFG032(block_id) (0x0000000000000080ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG033(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG033(%lu) is invalid on this chip\n", block_id); return 0x0000000000000084ull; } #else #define CVMX_PCIEEPX_CFG033(block_id) (0x0000000000000084ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG034(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG034(%lu) is invalid on this chip\n", block_id); return 0x0000000000000088ull; } #else #define CVMX_PCIEEPX_CFG034(block_id) (0x0000000000000088ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG037(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG037(%lu) is invalid on this chip\n", block_id); return 0x0000000000000094ull; } #else #define CVMX_PCIEEPX_CFG037(block_id) (0x0000000000000094ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG038(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG038(%lu) is invalid on this chip\n", block_id); return 0x0000000000000098ull; } #else #define CVMX_PCIEEPX_CFG038(block_id) (0x0000000000000098ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG039(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG039(%lu) is invalid on this chip\n", block_id); return 0x000000000000009Cull; } #else #define CVMX_PCIEEPX_CFG039(block_id) (0x000000000000009Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG040(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG040(%lu) is invalid on this chip\n", block_id); return 0x00000000000000A0ull; } #else #define CVMX_PCIEEPX_CFG040(block_id) (0x00000000000000A0ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG041(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG041(%lu) is invalid on this chip\n", block_id); return 0x00000000000000A4ull; } #else #define CVMX_PCIEEPX_CFG041(block_id) (0x00000000000000A4ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG042(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG042(%lu) is invalid on this chip\n", block_id); return 0x00000000000000A8ull; } #else #define CVMX_PCIEEPX_CFG042(block_id) (0x00000000000000A8ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG064(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG064(%lu) is invalid on this chip\n", block_id); return 0x0000000000000100ull; } #else #define CVMX_PCIEEPX_CFG064(block_id) (0x0000000000000100ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG065(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG065(%lu) is invalid on this chip\n", block_id); return 0x0000000000000104ull; } #else #define CVMX_PCIEEPX_CFG065(block_id) (0x0000000000000104ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG066(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG066(%lu) is invalid on this chip\n", block_id); return 0x0000000000000108ull; } #else #define CVMX_PCIEEPX_CFG066(block_id) (0x0000000000000108ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG067(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG067(%lu) is invalid on this chip\n", block_id); return 0x000000000000010Cull; } #else #define CVMX_PCIEEPX_CFG067(block_id) (0x000000000000010Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG068(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG068(%lu) is invalid on this chip\n", block_id); return 0x0000000000000110ull; } #else #define CVMX_PCIEEPX_CFG068(block_id) (0x0000000000000110ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG069(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG069(%lu) is invalid on this chip\n", block_id); return 0x0000000000000114ull; } #else #define CVMX_PCIEEPX_CFG069(block_id) (0x0000000000000114ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG070(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG070(%lu) is invalid on this chip\n", block_id); return 0x0000000000000118ull; } #else #define CVMX_PCIEEPX_CFG070(block_id) (0x0000000000000118ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG071(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG071(%lu) is invalid on this chip\n", block_id); return 0x000000000000011Cull; } #else #define CVMX_PCIEEPX_CFG071(block_id) (0x000000000000011Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG072(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG072(%lu) is invalid on this chip\n", block_id); return 0x0000000000000120ull; } #else #define CVMX_PCIEEPX_CFG072(block_id) (0x0000000000000120ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG073(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG073(%lu) is invalid on this chip\n", block_id); return 0x0000000000000124ull; } #else #define CVMX_PCIEEPX_CFG073(block_id) (0x0000000000000124ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG074(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG074(%lu) is invalid on this chip\n", block_id); return 0x0000000000000128ull; } #else #define CVMX_PCIEEPX_CFG074(block_id) (0x0000000000000128ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG448(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG448(%lu) is invalid on this chip\n", block_id); return 0x0000000000000700ull; } #else #define CVMX_PCIEEPX_CFG448(block_id) (0x0000000000000700ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG449(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG449(%lu) is invalid on this chip\n", block_id); return 0x0000000000000704ull; } #else #define CVMX_PCIEEPX_CFG449(block_id) (0x0000000000000704ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG450(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG450(%lu) is invalid on this chip\n", block_id); return 0x0000000000000708ull; } #else #define CVMX_PCIEEPX_CFG450(block_id) (0x0000000000000708ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG451(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG451(%lu) is invalid on this chip\n", block_id); return 0x000000000000070Cull; } #else #define CVMX_PCIEEPX_CFG451(block_id) (0x000000000000070Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG452(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG452(%lu) is invalid on this chip\n", block_id); return 0x0000000000000710ull; } #else #define CVMX_PCIEEPX_CFG452(block_id) (0x0000000000000710ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG453(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG453(%lu) is invalid on this chip\n", block_id); return 0x0000000000000714ull; } #else #define CVMX_PCIEEPX_CFG453(block_id) (0x0000000000000714ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG454(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG454(%lu) is invalid on this chip\n", block_id); return 0x0000000000000718ull; } #else #define CVMX_PCIEEPX_CFG454(block_id) (0x0000000000000718ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG455(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG455(%lu) is invalid on this chip\n", block_id); return 0x000000000000071Cull; } #else #define CVMX_PCIEEPX_CFG455(block_id) (0x000000000000071Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG456(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG456(%lu) is invalid on this chip\n", block_id); return 0x0000000000000720ull; } #else #define CVMX_PCIEEPX_CFG456(block_id) (0x0000000000000720ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG458(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG458(%lu) is invalid on this chip\n", block_id); return 0x0000000000000728ull; } #else #define CVMX_PCIEEPX_CFG458(block_id) (0x0000000000000728ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG459(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG459(%lu) is invalid on this chip\n", block_id); return 0x000000000000072Cull; } #else #define CVMX_PCIEEPX_CFG459(block_id) (0x000000000000072Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG460(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG460(%lu) is invalid on this chip\n", block_id); return 0x0000000000000730ull; } #else #define CVMX_PCIEEPX_CFG460(block_id) (0x0000000000000730ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG461(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG461(%lu) is invalid on this chip\n", block_id); return 0x0000000000000734ull; } #else #define CVMX_PCIEEPX_CFG461(block_id) (0x0000000000000734ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG462(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG462(%lu) is invalid on this chip\n", block_id); return 0x0000000000000738ull; } #else #define CVMX_PCIEEPX_CFG462(block_id) (0x0000000000000738ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG463(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG463(%lu) is invalid on this chip\n", block_id); return 0x000000000000073Cull; } #else #define CVMX_PCIEEPX_CFG463(block_id) (0x000000000000073Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG464(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG464(%lu) is invalid on this chip\n", block_id); return 0x0000000000000740ull; } #else #define CVMX_PCIEEPX_CFG464(block_id) (0x0000000000000740ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG465(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG465(%lu) is invalid on this chip\n", block_id); return 0x0000000000000744ull; } #else #define CVMX_PCIEEPX_CFG465(block_id) (0x0000000000000744ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG466(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG466(%lu) is invalid on this chip\n", block_id); return 0x0000000000000748ull; } #else #define CVMX_PCIEEPX_CFG466(block_id) (0x0000000000000748ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG467(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG467(%lu) is invalid on this chip\n", block_id); return 0x000000000000074Cull; } #else #define CVMX_PCIEEPX_CFG467(block_id) (0x000000000000074Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG468(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG468(%lu) is invalid on this chip\n", block_id); return 0x0000000000000750ull; } #else #define CVMX_PCIEEPX_CFG468(block_id) (0x0000000000000750ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG490(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG490(%lu) is invalid on this chip\n", block_id); return 0x00000000000007A8ull; } #else #define CVMX_PCIEEPX_CFG490(block_id) (0x00000000000007A8ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG491(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG491(%lu) is invalid on this chip\n", block_id); return 0x00000000000007ACull; } #else #define CVMX_PCIEEPX_CFG491(block_id) (0x00000000000007ACull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG492(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG492(%lu) is invalid on this chip\n", block_id); return 0x00000000000007B0ull; } #else #define CVMX_PCIEEPX_CFG492(block_id) (0x00000000000007B0ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG515(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG515(%lu) is invalid on this chip\n", block_id); return 0x000000000000080Cull; } #else #define CVMX_PCIEEPX_CFG515(block_id) (0x000000000000080Cull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG516(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG516(%lu) is invalid on this chip\n", block_id); return 0x0000000000000810ull; } #else #define CVMX_PCIEEPX_CFG516(block_id) (0x0000000000000810ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_PCIEEPX_CFG517(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id <= 1))))) cvmx_warn("CVMX_PCIEEPX_CFG517(%lu) is invalid on this chip\n", block_id); return 0x0000000000000814ull; } #else #define CVMX_PCIEEPX_CFG517(block_id) (0x0000000000000814ull) #endif /** * cvmx_pcieep#_cfg000 * * PCIE_CFG000 = First 32-bits of PCIE type 0 config space (Device ID and Vendor ID Register) * */ union cvmx_pcieepx_cfg000 { uint32_t u32; struct cvmx_pcieepx_cfg000_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t devid : 16; /**< Device ID, writable through PEM(0..1)_CFG_WR However, the application must not change this field. For EEPROM loads also see VENDID of this register. */ uint32_t vendid : 16; /**< Vendor ID, writable through PEM(0..1)_CFG_WR However, the application must not change this field. During and EPROM Load is a value of 0xFFFF is loaded to this field and a value of 0xFFFF is loaded to the DEVID field of this register, the value will not be loaded, EEPROM load will stop, and the FastLinkEnable bit will be set in the PCIE_CFG452 register. */ #else uint32_t vendid : 16; uint32_t devid : 16; #endif } s; struct cvmx_pcieepx_cfg000_s cn52xx; struct cvmx_pcieepx_cfg000_s cn52xxp1; struct cvmx_pcieepx_cfg000_s cn56xx; struct cvmx_pcieepx_cfg000_s cn56xxp1; struct cvmx_pcieepx_cfg000_s cn63xx; struct cvmx_pcieepx_cfg000_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg000 cvmx_pcieepx_cfg000_t; /** * cvmx_pcieep#_cfg001 * * PCIE_CFG001 = Second 32-bits of PCIE type 0 config space (Command/Status Register) * */ union cvmx_pcieepx_cfg001 { uint32_t u32; struct cvmx_pcieepx_cfg001_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dpe : 1; /**< Detected Parity Error */ uint32_t sse : 1; /**< Signaled System Error */ uint32_t rma : 1; /**< Received Master Abort */ uint32_t rta : 1; /**< Received Target Abort */ uint32_t sta : 1; /**< Signaled Target Abort */ uint32_t devt : 2; /**< DEVSEL Timing Not applicable for PCI Express. Hardwired to 0. */ uint32_t mdpe : 1; /**< Master Data Parity Error */ uint32_t fbb : 1; /**< Fast Back-to-Back Capable Not applicable for PCI Express. Hardwired to 0. */ uint32_t reserved_22_22 : 1; uint32_t m66 : 1; /**< 66 MHz Capable Not applicable for PCI Express. Hardwired to 0. */ uint32_t cl : 1; /**< Capabilities List Indicates presence of an extended capability item. Hardwired to 1. */ uint32_t i_stat : 1; /**< INTx Status */ uint32_t reserved_11_18 : 8; uint32_t i_dis : 1; /**< INTx Assertion Disable */ uint32_t fbbe : 1; /**< Fast Back-to-Back Enable Not applicable for PCI Express. Must be hardwired to 0. */ uint32_t see : 1; /**< SERR# Enable */ uint32_t ids_wcc : 1; /**< IDSEL Stepping/Wait Cycle Control Not applicable for PCI Express. Must be hardwired to 0 */ uint32_t per : 1; /**< Parity Error Response */ uint32_t vps : 1; /**< VGA Palette Snoop Not applicable for PCI Express. Must be hardwired to 0. */ uint32_t mwice : 1; /**< Memory Write and Invalidate Not applicable for PCI Express. Must be hardwired to 0. */ uint32_t scse : 1; /**< Special Cycle Enable Not applicable for PCI Express. Must be hardwired to 0. */ uint32_t me : 1; /**< Bus Master Enable */ uint32_t msae : 1; /**< Memory Space Enable */ uint32_t isae : 1; /**< I/O Space Enable */ #else uint32_t isae : 1; uint32_t msae : 1; uint32_t me : 1; uint32_t scse : 1; uint32_t mwice : 1; uint32_t vps : 1; uint32_t per : 1; uint32_t ids_wcc : 1; uint32_t see : 1; uint32_t fbbe : 1; uint32_t i_dis : 1; uint32_t reserved_11_18 : 8; uint32_t i_stat : 1; uint32_t cl : 1; uint32_t m66 : 1; uint32_t reserved_22_22 : 1; uint32_t fbb : 1; uint32_t mdpe : 1; uint32_t devt : 2; uint32_t sta : 1; uint32_t rta : 1; uint32_t rma : 1; uint32_t sse : 1; uint32_t dpe : 1; #endif } s; struct cvmx_pcieepx_cfg001_s cn52xx; struct cvmx_pcieepx_cfg001_s cn52xxp1; struct cvmx_pcieepx_cfg001_s cn56xx; struct cvmx_pcieepx_cfg001_s cn56xxp1; struct cvmx_pcieepx_cfg001_s cn63xx; struct cvmx_pcieepx_cfg001_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg001 cvmx_pcieepx_cfg001_t; /** * cvmx_pcieep#_cfg002 * * PCIE_CFG002 = Third 32-bits of PCIE type 0 config space (Revision ID/Class Code Register) * */ union cvmx_pcieepx_cfg002 { uint32_t u32; struct cvmx_pcieepx_cfg002_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t bcc : 8; /**< Base Class Code, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t sc : 8; /**< Subclass Code, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t pi : 8; /**< Programming Interface, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t rid : 8; /**< Revision ID, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ #else uint32_t rid : 8; uint32_t pi : 8; uint32_t sc : 8; uint32_t bcc : 8; #endif } s; struct cvmx_pcieepx_cfg002_s cn52xx; struct cvmx_pcieepx_cfg002_s cn52xxp1; struct cvmx_pcieepx_cfg002_s cn56xx; struct cvmx_pcieepx_cfg002_s cn56xxp1; struct cvmx_pcieepx_cfg002_s cn63xx; struct cvmx_pcieepx_cfg002_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg002 cvmx_pcieepx_cfg002_t; /** * cvmx_pcieep#_cfg003 * * PCIE_CFG003 = Fourth 32-bits of PCIE type 0 config space (Cache Line Size/Master Latency Timer/Header Type Register/BIST Register) * */ union cvmx_pcieepx_cfg003 { uint32_t u32; struct cvmx_pcieepx_cfg003_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t bist : 8; /**< The BIST register functions are not supported. All 8 bits of the BIST register are hardwired to 0. */ uint32_t mfd : 1; /**< Multi Function Device The Multi Function Device bit is writable through PEM(0..1)_CFG_WR. However, this is a single function device. Therefore, the application must not write a 1 to this bit. */ uint32_t chf : 7; /**< Configuration Header Format Hardwired to 0 for type 0. */ uint32_t lt : 8; /**< Master Latency Timer Not applicable for PCI Express, hardwired to 0. */ uint32_t cls : 8; /**< Cache Line Size The Cache Line Size register is RW for legacy compatibility purposes and is not applicable to PCI Express device functionality. Writing to the Cache Line Size register does not impact functionality. */ #else uint32_t cls : 8; uint32_t lt : 8; uint32_t chf : 7; uint32_t mfd : 1; uint32_t bist : 8; #endif } s; struct cvmx_pcieepx_cfg003_s cn52xx; struct cvmx_pcieepx_cfg003_s cn52xxp1; struct cvmx_pcieepx_cfg003_s cn56xx; struct cvmx_pcieepx_cfg003_s cn56xxp1; struct cvmx_pcieepx_cfg003_s cn63xx; struct cvmx_pcieepx_cfg003_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg003 cvmx_pcieepx_cfg003_t; /** * cvmx_pcieep#_cfg004 * * PCIE_CFG004 = Fifth 32-bits of PCIE type 0 config space (Base Address Register 0 - Low) * */ union cvmx_pcieepx_cfg004 { uint32_t u32; struct cvmx_pcieepx_cfg004_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lbab : 18; /**< Lower bits of the BAR 0 base address */ uint32_t reserved_4_13 : 10; uint32_t pf : 1; /**< Prefetchable This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t typ : 2; /**< BAR type o 00 = 32-bit BAR o 10 = 64-bit BAR This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t mspc : 1; /**< Memory Space Indicator o 0 = BAR 0 is a memory BAR o 1 = BAR 0 is an I/O BAR This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t mspc : 1; uint32_t typ : 2; uint32_t pf : 1; uint32_t reserved_4_13 : 10; uint32_t lbab : 18; #endif } s; struct cvmx_pcieepx_cfg004_s cn52xx; struct cvmx_pcieepx_cfg004_s cn52xxp1; struct cvmx_pcieepx_cfg004_s cn56xx; struct cvmx_pcieepx_cfg004_s cn56xxp1; struct cvmx_pcieepx_cfg004_s cn63xx; struct cvmx_pcieepx_cfg004_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg004 cvmx_pcieepx_cfg004_t; /** * cvmx_pcieep#_cfg004_mask * * PCIE_CFG004_MASK (BAR Mask 0 - Low) * The BAR 0 Mask register is invisible to host software and not readable from the application. * The BAR 0 Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg004_mask { uint32_t u32; struct cvmx_pcieepx_cfg004_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lmask : 31; /**< Bar Mask Low */ uint32_t enb : 1; /**< Bar Enable o 0: BAR 0 is disabled o 1: BAR 0 is enabled Bit 0 is interpreted as BAR Enable when writing to the BAR Mask register rather than as a mask bit because bit 0 of a BAR is always masked from writing by host software. Bit 0 must be written prior to writing the other mask bits. */ #else uint32_t enb : 1; uint32_t lmask : 31; #endif } s; struct cvmx_pcieepx_cfg004_mask_s cn52xx; struct cvmx_pcieepx_cfg004_mask_s cn52xxp1; struct cvmx_pcieepx_cfg004_mask_s cn56xx; struct cvmx_pcieepx_cfg004_mask_s cn56xxp1; struct cvmx_pcieepx_cfg004_mask_s cn63xx; struct cvmx_pcieepx_cfg004_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg004_mask cvmx_pcieepx_cfg004_mask_t; /** * cvmx_pcieep#_cfg005 * * PCIE_CFG005 = Sixth 32-bits of PCIE type 0 config space (Base Address Register 0 - High) * */ union cvmx_pcieepx_cfg005 { uint32_t u32; struct cvmx_pcieepx_cfg005_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ubab : 32; /**< Contains the upper 32 bits of the BAR 0 base address. */ #else uint32_t ubab : 32; #endif } s; struct cvmx_pcieepx_cfg005_s cn52xx; struct cvmx_pcieepx_cfg005_s cn52xxp1; struct cvmx_pcieepx_cfg005_s cn56xx; struct cvmx_pcieepx_cfg005_s cn56xxp1; struct cvmx_pcieepx_cfg005_s cn63xx; struct cvmx_pcieepx_cfg005_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg005 cvmx_pcieepx_cfg005_t; /** * cvmx_pcieep#_cfg005_mask * * PCIE_CFG005_MASK = (BAR Mask 0 - High) * The BAR 0 Mask register is invisible to host software and not readable from the application. * The BAR 0 Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg005_mask { uint32_t u32; struct cvmx_pcieepx_cfg005_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t umask : 32; /**< Bar Mask High */ #else uint32_t umask : 32; #endif } s; struct cvmx_pcieepx_cfg005_mask_s cn52xx; struct cvmx_pcieepx_cfg005_mask_s cn52xxp1; struct cvmx_pcieepx_cfg005_mask_s cn56xx; struct cvmx_pcieepx_cfg005_mask_s cn56xxp1; struct cvmx_pcieepx_cfg005_mask_s cn63xx; struct cvmx_pcieepx_cfg005_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg005_mask cvmx_pcieepx_cfg005_mask_t; /** * cvmx_pcieep#_cfg006 * * PCIE_CFG006 = Seventh 32-bits of PCIE type 0 config space (Base Address Register 1 - Low) * */ union cvmx_pcieepx_cfg006 { uint32_t u32; struct cvmx_pcieepx_cfg006_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lbab : 6; /**< Lower bits of the BAR 1 base address */ uint32_t reserved_4_25 : 22; uint32_t pf : 1; /**< Prefetchable This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t typ : 2; /**< BAR type o 00 = 32-bit BAR o 10 = 64-bit BAR This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t mspc : 1; /**< Memory Space Indicator o 0 = BAR 0 is a memory BAR o 1 = BAR 0 is an I/O BAR This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t mspc : 1; uint32_t typ : 2; uint32_t pf : 1; uint32_t reserved_4_25 : 22; uint32_t lbab : 6; #endif } s; struct cvmx_pcieepx_cfg006_s cn52xx; struct cvmx_pcieepx_cfg006_s cn52xxp1; struct cvmx_pcieepx_cfg006_s cn56xx; struct cvmx_pcieepx_cfg006_s cn56xxp1; struct cvmx_pcieepx_cfg006_s cn63xx; struct cvmx_pcieepx_cfg006_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg006 cvmx_pcieepx_cfg006_t; /** * cvmx_pcieep#_cfg006_mask * * PCIE_CFG006_MASK (BAR Mask 1 - Low) * The BAR 1 Mask register is invisible to host software and not readable from the application. * The BAR 1 Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg006_mask { uint32_t u32; struct cvmx_pcieepx_cfg006_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lmask : 31; /**< Bar Mask Low */ uint32_t enb : 1; /**< Bar Enable o 0: BAR 1 is disabled o 1: BAR 1 is enabled Bit 0 is interpreted as BAR Enable when writing to the BAR Mask register rather than as a mask bit because bit 0 of a BAR is always masked from writing by host software. Bit 0 must be written prior to writing the other mask bits. */ #else uint32_t enb : 1; uint32_t lmask : 31; #endif } s; struct cvmx_pcieepx_cfg006_mask_s cn52xx; struct cvmx_pcieepx_cfg006_mask_s cn52xxp1; struct cvmx_pcieepx_cfg006_mask_s cn56xx; struct cvmx_pcieepx_cfg006_mask_s cn56xxp1; struct cvmx_pcieepx_cfg006_mask_s cn63xx; struct cvmx_pcieepx_cfg006_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg006_mask cvmx_pcieepx_cfg006_mask_t; /** * cvmx_pcieep#_cfg007 * * PCIE_CFG007 = Eighth 32-bits of PCIE type 0 config space (Base Address Register 1 - High) * */ union cvmx_pcieepx_cfg007 { uint32_t u32; struct cvmx_pcieepx_cfg007_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ubab : 32; /**< Contains the upper 32 bits of the BAR 1 base address. */ #else uint32_t ubab : 32; #endif } s; struct cvmx_pcieepx_cfg007_s cn52xx; struct cvmx_pcieepx_cfg007_s cn52xxp1; struct cvmx_pcieepx_cfg007_s cn56xx; struct cvmx_pcieepx_cfg007_s cn56xxp1; struct cvmx_pcieepx_cfg007_s cn63xx; struct cvmx_pcieepx_cfg007_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg007 cvmx_pcieepx_cfg007_t; /** * cvmx_pcieep#_cfg007_mask * * PCIE_CFG007_MASK (BAR Mask 1 - High) * The BAR 1 Mask register is invisible to host software and not readable from the application. * The BAR 1 Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg007_mask { uint32_t u32; struct cvmx_pcieepx_cfg007_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t umask : 32; /**< Bar Mask High */ #else uint32_t umask : 32; #endif } s; struct cvmx_pcieepx_cfg007_mask_s cn52xx; struct cvmx_pcieepx_cfg007_mask_s cn52xxp1; struct cvmx_pcieepx_cfg007_mask_s cn56xx; struct cvmx_pcieepx_cfg007_mask_s cn56xxp1; struct cvmx_pcieepx_cfg007_mask_s cn63xx; struct cvmx_pcieepx_cfg007_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg007_mask cvmx_pcieepx_cfg007_mask_t; /** * cvmx_pcieep#_cfg008 * * PCIE_CFG008 = Ninth 32-bits of PCIE type 0 config space (Base Address Register 2 - Low) * */ union cvmx_pcieepx_cfg008 { uint32_t u32; struct cvmx_pcieepx_cfg008_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_4_31 : 28; uint32_t pf : 1; /**< Prefetchable This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t typ : 2; /**< BAR type o 00 = 32-bit BAR o 10 = 64-bit BAR This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t mspc : 1; /**< Memory Space Indicator o 0 = BAR 0 is a memory BAR o 1 = BAR 0 is an I/O BAR This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t mspc : 1; uint32_t typ : 2; uint32_t pf : 1; uint32_t reserved_4_31 : 28; #endif } s; struct cvmx_pcieepx_cfg008_s cn52xx; struct cvmx_pcieepx_cfg008_s cn52xxp1; struct cvmx_pcieepx_cfg008_s cn56xx; struct cvmx_pcieepx_cfg008_s cn56xxp1; struct cvmx_pcieepx_cfg008_s cn63xx; struct cvmx_pcieepx_cfg008_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg008 cvmx_pcieepx_cfg008_t; /** * cvmx_pcieep#_cfg008_mask * * PCIE_CFG008_MASK (BAR Mask 2 - Low) * The BAR 2 Mask register is invisible to host software and not readable from the application. * The BAR 2 Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg008_mask { uint32_t u32; struct cvmx_pcieepx_cfg008_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lmask : 31; /**< Bar Mask Low */ uint32_t enb : 1; /**< Bar Enable o 0: BAR 2 is disabled o 1: BAR 2 is enabled Bit 0 is interpreted as BAR Enable when writing to the BAR Mask register rather than as a mask bit because bit 0 of a BAR is always masked from writing by host software. Bit 0 must be written prior to writing the other mask bits. */ #else uint32_t enb : 1; uint32_t lmask : 31; #endif } s; struct cvmx_pcieepx_cfg008_mask_s cn52xx; struct cvmx_pcieepx_cfg008_mask_s cn52xxp1; struct cvmx_pcieepx_cfg008_mask_s cn56xx; struct cvmx_pcieepx_cfg008_mask_s cn56xxp1; struct cvmx_pcieepx_cfg008_mask_s cn63xx; struct cvmx_pcieepx_cfg008_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg008_mask cvmx_pcieepx_cfg008_mask_t; /** * cvmx_pcieep#_cfg009 * * PCIE_CFG009 = Tenth 32-bits of PCIE type 0 config space (Base Address Register 2 - High) * */ union cvmx_pcieepx_cfg009 { uint32_t u32; struct cvmx_pcieepx_cfg009_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_0_31 : 32; #else uint32_t reserved_0_31 : 32; #endif } s; struct cvmx_pcieepx_cfg009_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ubab : 25; /**< Contains the upper 32 bits of the BAR 2 base address. */ uint32_t reserved_0_6 : 7; #else uint32_t reserved_0_6 : 7; uint32_t ubab : 25; #endif } cn52xx; struct cvmx_pcieepx_cfg009_cn52xx cn52xxp1; struct cvmx_pcieepx_cfg009_cn52xx cn56xx; struct cvmx_pcieepx_cfg009_cn52xx cn56xxp1; struct cvmx_pcieepx_cfg009_cn63xx { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ubab : 23; /**< Contains the upper 32 bits of the BAR 2 base address. */ uint32_t reserved_0_8 : 9; #else uint32_t reserved_0_8 : 9; uint32_t ubab : 23; #endif } cn63xx; struct cvmx_pcieepx_cfg009_cn63xx cn63xxp1; }; typedef union cvmx_pcieepx_cfg009 cvmx_pcieepx_cfg009_t; /** * cvmx_pcieep#_cfg009_mask * * PCIE_CFG009_MASK (BAR Mask 2 - High) * The BAR 2 Mask register is invisible to host software and not readable from the application. * The BAR 2 Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg009_mask { uint32_t u32; struct cvmx_pcieepx_cfg009_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t umask : 32; /**< Bar Mask High */ #else uint32_t umask : 32; #endif } s; struct cvmx_pcieepx_cfg009_mask_s cn52xx; struct cvmx_pcieepx_cfg009_mask_s cn52xxp1; struct cvmx_pcieepx_cfg009_mask_s cn56xx; struct cvmx_pcieepx_cfg009_mask_s cn56xxp1; struct cvmx_pcieepx_cfg009_mask_s cn63xx; struct cvmx_pcieepx_cfg009_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg009_mask cvmx_pcieepx_cfg009_mask_t; /** * cvmx_pcieep#_cfg010 * * PCIE_CFG010 = Eleventh 32-bits of PCIE type 0 config space (CardBus CIS Pointer Register) * */ union cvmx_pcieepx_cfg010 { uint32_t u32; struct cvmx_pcieepx_cfg010_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t cisp : 32; /**< CardBus CIS Pointer Optional, writable through PEM(0..1)_CFG_WR. */ #else uint32_t cisp : 32; #endif } s; struct cvmx_pcieepx_cfg010_s cn52xx; struct cvmx_pcieepx_cfg010_s cn52xxp1; struct cvmx_pcieepx_cfg010_s cn56xx; struct cvmx_pcieepx_cfg010_s cn56xxp1; struct cvmx_pcieepx_cfg010_s cn63xx; struct cvmx_pcieepx_cfg010_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg010 cvmx_pcieepx_cfg010_t; /** * cvmx_pcieep#_cfg011 * * PCIE_CFG011 = Twelfth 32-bits of PCIE type 0 config space (Subsystem ID and Subsystem Vendor ID Register) * */ union cvmx_pcieepx_cfg011 { uint32_t u32; struct cvmx_pcieepx_cfg011_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ssid : 16; /**< Subsystem ID Assigned by PCI-SIG, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t ssvid : 16; /**< Subsystem Vendor ID Assigned by PCI-SIG, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t ssvid : 16; uint32_t ssid : 16; #endif } s; struct cvmx_pcieepx_cfg011_s cn52xx; struct cvmx_pcieepx_cfg011_s cn52xxp1; struct cvmx_pcieepx_cfg011_s cn56xx; struct cvmx_pcieepx_cfg011_s cn56xxp1; struct cvmx_pcieepx_cfg011_s cn63xx; struct cvmx_pcieepx_cfg011_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg011 cvmx_pcieepx_cfg011_t; /** * cvmx_pcieep#_cfg012 * * PCIE_CFG012 = Thirteenth 32-bits of PCIE type 0 config space (Expansion ROM Base Address Register) * */ union cvmx_pcieepx_cfg012 { uint32_t u32; struct cvmx_pcieepx_cfg012_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t eraddr : 16; /**< Expansion ROM Address */ uint32_t reserved_1_15 : 15; uint32_t er_en : 1; /**< Expansion ROM Enable */ #else uint32_t er_en : 1; uint32_t reserved_1_15 : 15; uint32_t eraddr : 16; #endif } s; struct cvmx_pcieepx_cfg012_s cn52xx; struct cvmx_pcieepx_cfg012_s cn52xxp1; struct cvmx_pcieepx_cfg012_s cn56xx; struct cvmx_pcieepx_cfg012_s cn56xxp1; struct cvmx_pcieepx_cfg012_s cn63xx; struct cvmx_pcieepx_cfg012_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg012 cvmx_pcieepx_cfg012_t; /** * cvmx_pcieep#_cfg012_mask * * PCIE_CFG012_MASK (Exapansion ROM BAR Mask) * The ROM Mask register is invisible to host software and not readable from the application. * The ROM Mask register is only writable through PEM(0..1)_CFG_WR. */ union cvmx_pcieepx_cfg012_mask { uint32_t u32; struct cvmx_pcieepx_cfg012_mask_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t mask : 31; /**< Bar Mask Low NS */ uint32_t enb : 1; /**< Bar Enable NS o 0: BAR ROM is disabled o 1: BAR ROM is enabled Bit 0 is interpreted as BAR Enable when writing to the BAR Mask register rather than as a mask bit because bit 0 of a BAR is always masked from writing by host software. Bit 0 must be written prior to writing the other mask bits. */ #else uint32_t enb : 1; uint32_t mask : 31; #endif } s; struct cvmx_pcieepx_cfg012_mask_s cn52xx; struct cvmx_pcieepx_cfg012_mask_s cn52xxp1; struct cvmx_pcieepx_cfg012_mask_s cn56xx; struct cvmx_pcieepx_cfg012_mask_s cn56xxp1; struct cvmx_pcieepx_cfg012_mask_s cn63xx; struct cvmx_pcieepx_cfg012_mask_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg012_mask cvmx_pcieepx_cfg012_mask_t; /** * cvmx_pcieep#_cfg013 * * PCIE_CFG013 = Fourteenth 32-bits of PCIE type 0 config space (Capability Pointer Register) * */ union cvmx_pcieepx_cfg013 { uint32_t u32; struct cvmx_pcieepx_cfg013_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_8_31 : 24; uint32_t cp : 8; /**< First Capability Pointer. Points to Power Management Capability structure by default, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t cp : 8; uint32_t reserved_8_31 : 24; #endif } s; struct cvmx_pcieepx_cfg013_s cn52xx; struct cvmx_pcieepx_cfg013_s cn52xxp1; struct cvmx_pcieepx_cfg013_s cn56xx; struct cvmx_pcieepx_cfg013_s cn56xxp1; struct cvmx_pcieepx_cfg013_s cn63xx; struct cvmx_pcieepx_cfg013_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg013 cvmx_pcieepx_cfg013_t; /** * cvmx_pcieep#_cfg015 * * PCIE_CFG015 = Sixteenth 32-bits of PCIE type 0 config space (Interrupt Line Register/Interrupt Pin/Bridge Control Register) * */ union cvmx_pcieepx_cfg015 { uint32_t u32; struct cvmx_pcieepx_cfg015_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ml : 8; /**< Maximum Latency (Hardwired to 0) */ uint32_t mg : 8; /**< Minimum Grant (Hardwired to 0) */ uint32_t inta : 8; /**< Interrupt Pin Identifies the legacy interrupt Message that the device (or device function) uses. The Interrupt Pin register is writable through PEM(0..1)_CFG_WR. In a single-function configuration, only INTA is used. Therefore, the application must not change this field. */ uint32_t il : 8; /**< Interrupt Line */ #else uint32_t il : 8; uint32_t inta : 8; uint32_t mg : 8; uint32_t ml : 8; #endif } s; struct cvmx_pcieepx_cfg015_s cn52xx; struct cvmx_pcieepx_cfg015_s cn52xxp1; struct cvmx_pcieepx_cfg015_s cn56xx; struct cvmx_pcieepx_cfg015_s cn56xxp1; struct cvmx_pcieepx_cfg015_s cn63xx; struct cvmx_pcieepx_cfg015_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg015 cvmx_pcieepx_cfg015_t; /** * cvmx_pcieep#_cfg016 * * PCIE_CFG016 = Seventeenth 32-bits of PCIE type 0 config space * (Power Management Capability ID/ * Power Management Next Item Pointer/ * Power Management Capabilities Register) */ union cvmx_pcieepx_cfg016 { uint32_t u32; struct cvmx_pcieepx_cfg016_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t pmes : 5; /**< PME_Support o Bit 11: If set, PME Messages can be generated from D0 o Bit 12: If set, PME Messages can be generated from D1 o Bit 13: If set, PME Messages can be generated from D2 o Bit 14: If set, PME Messages can be generated from D3hot o Bit 15: If set, PME Messages can be generated from D3cold The PME_Support field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t d2s : 1; /**< D2 Support, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t d1s : 1; /**< D1 Support, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t auxc : 3; /**< AUX Current, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t dsi : 1; /**< Device Specific Initialization (DSI), writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t reserved_20_20 : 1; uint32_t pme_clock : 1; /**< PME Clock, hardwired to 0 */ uint32_t pmsv : 3; /**< Power Management Specification Version, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t ncp : 8; /**< Next Capability Pointer Points to the MSI capabilities by default, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t pmcid : 8; /**< Power Management Capability ID */ #else uint32_t pmcid : 8; uint32_t ncp : 8; uint32_t pmsv : 3; uint32_t pme_clock : 1; uint32_t reserved_20_20 : 1; uint32_t dsi : 1; uint32_t auxc : 3; uint32_t d1s : 1; uint32_t d2s : 1; uint32_t pmes : 5; #endif } s; struct cvmx_pcieepx_cfg016_s cn52xx; struct cvmx_pcieepx_cfg016_s cn52xxp1; struct cvmx_pcieepx_cfg016_s cn56xx; struct cvmx_pcieepx_cfg016_s cn56xxp1; struct cvmx_pcieepx_cfg016_s cn63xx; struct cvmx_pcieepx_cfg016_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg016 cvmx_pcieepx_cfg016_t; /** * cvmx_pcieep#_cfg017 * * PCIE_CFG017 = Eighteenth 32-bits of PCIE type 0 config space (Power Management Control and Status Register) * */ union cvmx_pcieepx_cfg017 { uint32_t u32; struct cvmx_pcieepx_cfg017_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t pmdia : 8; /**< Data register for additional information (not supported) */ uint32_t bpccee : 1; /**< Bus Power/Clock Control Enable, hardwired to 0 */ uint32_t bd3h : 1; /**< B2/B3 Support, hardwired to 0 */ uint32_t reserved_16_21 : 6; uint32_t pmess : 1; /**< PME Status Indicates if a previously enabled PME event occurred or not. */ uint32_t pmedsia : 2; /**< Data Scale (not supported) */ uint32_t pmds : 4; /**< Data Select (not supported) */ uint32_t pmeens : 1; /**< PME Enable A value of 1 indicates that the device is enabled to generate PME. */ uint32_t reserved_4_7 : 4; uint32_t nsr : 1; /**< No Soft Reset, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t reserved_2_2 : 1; uint32_t ps : 2; /**< Power State Controls the device power state: o 00b: D0 o 01b: D1 o 10b: D2 o 11b: D3 The written value is ignored if the specific state is not supported. */ #else uint32_t ps : 2; uint32_t reserved_2_2 : 1; uint32_t nsr : 1; uint32_t reserved_4_7 : 4; uint32_t pmeens : 1; uint32_t pmds : 4; uint32_t pmedsia : 2; uint32_t pmess : 1; uint32_t reserved_16_21 : 6; uint32_t bd3h : 1; uint32_t bpccee : 1; uint32_t pmdia : 8; #endif } s; struct cvmx_pcieepx_cfg017_s cn52xx; struct cvmx_pcieepx_cfg017_s cn52xxp1; struct cvmx_pcieepx_cfg017_s cn56xx; struct cvmx_pcieepx_cfg017_s cn56xxp1; struct cvmx_pcieepx_cfg017_s cn63xx; struct cvmx_pcieepx_cfg017_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg017 cvmx_pcieepx_cfg017_t; /** * cvmx_pcieep#_cfg020 * * PCIE_CFG020 = Twenty-first 32-bits of PCIE type 0 config space * (MSI Capability ID/ * MSI Next Item Pointer/ * MSI Control Register) */ union cvmx_pcieepx_cfg020 { uint32_t u32; struct cvmx_pcieepx_cfg020_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_24_31 : 8; uint32_t m64 : 1; /**< 64-bit Address Capable, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t mme : 3; /**< Multiple Message Enabled Indicates that multiple Message mode is enabled by system software. The number of Messages enabled must be less than or equal to the Multiple Message Capable value. */ uint32_t mmc : 3; /**< Multiple Message Capable, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t msien : 1; /**< MSI Enabled When set, INTx must be disabled. */ uint32_t ncp : 8; /**< Next Capability Pointer Points to PCI Express Capabilities by default, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t msicid : 8; /**< MSI Capability ID */ #else uint32_t msicid : 8; uint32_t ncp : 8; uint32_t msien : 1; uint32_t mmc : 3; uint32_t mme : 3; uint32_t m64 : 1; uint32_t reserved_24_31 : 8; #endif } s; struct cvmx_pcieepx_cfg020_s cn52xx; struct cvmx_pcieepx_cfg020_s cn52xxp1; struct cvmx_pcieepx_cfg020_s cn56xx; struct cvmx_pcieepx_cfg020_s cn56xxp1; struct cvmx_pcieepx_cfg020_s cn63xx; struct cvmx_pcieepx_cfg020_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg020 cvmx_pcieepx_cfg020_t; /** * cvmx_pcieep#_cfg021 * * PCIE_CFG021 = Twenty-second 32-bits of PCIE type 0 config space (MSI Lower 32 Bits Address Register) * */ union cvmx_pcieepx_cfg021 { uint32_t u32; struct cvmx_pcieepx_cfg021_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lmsi : 30; /**< Lower 32-bit Address */ uint32_t reserved_0_1 : 2; #else uint32_t reserved_0_1 : 2; uint32_t lmsi : 30; #endif } s; struct cvmx_pcieepx_cfg021_s cn52xx; struct cvmx_pcieepx_cfg021_s cn52xxp1; struct cvmx_pcieepx_cfg021_s cn56xx; struct cvmx_pcieepx_cfg021_s cn56xxp1; struct cvmx_pcieepx_cfg021_s cn63xx; struct cvmx_pcieepx_cfg021_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg021 cvmx_pcieepx_cfg021_t; /** * cvmx_pcieep#_cfg022 * * PCIE_CFG022 = Twenty-third 32-bits of PCIE type 0 config space (MSI Upper 32 bits Address Register) * */ union cvmx_pcieepx_cfg022 { uint32_t u32; struct cvmx_pcieepx_cfg022_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t umsi : 32; /**< Upper 32-bit Address */ #else uint32_t umsi : 32; #endif } s; struct cvmx_pcieepx_cfg022_s cn52xx; struct cvmx_pcieepx_cfg022_s cn52xxp1; struct cvmx_pcieepx_cfg022_s cn56xx; struct cvmx_pcieepx_cfg022_s cn56xxp1; struct cvmx_pcieepx_cfg022_s cn63xx; struct cvmx_pcieepx_cfg022_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg022 cvmx_pcieepx_cfg022_t; /** * cvmx_pcieep#_cfg023 * * PCIE_CFG023 = Twenty-fourth 32-bits of PCIE type 0 config space (MSI Data Register) * */ union cvmx_pcieepx_cfg023 { uint32_t u32; struct cvmx_pcieepx_cfg023_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_16_31 : 16; uint32_t msimd : 16; /**< MSI Data Pattern assigned by system software, bits [4:0] are Or-ed with MSI_VECTOR to generate 32 MSI Messages per function. */ #else uint32_t msimd : 16; uint32_t reserved_16_31 : 16; #endif } s; struct cvmx_pcieepx_cfg023_s cn52xx; struct cvmx_pcieepx_cfg023_s cn52xxp1; struct cvmx_pcieepx_cfg023_s cn56xx; struct cvmx_pcieepx_cfg023_s cn56xxp1; struct cvmx_pcieepx_cfg023_s cn63xx; struct cvmx_pcieepx_cfg023_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg023 cvmx_pcieepx_cfg023_t; /** * cvmx_pcieep#_cfg028 * * PCIE_CFG028 = Twenty-ninth 32-bits of PCIE type 0 config space * (PCI Express Capabilities List Register/ * PCI Express Capabilities Register) */ union cvmx_pcieepx_cfg028 { uint32_t u32; struct cvmx_pcieepx_cfg028_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_30_31 : 2; uint32_t imn : 5; /**< Interrupt Message Number Updated by hardware, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t si : 1; /**< Slot Implemented This bit is writable through PEM(0..1)_CFG_WR. However, it must be 0 for an Endpoint device. Therefore, the application must not write a 1 to this bit. */ uint32_t dpt : 4; /**< Device Port Type */ uint32_t pciecv : 4; /**< PCI Express Capability Version */ uint32_t ncp : 8; /**< Next Capability Pointer Writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t pcieid : 8; /**< PCIE Capability ID */ #else uint32_t pcieid : 8; uint32_t ncp : 8; uint32_t pciecv : 4; uint32_t dpt : 4; uint32_t si : 1; uint32_t imn : 5; uint32_t reserved_30_31 : 2; #endif } s; struct cvmx_pcieepx_cfg028_s cn52xx; struct cvmx_pcieepx_cfg028_s cn52xxp1; struct cvmx_pcieepx_cfg028_s cn56xx; struct cvmx_pcieepx_cfg028_s cn56xxp1; struct cvmx_pcieepx_cfg028_s cn63xx; struct cvmx_pcieepx_cfg028_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg028 cvmx_pcieepx_cfg028_t; /** * cvmx_pcieep#_cfg029 * * PCIE_CFG029 = Thirtieth 32-bits of PCIE type 0 config space (Device Capabilities Register) * */ union cvmx_pcieepx_cfg029 { uint32_t u32; struct cvmx_pcieepx_cfg029_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_28_31 : 4; uint32_t cspls : 2; /**< Captured Slot Power Limit Scale From Message from RC, upstream port only. */ uint32_t csplv : 8; /**< Captured Slot Power Limit Value From Message from RC, upstream port only. */ uint32_t reserved_16_17 : 2; uint32_t rber : 1; /**< Role-Based Error Reporting, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t reserved_12_14 : 3; uint32_t el1al : 3; /**< Endpoint L1 Acceptable Latency, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t el0al : 3; /**< Endpoint L0s Acceptable Latency, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t etfs : 1; /**< Extended Tag Field Supported This bit is writable through PEM(0..1)_CFG_WR. However, the application must not write a 1 to this bit. */ uint32_t pfs : 2; /**< Phantom Function Supported This field is writable through PEM(0..1)_CFG_WR. However, Phantom Function is not supported. Therefore, the application must not write any value other than 0x0 to this field. */ uint32_t mpss : 3; /**< Max_Payload_Size Supported, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ #else uint32_t mpss : 3; uint32_t pfs : 2; uint32_t etfs : 1; uint32_t el0al : 3; uint32_t el1al : 3; uint32_t reserved_12_14 : 3; uint32_t rber : 1; uint32_t reserved_16_17 : 2; uint32_t csplv : 8; uint32_t cspls : 2; uint32_t reserved_28_31 : 4; #endif } s; struct cvmx_pcieepx_cfg029_s cn52xx; struct cvmx_pcieepx_cfg029_s cn52xxp1; struct cvmx_pcieepx_cfg029_s cn56xx; struct cvmx_pcieepx_cfg029_s cn56xxp1; struct cvmx_pcieepx_cfg029_s cn63xx; struct cvmx_pcieepx_cfg029_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg029 cvmx_pcieepx_cfg029_t; /** * cvmx_pcieep#_cfg030 * * PCIE_CFG030 = Thirty-first 32-bits of PCIE type 0 config space * (Device Control Register/Device Status Register) */ union cvmx_pcieepx_cfg030 { uint32_t u32; struct cvmx_pcieepx_cfg030_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_22_31 : 10; uint32_t tp : 1; /**< Transaction Pending Set to 1 when Non-Posted Requests are not yet completed and clear when they are completed. */ uint32_t ap_d : 1; /**< Aux Power Detected Set to 1 if Aux power detected. */ uint32_t ur_d : 1; /**< Unsupported Request Detected Errors are logged in this register regardless of whether error reporting is enabled in the Device Control register. UR_D occurs when we receive something we don't support. Unsupported requests are Nonfatal errors, so UR_D should cause NFE_D. Receiving a vendor defined message should cause an unsupported request. */ uint32_t fe_d : 1; /**< Fatal Error Detected Errors are logged in this register regardless of whether error reporting is enabled in the Device Control register. FE_D is set if receive any of the errors in PCIE_CFG066 that has a severity set to Fatal. Malformed TLP's generally fit into this category. */ uint32_t nfe_d : 1; /**< Non-Fatal Error detected Errors are logged in this register regardless of whether error reporting is enabled in the Device Control register. NFE_D is set if we receive any of the errors in PCIE_CFG066 that has a severity set to Nonfatal and does NOT meet Advisory Nonfatal criteria , which most poisoned TLP's should be. */ uint32_t ce_d : 1; /**< Correctable Error Detected Errors are logged in this register regardless of whether error reporting is enabled in the Device Control register. CE_D is set if we receive any of the errors in PCIE_CFG068 for example a Replay Timer Timeout. Also, it can be set if we get any of the errors in PCIE_CFG066 that has a severity set to Nonfatal and meets the Advisory Nonfatal criteria, which most ECRC errors should be. */ uint32_t reserved_15_15 : 1; uint32_t mrrs : 3; /**< Max Read Request Size 0 = 128B 1 = 256B 2 = 512B 3 = 1024B 4 = 2048B 5 = 4096B Note: SLI_S2M_PORT#_CTL[MRRS] and DPI_SLI_PRT#_CFG[MRRS] and also must be set properly. SLI_S2M_PORT#_CTL[MRRS] and DPI_SLI_PRT#_CFG[MRRS] must not exceed the desired max read request size. */ uint32_t ns_en : 1; /**< Enable No Snoop */ uint32_t ap_en : 1; /**< AUX Power PM Enable */ uint32_t pf_en : 1; /**< Phantom Function Enable This bit should never be set - OCTEON requests never use phantom functions. */ uint32_t etf_en : 1; /**< Extended Tag Field Enable This bit should never be set - OCTEON requests never use extended tags. */ uint32_t mps : 3; /**< Max Payload Size Legal values: 0 = 128B 1 = 256B Larger sizes not supported by OCTEON. Note: DPI_SLI_PRT#_CFG[MPS] must be set to the same value for proper functionality. */ uint32_t ro_en : 1; /**< Enable Relaxed Ordering */ uint32_t ur_en : 1; /**< Unsupported Request Reporting Enable */ uint32_t fe_en : 1; /**< Fatal Error Reporting Enable */ uint32_t nfe_en : 1; /**< Non-Fatal Error Reporting Enable */ uint32_t ce_en : 1; /**< Correctable Error Reporting Enable */ #else uint32_t ce_en : 1; uint32_t nfe_en : 1; uint32_t fe_en : 1; uint32_t ur_en : 1; uint32_t ro_en : 1; uint32_t mps : 3; uint32_t etf_en : 1; uint32_t pf_en : 1; uint32_t ap_en : 1; uint32_t ns_en : 1; uint32_t mrrs : 3; uint32_t reserved_15_15 : 1; uint32_t ce_d : 1; uint32_t nfe_d : 1; uint32_t fe_d : 1; uint32_t ur_d : 1; uint32_t ap_d : 1; uint32_t tp : 1; uint32_t reserved_22_31 : 10; #endif } s; struct cvmx_pcieepx_cfg030_s cn52xx; struct cvmx_pcieepx_cfg030_s cn52xxp1; struct cvmx_pcieepx_cfg030_s cn56xx; struct cvmx_pcieepx_cfg030_s cn56xxp1; struct cvmx_pcieepx_cfg030_s cn63xx; struct cvmx_pcieepx_cfg030_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg030 cvmx_pcieepx_cfg030_t; /** * cvmx_pcieep#_cfg031 * * PCIE_CFG031 = Thirty-second 32-bits of PCIE type 0 config space * (Link Capabilities Register) */ union cvmx_pcieepx_cfg031 { uint32_t u32; struct cvmx_pcieepx_cfg031_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t pnum : 8; /**< Port Number, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t reserved_22_23 : 2; uint32_t lbnc : 1; /**< Link Bandwith Notification Capability */ uint32_t dllarc : 1; /**< Data Link Layer Active Reporting Capable */ uint32_t sderc : 1; /**< Surprise Down Error Reporting Capable Not supported, hardwired to 0x0. */ uint32_t cpm : 1; /**< Clock Power Management The default value is the value you specify during hardware configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t l1el : 3; /**< L1 Exit Latency The default value is the value you specify during hardware configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t l0el : 3; /**< L0s Exit Latency The default value is the value you specify during hardware configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t aslpms : 2; /**< Active State Link PM Support The default value is the value you specify during hardware configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t mlw : 6; /**< Maximum Link Width The default value is the value you specify during hardware configuration (x1, x4, x8, or x16), writable through PEM(0..1)_CFG_WR. */ uint32_t mls : 4; /**< Maximum Link Speed The following values are accepted: 0001b: 2.5 GHz supported 0010b: 5.0 GHz and 2.5 GHz supported This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t mls : 4; uint32_t mlw : 6; uint32_t aslpms : 2; uint32_t l0el : 3; uint32_t l1el : 3; uint32_t cpm : 1; uint32_t sderc : 1; uint32_t dllarc : 1; uint32_t lbnc : 1; uint32_t reserved_22_23 : 2; uint32_t pnum : 8; #endif } s; struct cvmx_pcieepx_cfg031_s cn52xx; struct cvmx_pcieepx_cfg031_s cn52xxp1; struct cvmx_pcieepx_cfg031_s cn56xx; struct cvmx_pcieepx_cfg031_s cn56xxp1; struct cvmx_pcieepx_cfg031_s cn63xx; struct cvmx_pcieepx_cfg031_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg031 cvmx_pcieepx_cfg031_t; /** * cvmx_pcieep#_cfg032 * * PCIE_CFG032 = Thirty-third 32-bits of PCIE type 0 config space * (Link Control Register/Link Status Register) */ union cvmx_pcieepx_cfg032 { uint32_t u32; struct cvmx_pcieepx_cfg032_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_30_31 : 2; uint32_t dlla : 1; /**< Data Link Layer Active Not applicable for an upstream Port or Endpoint device, hardwired to 0. */ uint32_t scc : 1; /**< Slot Clock Configuration Indicates that the component uses the same physical reference clock that the platform provides on the connector. Writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t lt : 1; /**< Link Training Not applicable for an upstream Port or Endpoint device, hardwired to 0. */ uint32_t reserved_26_26 : 1; uint32_t nlw : 6; /**< Negotiated Link Width Set automatically by hardware after Link initialization. */ uint32_t ls : 4; /**< Link Speed The negotiated Link speed: 2.5 Gbps */ uint32_t reserved_10_15 : 6; uint32_t hawd : 1; /**< Hardware Autonomous Width Disable (Not Supported) */ uint32_t ecpm : 1; /**< Enable Clock Power Management Hardwired to 0 if Clock Power Management is disabled in the Link Capabilities register. */ uint32_t es : 1; /**< Extended Synch */ uint32_t ccc : 1; /**< Common Clock Configuration */ uint32_t rl : 1; /**< Retrain Link Not applicable for an upstream Port or Endpoint device, hardwired to 0. */ uint32_t ld : 1; /**< Link Disable Not applicable for an upstream Port or Endpoint device, hardwired to 0. */ uint32_t rcb : 1; /**< Read Completion Boundary (RCB) */ uint32_t reserved_2_2 : 1; uint32_t aslpc : 2; /**< Active State Link PM Control */ #else uint32_t aslpc : 2; uint32_t reserved_2_2 : 1; uint32_t rcb : 1; uint32_t ld : 1; uint32_t rl : 1; uint32_t ccc : 1; uint32_t es : 1; uint32_t ecpm : 1; uint32_t hawd : 1; uint32_t reserved_10_15 : 6; uint32_t ls : 4; uint32_t nlw : 6; uint32_t reserved_26_26 : 1; uint32_t lt : 1; uint32_t scc : 1; uint32_t dlla : 1; uint32_t reserved_30_31 : 2; #endif } s; struct cvmx_pcieepx_cfg032_s cn52xx; struct cvmx_pcieepx_cfg032_s cn52xxp1; struct cvmx_pcieepx_cfg032_s cn56xx; struct cvmx_pcieepx_cfg032_s cn56xxp1; struct cvmx_pcieepx_cfg032_s cn63xx; struct cvmx_pcieepx_cfg032_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg032 cvmx_pcieepx_cfg032_t; /** * cvmx_pcieep#_cfg033 * * PCIE_CFG033 = Thirty-fourth 32-bits of PCIE type 0 config space * (Slot Capabilities Register) */ union cvmx_pcieepx_cfg033 { uint32_t u32; struct cvmx_pcieepx_cfg033_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ps_num : 13; /**< Physical Slot Number, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t nccs : 1; /**< No Command Complete Support, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t emip : 1; /**< Electromechanical Interlock Present, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t sp_ls : 2; /**< Slot Power Limit Scale, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t sp_lv : 8; /**< Slot Power Limit Value, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t hp_c : 1; /**< Hot-Plug Capable, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t hp_s : 1; /**< Hot-Plug Surprise, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t pip : 1; /**< Power Indicator Present, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t aip : 1; /**< Attention Indicator Present, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t mrlsp : 1; /**< MRL Sensor Present, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t pcp : 1; /**< Power Controller Present, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ uint32_t abp : 1; /**< Attention Button Present, writable through PEM(0..1)_CFG_WR However, the application must not change this field. */ #else uint32_t abp : 1; uint32_t pcp : 1; uint32_t mrlsp : 1; uint32_t aip : 1; uint32_t pip : 1; uint32_t hp_s : 1; uint32_t hp_c : 1; uint32_t sp_lv : 8; uint32_t sp_ls : 2; uint32_t emip : 1; uint32_t nccs : 1; uint32_t ps_num : 13; #endif } s; struct cvmx_pcieepx_cfg033_s cn52xx; struct cvmx_pcieepx_cfg033_s cn52xxp1; struct cvmx_pcieepx_cfg033_s cn56xx; struct cvmx_pcieepx_cfg033_s cn56xxp1; struct cvmx_pcieepx_cfg033_s cn63xx; struct cvmx_pcieepx_cfg033_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg033 cvmx_pcieepx_cfg033_t; /** * cvmx_pcieep#_cfg034 * * PCIE_CFG034 = Thirty-fifth 32-bits of PCIE type 0 config space * (Slot Control Register/Slot Status Register) */ union cvmx_pcieepx_cfg034 { uint32_t u32; struct cvmx_pcieepx_cfg034_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_25_31 : 7; uint32_t dlls_c : 1; /**< Data Link Layer State Changed Not applicable for an upstream Port or Endpoint device, hardwired to 0. */ uint32_t emis : 1; /**< Electromechanical Interlock Status */ uint32_t pds : 1; /**< Presence Detect State */ uint32_t mrlss : 1; /**< MRL Sensor State */ uint32_t ccint_d : 1; /**< Command Completed */ uint32_t pd_c : 1; /**< Presence Detect Changed */ uint32_t mrls_c : 1; /**< MRL Sensor Changed */ uint32_t pf_d : 1; /**< Power Fault Detected */ uint32_t abp_d : 1; /**< Attention Button Pressed */ uint32_t reserved_13_15 : 3; uint32_t dlls_en : 1; /**< Data Link Layer State Changed Enable Not applicable for an upstream Port or Endpoint device, hardwired to 0. */ uint32_t emic : 1; /**< Electromechanical Interlock Control */ uint32_t pcc : 1; /**< Power Controller Control */ uint32_t pic : 2; /**< Power Indicator Control */ uint32_t aic : 2; /**< Attention Indicator Control */ uint32_t hpint_en : 1; /**< Hot-Plug Interrupt Enable */ uint32_t ccint_en : 1; /**< Command Completed Interrupt Enable */ uint32_t pd_en : 1; /**< Presence Detect Changed Enable */ uint32_t mrls_en : 1; /**< MRL Sensor Changed Enable */ uint32_t pf_en : 1; /**< Power Fault Detected Enable */ uint32_t abp_en : 1; /**< Attention Button Pressed Enable */ #else uint32_t abp_en : 1; uint32_t pf_en : 1; uint32_t mrls_en : 1; uint32_t pd_en : 1; uint32_t ccint_en : 1; uint32_t hpint_en : 1; uint32_t aic : 2; uint32_t pic : 2; uint32_t pcc : 1; uint32_t emic : 1; uint32_t dlls_en : 1; uint32_t reserved_13_15 : 3; uint32_t abp_d : 1; uint32_t pf_d : 1; uint32_t mrls_c : 1; uint32_t pd_c : 1; uint32_t ccint_d : 1; uint32_t mrlss : 1; uint32_t pds : 1; uint32_t emis : 1; uint32_t dlls_c : 1; uint32_t reserved_25_31 : 7; #endif } s; struct cvmx_pcieepx_cfg034_s cn52xx; struct cvmx_pcieepx_cfg034_s cn52xxp1; struct cvmx_pcieepx_cfg034_s cn56xx; struct cvmx_pcieepx_cfg034_s cn56xxp1; struct cvmx_pcieepx_cfg034_s cn63xx; struct cvmx_pcieepx_cfg034_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg034 cvmx_pcieepx_cfg034_t; /** * cvmx_pcieep#_cfg037 * * PCIE_CFG037 = Thirty-eighth 32-bits of PCIE type 0 config space * (Device Capabilities 2 Register) */ union cvmx_pcieepx_cfg037 { uint32_t u32; struct cvmx_pcieepx_cfg037_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_5_31 : 27; uint32_t ctds : 1; /**< Completion Timeout Disable Supported */ uint32_t ctrs : 4; /**< Completion Timeout Ranges Supported Value of 0 indicates that Completion Timeout Programming is not supported Completion timeout is 16.7ms. */ #else uint32_t ctrs : 4; uint32_t ctds : 1; uint32_t reserved_5_31 : 27; #endif } s; struct cvmx_pcieepx_cfg037_s cn52xx; struct cvmx_pcieepx_cfg037_s cn52xxp1; struct cvmx_pcieepx_cfg037_s cn56xx; struct cvmx_pcieepx_cfg037_s cn56xxp1; struct cvmx_pcieepx_cfg037_s cn63xx; struct cvmx_pcieepx_cfg037_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg037 cvmx_pcieepx_cfg037_t; /** * cvmx_pcieep#_cfg038 * * PCIE_CFG038 = Thirty-ninth 32-bits of PCIE type 0 config space * (Device Control 2 Register/Device Status 2 Register) */ union cvmx_pcieepx_cfg038 { uint32_t u32; struct cvmx_pcieepx_cfg038_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_5_31 : 27; uint32_t ctd : 1; /**< Completion Timeout Disable */ uint32_t ctv : 4; /**< Completion Timeout Value Completion Timeout Programming is not supported Completion timeout is 16.7ms. */ #else uint32_t ctv : 4; uint32_t ctd : 1; uint32_t reserved_5_31 : 27; #endif } s; struct cvmx_pcieepx_cfg038_s cn52xx; struct cvmx_pcieepx_cfg038_s cn52xxp1; struct cvmx_pcieepx_cfg038_s cn56xx; struct cvmx_pcieepx_cfg038_s cn56xxp1; struct cvmx_pcieepx_cfg038_s cn63xx; struct cvmx_pcieepx_cfg038_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg038 cvmx_pcieepx_cfg038_t; /** * cvmx_pcieep#_cfg039 * * PCIE_CFG039 = Fourtieth 32-bits of PCIE type 0 config space * (Link Capabilities 2 Register) */ union cvmx_pcieepx_cfg039 { uint32_t u32; struct cvmx_pcieepx_cfg039_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_0_31 : 32; #else uint32_t reserved_0_31 : 32; #endif } s; struct cvmx_pcieepx_cfg039_s cn52xx; struct cvmx_pcieepx_cfg039_s cn52xxp1; struct cvmx_pcieepx_cfg039_s cn56xx; struct cvmx_pcieepx_cfg039_s cn56xxp1; struct cvmx_pcieepx_cfg039_s cn63xx; struct cvmx_pcieepx_cfg039_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg039 cvmx_pcieepx_cfg039_t; /** * cvmx_pcieep#_cfg040 * * PCIE_CFG040 = Fourty-first 32-bits of PCIE type 0 config space * (Link Control 2 Register/Link Status 2 Register) */ union cvmx_pcieepx_cfg040 { uint32_t u32; struct cvmx_pcieepx_cfg040_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_17_31 : 15; uint32_t cdl : 1; /**< Current De-emphasis Level When the Link is operating at 5 GT/s speed, this bit reflects the level of de-emphasis. Encodings: 1b: -3.5 dB 0b: -6 dB Note: The value in this bit is undefined when the Link is operating at 2.5 GT/s speed */ uint32_t reserved_13_15 : 3; uint32_t cde : 1; /**< Compliance De-emphasis This bit sets the de-emphasis level in Polling. Compliance state if the entry occurred due to the Tx Compliance Receive bit being 1b. Encodings: 1b: -3.5 dB 0b: -6 dB Note: When the Link is operating at 2.5 GT/s, the setting of this bit has no effect. */ uint32_t csos : 1; /**< Compliance SOS When set to 1b, the LTSSM is required to send SKP Ordered Sets periodically in between the (modified) compliance patterns. Note: When the Link is operating at 2.5 GT/s, the setting of this bit has no effect. */ uint32_t emc : 1; /**< Enter Modified Compliance When this bit is set to 1b, the device transmits a modified compliance pattern if the LTSSM enters Polling. Compliance state. */ uint32_t tm : 3; /**< Transmit Margin This field controls the value of the non-de-emphasized voltage level at the Transmitter pins: - 000: 800-1200 mV for full swing 400-600 mV for half-swing - 001-010: values must be monotonic with a non-zero slope - 011: 200-400 mV for full-swing and 100-200 mV for halfswing - 100-111: reserved This field is reset to 000b on entry to the LTSSM Polling. Compliance substate. When operating in 5.0 GT/s mode with full swing, the de-emphasis ratio must be maintained within +/- 1 dB from the specification-defined operational value either -3.5 or -6 dB). */ uint32_t sde : 1; /**< Selectable De-emphasis Not applicable for an upstream Port or Endpoint device. Hardwired to 0. */ uint32_t hasd : 1; /**< Hardware Autonomous Speed Disable When asserted, the application must disable hardware from changing the Link speed for device-specific reasons other than attempting to correct unreliable Link operation by reducing Link speed. Initial transition to the highest supported common link speed is not blocked by this signal. */ uint32_t ec : 1; /**< Enter Compliance Software is permitted to force a link to enter Compliance mode at the speed indicated in the Target Link Speed field by setting this bit to 1b in both components on a link and then initiating a hot reset on the link. */ uint32_t tls : 4; /**< Target Link Speed For Downstream ports, this field sets an upper limit on link operational speed by restricting the values advertised by the upstream component in its training sequences: - 0001: 2.5Gb/s Target Link Speed - 0010: 5Gb/s Target Link Speed All other encodings are reserved. If a value is written to this field that does not correspond to a speed included in the Supported Link Speeds field, the result is undefined. For both Upstream and Downstream ports, this field is used to set the target compliance mode speed when software is using the Enter Compliance bit to force a link into compliance mode. Out of reset this will have a value of 1 or 2 which is selected by qlmCfgx[1]. */ #else uint32_t tls : 4; uint32_t ec : 1; uint32_t hasd : 1; uint32_t sde : 1; uint32_t tm : 3; uint32_t emc : 1; uint32_t csos : 1; uint32_t cde : 1; uint32_t reserved_13_15 : 3; uint32_t cdl : 1; uint32_t reserved_17_31 : 15; #endif } s; struct cvmx_pcieepx_cfg040_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_0_31 : 32; #else uint32_t reserved_0_31 : 32; #endif } cn52xx; struct cvmx_pcieepx_cfg040_cn52xx cn52xxp1; struct cvmx_pcieepx_cfg040_cn52xx cn56xx; struct cvmx_pcieepx_cfg040_cn52xx cn56xxp1; struct cvmx_pcieepx_cfg040_s cn63xx; struct cvmx_pcieepx_cfg040_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg040 cvmx_pcieepx_cfg040_t; /** * cvmx_pcieep#_cfg041 * * PCIE_CFG041 = Fourty-second 32-bits of PCIE type 0 config space * (Slot Capabilities 2 Register) */ union cvmx_pcieepx_cfg041 { uint32_t u32; struct cvmx_pcieepx_cfg041_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_0_31 : 32; #else uint32_t reserved_0_31 : 32; #endif } s; struct cvmx_pcieepx_cfg041_s cn52xx; struct cvmx_pcieepx_cfg041_s cn52xxp1; struct cvmx_pcieepx_cfg041_s cn56xx; struct cvmx_pcieepx_cfg041_s cn56xxp1; struct cvmx_pcieepx_cfg041_s cn63xx; struct cvmx_pcieepx_cfg041_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg041 cvmx_pcieepx_cfg041_t; /** * cvmx_pcieep#_cfg042 * * PCIE_CFG042 = Fourty-third 32-bits of PCIE type 0 config space * (Slot Control 2 Register/Slot Status 2 Register) */ union cvmx_pcieepx_cfg042 { uint32_t u32; struct cvmx_pcieepx_cfg042_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_0_31 : 32; #else uint32_t reserved_0_31 : 32; #endif } s; struct cvmx_pcieepx_cfg042_s cn52xx; struct cvmx_pcieepx_cfg042_s cn52xxp1; struct cvmx_pcieepx_cfg042_s cn56xx; struct cvmx_pcieepx_cfg042_s cn56xxp1; struct cvmx_pcieepx_cfg042_s cn63xx; struct cvmx_pcieepx_cfg042_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg042 cvmx_pcieepx_cfg042_t; /** * cvmx_pcieep#_cfg064 * * PCIE_CFG064 = Sixty-fifth 32-bits of PCIE type 0 config space * (PCI Express Enhanced Capability Header) */ union cvmx_pcieepx_cfg064 { uint32_t u32; struct cvmx_pcieepx_cfg064_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t nco : 12; /**< Next Capability Offset */ uint32_t cv : 4; /**< Capability Version */ uint32_t pcieec : 16; /**< PCIE Express Extended Capability */ #else uint32_t pcieec : 16; uint32_t cv : 4; uint32_t nco : 12; #endif } s; struct cvmx_pcieepx_cfg064_s cn52xx; struct cvmx_pcieepx_cfg064_s cn52xxp1; struct cvmx_pcieepx_cfg064_s cn56xx; struct cvmx_pcieepx_cfg064_s cn56xxp1; struct cvmx_pcieepx_cfg064_s cn63xx; struct cvmx_pcieepx_cfg064_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg064 cvmx_pcieepx_cfg064_t; /** * cvmx_pcieep#_cfg065 * * PCIE_CFG065 = Sixty-sixth 32-bits of PCIE type 0 config space * (Uncorrectable Error Status Register) */ union cvmx_pcieepx_cfg065 { uint32_t u32; struct cvmx_pcieepx_cfg065_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_21_31 : 11; uint32_t ures : 1; /**< Unsupported Request Error Status */ uint32_t ecrces : 1; /**< ECRC Error Status */ uint32_t mtlps : 1; /**< Malformed TLP Status */ uint32_t ros : 1; /**< Receiver Overflow Status */ uint32_t ucs : 1; /**< Unexpected Completion Status */ uint32_t cas : 1; /**< Completer Abort Status */ uint32_t cts : 1; /**< Completion Timeout Status */ uint32_t fcpes : 1; /**< Flow Control Protocol Error Status */ uint32_t ptlps : 1; /**< Poisoned TLP Status */ uint32_t reserved_6_11 : 6; uint32_t sdes : 1; /**< Surprise Down Error Status (not supported) */ uint32_t dlpes : 1; /**< Data Link Protocol Error Status */ uint32_t reserved_0_3 : 4; #else uint32_t reserved_0_3 : 4; uint32_t dlpes : 1; uint32_t sdes : 1; uint32_t reserved_6_11 : 6; uint32_t ptlps : 1; uint32_t fcpes : 1; uint32_t cts : 1; uint32_t cas : 1; uint32_t ucs : 1; uint32_t ros : 1; uint32_t mtlps : 1; uint32_t ecrces : 1; uint32_t ures : 1; uint32_t reserved_21_31 : 11; #endif } s; struct cvmx_pcieepx_cfg065_s cn52xx; struct cvmx_pcieepx_cfg065_s cn52xxp1; struct cvmx_pcieepx_cfg065_s cn56xx; struct cvmx_pcieepx_cfg065_s cn56xxp1; struct cvmx_pcieepx_cfg065_s cn63xx; struct cvmx_pcieepx_cfg065_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg065 cvmx_pcieepx_cfg065_t; /** * cvmx_pcieep#_cfg066 * * PCIE_CFG066 = Sixty-seventh 32-bits of PCIE type 0 config space * (Uncorrectable Error Mask Register) */ union cvmx_pcieepx_cfg066 { uint32_t u32; struct cvmx_pcieepx_cfg066_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_21_31 : 11; uint32_t urem : 1; /**< Unsupported Request Error Mask */ uint32_t ecrcem : 1; /**< ECRC Error Mask */ uint32_t mtlpm : 1; /**< Malformed TLP Mask */ uint32_t rom : 1; /**< Receiver Overflow Mask */ uint32_t ucm : 1; /**< Unexpected Completion Mask */ uint32_t cam : 1; /**< Completer Abort Mask */ uint32_t ctm : 1; /**< Completion Timeout Mask */ uint32_t fcpem : 1; /**< Flow Control Protocol Error Mask */ uint32_t ptlpm : 1; /**< Poisoned TLP Mask */ uint32_t reserved_6_11 : 6; uint32_t sdem : 1; /**< Surprise Down Error Mask (not supported) */ uint32_t dlpem : 1; /**< Data Link Protocol Error Mask */ uint32_t reserved_0_3 : 4; #else uint32_t reserved_0_3 : 4; uint32_t dlpem : 1; uint32_t sdem : 1; uint32_t reserved_6_11 : 6; uint32_t ptlpm : 1; uint32_t fcpem : 1; uint32_t ctm : 1; uint32_t cam : 1; uint32_t ucm : 1; uint32_t rom : 1; uint32_t mtlpm : 1; uint32_t ecrcem : 1; uint32_t urem : 1; uint32_t reserved_21_31 : 11; #endif } s; struct cvmx_pcieepx_cfg066_s cn52xx; struct cvmx_pcieepx_cfg066_s cn52xxp1; struct cvmx_pcieepx_cfg066_s cn56xx; struct cvmx_pcieepx_cfg066_s cn56xxp1; struct cvmx_pcieepx_cfg066_s cn63xx; struct cvmx_pcieepx_cfg066_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg066 cvmx_pcieepx_cfg066_t; /** * cvmx_pcieep#_cfg067 * * PCIE_CFG067 = Sixty-eighth 32-bits of PCIE type 0 config space * (Uncorrectable Error Severity Register) */ union cvmx_pcieepx_cfg067 { uint32_t u32; struct cvmx_pcieepx_cfg067_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_21_31 : 11; uint32_t ures : 1; /**< Unsupported Request Error Severity */ uint32_t ecrces : 1; /**< ECRC Error Severity */ uint32_t mtlps : 1; /**< Malformed TLP Severity */ uint32_t ros : 1; /**< Receiver Overflow Severity */ uint32_t ucs : 1; /**< Unexpected Completion Severity */ uint32_t cas : 1; /**< Completer Abort Severity */ uint32_t cts : 1; /**< Completion Timeout Severity */ uint32_t fcpes : 1; /**< Flow Control Protocol Error Severity */ uint32_t ptlps : 1; /**< Poisoned TLP Severity */ uint32_t reserved_6_11 : 6; uint32_t sdes : 1; /**< Surprise Down Error Severity (not supported) */ uint32_t dlpes : 1; /**< Data Link Protocol Error Severity */ uint32_t reserved_0_3 : 4; #else uint32_t reserved_0_3 : 4; uint32_t dlpes : 1; uint32_t sdes : 1; uint32_t reserved_6_11 : 6; uint32_t ptlps : 1; uint32_t fcpes : 1; uint32_t cts : 1; uint32_t cas : 1; uint32_t ucs : 1; uint32_t ros : 1; uint32_t mtlps : 1; uint32_t ecrces : 1; uint32_t ures : 1; uint32_t reserved_21_31 : 11; #endif } s; struct cvmx_pcieepx_cfg067_s cn52xx; struct cvmx_pcieepx_cfg067_s cn52xxp1; struct cvmx_pcieepx_cfg067_s cn56xx; struct cvmx_pcieepx_cfg067_s cn56xxp1; struct cvmx_pcieepx_cfg067_s cn63xx; struct cvmx_pcieepx_cfg067_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg067 cvmx_pcieepx_cfg067_t; /** * cvmx_pcieep#_cfg068 * * PCIE_CFG068 = Sixty-ninth 32-bits of PCIE type 0 config space * (Correctable Error Status Register) */ union cvmx_pcieepx_cfg068 { uint32_t u32; struct cvmx_pcieepx_cfg068_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_14_31 : 18; uint32_t anfes : 1; /**< Advisory Non-Fatal Error Status */ uint32_t rtts : 1; /**< Reply Timer Timeout Status */ uint32_t reserved_9_11 : 3; uint32_t rnrs : 1; /**< REPLAY_NUM Rollover Status */ uint32_t bdllps : 1; /**< Bad DLLP Status */ uint32_t btlps : 1; /**< Bad TLP Status */ uint32_t reserved_1_5 : 5; uint32_t res : 1; /**< Receiver Error Status */ #else uint32_t res : 1; uint32_t reserved_1_5 : 5; uint32_t btlps : 1; uint32_t bdllps : 1; uint32_t rnrs : 1; uint32_t reserved_9_11 : 3; uint32_t rtts : 1; uint32_t anfes : 1; uint32_t reserved_14_31 : 18; #endif } s; struct cvmx_pcieepx_cfg068_s cn52xx; struct cvmx_pcieepx_cfg068_s cn52xxp1; struct cvmx_pcieepx_cfg068_s cn56xx; struct cvmx_pcieepx_cfg068_s cn56xxp1; struct cvmx_pcieepx_cfg068_s cn63xx; struct cvmx_pcieepx_cfg068_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg068 cvmx_pcieepx_cfg068_t; /** * cvmx_pcieep#_cfg069 * * PCIE_CFG069 = Seventieth 32-bits of PCIE type 0 config space * (Correctable Error Mask Register) */ union cvmx_pcieepx_cfg069 { uint32_t u32; struct cvmx_pcieepx_cfg069_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_14_31 : 18; uint32_t anfem : 1; /**< Advisory Non-Fatal Error Mask */ uint32_t rttm : 1; /**< Reply Timer Timeout Mask */ uint32_t reserved_9_11 : 3; uint32_t rnrm : 1; /**< REPLAY_NUM Rollover Mask */ uint32_t bdllpm : 1; /**< Bad DLLP Mask */ uint32_t btlpm : 1; /**< Bad TLP Mask */ uint32_t reserved_1_5 : 5; uint32_t rem : 1; /**< Receiver Error Mask */ #else uint32_t rem : 1; uint32_t reserved_1_5 : 5; uint32_t btlpm : 1; uint32_t bdllpm : 1; uint32_t rnrm : 1; uint32_t reserved_9_11 : 3; uint32_t rttm : 1; uint32_t anfem : 1; uint32_t reserved_14_31 : 18; #endif } s; struct cvmx_pcieepx_cfg069_s cn52xx; struct cvmx_pcieepx_cfg069_s cn52xxp1; struct cvmx_pcieepx_cfg069_s cn56xx; struct cvmx_pcieepx_cfg069_s cn56xxp1; struct cvmx_pcieepx_cfg069_s cn63xx; struct cvmx_pcieepx_cfg069_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg069 cvmx_pcieepx_cfg069_t; /** * cvmx_pcieep#_cfg070 * * PCIE_CFG070 = Seventy-first 32-bits of PCIE type 0 config space * (Advanced Error Capabilities and Control Register) */ union cvmx_pcieepx_cfg070 { uint32_t u32; struct cvmx_pcieepx_cfg070_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_9_31 : 23; uint32_t ce : 1; /**< ECRC Check Enable */ uint32_t cc : 1; /**< ECRC Check Capable */ uint32_t ge : 1; /**< ECRC Generation Enable */ uint32_t gc : 1; /**< ECRC Generation Capability */ uint32_t fep : 5; /**< First Error Pointer */ #else uint32_t fep : 5; uint32_t gc : 1; uint32_t ge : 1; uint32_t cc : 1; uint32_t ce : 1; uint32_t reserved_9_31 : 23; #endif } s; struct cvmx_pcieepx_cfg070_s cn52xx; struct cvmx_pcieepx_cfg070_s cn52xxp1; struct cvmx_pcieepx_cfg070_s cn56xx; struct cvmx_pcieepx_cfg070_s cn56xxp1; struct cvmx_pcieepx_cfg070_s cn63xx; struct cvmx_pcieepx_cfg070_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg070 cvmx_pcieepx_cfg070_t; /** * cvmx_pcieep#_cfg071 * * PCIE_CFG071 = Seventy-second 32-bits of PCIE type 0 config space * (Header Log Register 1) */ union cvmx_pcieepx_cfg071 { uint32_t u32; struct cvmx_pcieepx_cfg071_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dword1 : 32; /**< Header Log Register (first DWORD) */ #else uint32_t dword1 : 32; #endif } s; struct cvmx_pcieepx_cfg071_s cn52xx; struct cvmx_pcieepx_cfg071_s cn52xxp1; struct cvmx_pcieepx_cfg071_s cn56xx; struct cvmx_pcieepx_cfg071_s cn56xxp1; struct cvmx_pcieepx_cfg071_s cn63xx; struct cvmx_pcieepx_cfg071_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg071 cvmx_pcieepx_cfg071_t; /** * cvmx_pcieep#_cfg072 * * PCIE_CFG072 = Seventy-third 32-bits of PCIE type 0 config space * (Header Log Register 2) */ union cvmx_pcieepx_cfg072 { uint32_t u32; struct cvmx_pcieepx_cfg072_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dword2 : 32; /**< Header Log Register (second DWORD) */ #else uint32_t dword2 : 32; #endif } s; struct cvmx_pcieepx_cfg072_s cn52xx; struct cvmx_pcieepx_cfg072_s cn52xxp1; struct cvmx_pcieepx_cfg072_s cn56xx; struct cvmx_pcieepx_cfg072_s cn56xxp1; struct cvmx_pcieepx_cfg072_s cn63xx; struct cvmx_pcieepx_cfg072_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg072 cvmx_pcieepx_cfg072_t; /** * cvmx_pcieep#_cfg073 * * PCIE_CFG073 = Seventy-fourth 32-bits of PCIE type 0 config space * (Header Log Register 3) */ union cvmx_pcieepx_cfg073 { uint32_t u32; struct cvmx_pcieepx_cfg073_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dword3 : 32; /**< Header Log Register (third DWORD) */ #else uint32_t dword3 : 32; #endif } s; struct cvmx_pcieepx_cfg073_s cn52xx; struct cvmx_pcieepx_cfg073_s cn52xxp1; struct cvmx_pcieepx_cfg073_s cn56xx; struct cvmx_pcieepx_cfg073_s cn56xxp1; struct cvmx_pcieepx_cfg073_s cn63xx; struct cvmx_pcieepx_cfg073_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg073 cvmx_pcieepx_cfg073_t; /** * cvmx_pcieep#_cfg074 * * PCIE_CFG074 = Seventy-fifth 32-bits of PCIE type 0 config space * (Header Log Register 4) */ union cvmx_pcieepx_cfg074 { uint32_t u32; struct cvmx_pcieepx_cfg074_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dword4 : 32; /**< Header Log Register (fourth DWORD) */ #else uint32_t dword4 : 32; #endif } s; struct cvmx_pcieepx_cfg074_s cn52xx; struct cvmx_pcieepx_cfg074_s cn52xxp1; struct cvmx_pcieepx_cfg074_s cn56xx; struct cvmx_pcieepx_cfg074_s cn56xxp1; struct cvmx_pcieepx_cfg074_s cn63xx; struct cvmx_pcieepx_cfg074_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg074 cvmx_pcieepx_cfg074_t; /** * cvmx_pcieep#_cfg448 * * PCIE_CFG448 = Four hundred forty-ninth 32-bits of PCIE type 0 config space * (Ack Latency Timer and Replay Timer Register) */ union cvmx_pcieepx_cfg448 { uint32_t u32; struct cvmx_pcieepx_cfg448_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t rtl : 16; /**< Replay Time Limit The replay timer expires when it reaches this limit. The PCI Express bus initiates a replay upon reception of a Nak or when the replay timer expires. The default is then updated based on the Negotiated Link Width and Max_Payload_Size. */ uint32_t rtltl : 16; /**< Round Trip Latency Time Limit The Ack/Nak latency timer expires when it reaches this limit. The default is then updated based on the Negotiated Link Width and Max_Payload_Size. */ #else uint32_t rtltl : 16; uint32_t rtl : 16; #endif } s; struct cvmx_pcieepx_cfg448_s cn52xx; struct cvmx_pcieepx_cfg448_s cn52xxp1; struct cvmx_pcieepx_cfg448_s cn56xx; struct cvmx_pcieepx_cfg448_s cn56xxp1; struct cvmx_pcieepx_cfg448_s cn63xx; struct cvmx_pcieepx_cfg448_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg448 cvmx_pcieepx_cfg448_t; /** * cvmx_pcieep#_cfg449 * * PCIE_CFG449 = Four hundred fiftieth 32-bits of PCIE type 0 config space * (Other Message Register) */ union cvmx_pcieepx_cfg449 { uint32_t u32; struct cvmx_pcieepx_cfg449_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t omr : 32; /**< Other Message Register This register can be used for either of the following purposes: o To send a specific PCI Express Message, the application writes the payload of the Message into this register, then sets bit 0 of the Port Link Control Register to send the Message. o To store a corruption pattern for corrupting the LCRC on all TLPs, the application places a 32-bit corruption pattern into this register and enables this function by setting bit 25 of the Port Link Control Register. When enabled, the transmit LCRC result is XOR'd with this pattern before inserting it into the packet. */ #else uint32_t omr : 32; #endif } s; struct cvmx_pcieepx_cfg449_s cn52xx; struct cvmx_pcieepx_cfg449_s cn52xxp1; struct cvmx_pcieepx_cfg449_s cn56xx; struct cvmx_pcieepx_cfg449_s cn56xxp1; struct cvmx_pcieepx_cfg449_s cn63xx; struct cvmx_pcieepx_cfg449_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg449 cvmx_pcieepx_cfg449_t; /** * cvmx_pcieep#_cfg450 * * PCIE_CFG450 = Four hundred fifty-first 32-bits of PCIE type 0 config space * (Port Force Link Register) */ union cvmx_pcieepx_cfg450 { uint32_t u32; struct cvmx_pcieepx_cfg450_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t lpec : 8; /**< Low Power Entrance Count The Power Management state will wait for this many clock cycles for the associated completion of a CfgWr to PCIE_CFG017 register Power State (PS) field register to go low-power. This register is intended for applications that do not let the PCI Express bus handle a completion for configuration request to the Power Management Control and Status (PCIE_CFG017) register. */ uint32_t reserved_22_23 : 2; uint32_t link_state : 6; /**< Link State The Link state that the PCI Express Bus will be forced to when bit 15 (Force Link) is set. State encoding: o DETECT_QUIET 00h o DETECT_ACT 01h o POLL_ACTIVE 02h o POLL_COMPLIANCE 03h o POLL_CONFIG 04h o PRE_DETECT_QUIET 05h o DETECT_WAIT 06h o CFG_LINKWD_START 07h o CFG_LINKWD_ACEPT 08h o CFG_LANENUM_WAIT 09h o CFG_LANENUM_ACEPT 0Ah o CFG_COMPLETE 0Bh o CFG_IDLE 0Ch o RCVRY_LOCK 0Dh o RCVRY_SPEED 0Eh o RCVRY_RCVRCFG 0Fh o RCVRY_IDLE 10h o L0 11h o L0S 12h o L123_SEND_EIDLE 13h o L1_IDLE 14h o L2_IDLE 15h o L2_WAKE 16h o DISABLED_ENTRY 17h o DISABLED_IDLE 18h o DISABLED 19h o LPBK_ENTRY 1Ah o LPBK_ACTIVE 1Bh o LPBK_EXIT 1Ch o LPBK_EXIT_TIMEOUT 1Dh o HOT_RESET_ENTRY 1Eh o HOT_RESET 1Fh */ uint32_t force_link : 1; /**< Force Link Forces the Link to the state specified by the Link State field. The Force Link pulse will trigger Link re-negotiation. * As the The Force Link is a pulse, writing a 1 to it does trigger the forced link state event, even thought reading it always returns a 0. */ uint32_t reserved_8_14 : 7; uint32_t link_num : 8; /**< Link Number Not used for Endpoint */ #else uint32_t link_num : 8; uint32_t reserved_8_14 : 7; uint32_t force_link : 1; uint32_t link_state : 6; uint32_t reserved_22_23 : 2; uint32_t lpec : 8; #endif } s; struct cvmx_pcieepx_cfg450_s cn52xx; struct cvmx_pcieepx_cfg450_s cn52xxp1; struct cvmx_pcieepx_cfg450_s cn56xx; struct cvmx_pcieepx_cfg450_s cn56xxp1; struct cvmx_pcieepx_cfg450_s cn63xx; struct cvmx_pcieepx_cfg450_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg450 cvmx_pcieepx_cfg450_t; /** * cvmx_pcieep#_cfg451 * * PCIE_CFG451 = Four hundred fifty-second 32-bits of PCIE type 0 config space * (Ack Frequency Register) */ union cvmx_pcieepx_cfg451 { uint32_t u32; struct cvmx_pcieepx_cfg451_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_30_31 : 2; uint32_t l1el : 3; /**< L1 Entrance Latency Values correspond to: o 000: 1 ms o 001: 2 ms o 010: 4 ms o 011: 8 ms o 100: 16 ms o 101: 32 ms o 110 or 111: 64 ms */ uint32_t l0el : 3; /**< L0s Entrance Latency Values correspond to: o 000: 1 ms o 001: 2 ms o 010: 3 ms o 011: 4 ms o 100: 5 ms o 101: 6 ms o 110 or 111: 7 ms */ uint32_t n_fts_cc : 8; /**< N_FTS when common clock is used. The number of Fast Training Sequence ordered sets to be transmitted when transitioning from L0s to L0. The maximum number of FTS ordered-sets that a component can request is 255. Note: A value of zero is not supported; a value of zero can cause the LTSSM to go into the recovery state when exiting from L0s. */ uint32_t n_fts : 8; /**< N_FTS The number of Fast Training Sequence ordered sets to be transmitted when transitioning from L0s to L0. The maximum number of FTS ordered-sets that a component can request is 255. Note: A value of zero is not supported; a value of zero can cause the LTSSM to go into the recovery state when exiting from L0s. */ uint32_t ack_freq : 8; /**< Ack Frequency The number of pending Ack's specified here (up to 255) before sending an Ack. */ #else uint32_t ack_freq : 8; uint32_t n_fts : 8; uint32_t n_fts_cc : 8; uint32_t l0el : 3; uint32_t l1el : 3; uint32_t reserved_30_31 : 2; #endif } s; struct cvmx_pcieepx_cfg451_s cn52xx; struct cvmx_pcieepx_cfg451_s cn52xxp1; struct cvmx_pcieepx_cfg451_s cn56xx; struct cvmx_pcieepx_cfg451_s cn56xxp1; struct cvmx_pcieepx_cfg451_s cn63xx; struct cvmx_pcieepx_cfg451_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg451 cvmx_pcieepx_cfg451_t; /** * cvmx_pcieep#_cfg452 * * PCIE_CFG452 = Four hundred fifty-third 32-bits of PCIE type 0 config space * (Port Link Control Register) */ union cvmx_pcieepx_cfg452 { uint32_t u32; struct cvmx_pcieepx_cfg452_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_26_31 : 6; uint32_t eccrc : 1; /**< Enable Corrupted CRC Causes corrupt LCRC for TLPs when set, using the pattern contained in the Other Message register. This is a test feature, not to be used in normal operation. */ uint32_t reserved_22_24 : 3; uint32_t lme : 6; /**< Link Mode Enable o 000001: x1 o 000011: x2 o 000111: x4 o 001111: x8 (not supported) o 011111: x16 (not supported) o 111111: x32 (not supported) This field indicates the MAXIMUM number of lanes supported by the PCIe port. The value can be set less than 0x7 to limit the number of lanes the PCIe will attempt to use. If the value of 0x7 set by the HW is not desired, this field can be programmed to a smaller value (i.e. EEPROM) See also MLW. (Note: The value of this field does NOT indicate the number of lanes in use by the PCIe. LME sets the max number of lanes in the PCIe core that COULD be used. As per the PCIe specs, the PCIe core can negotiate a smaller link width, so all of x4, x2, and x1 are supported when LME=0x7, for example.) */ uint32_t reserved_8_15 : 8; uint32_t flm : 1; /**< Fast Link Mode Sets all internal timers to fast mode for simulation purposes. If during an eeprom load, the first word loaded is 0xffffffff, then the EEPROM load will be terminated and this bit will be set. */ uint32_t reserved_6_6 : 1; uint32_t dllle : 1; /**< DLL Link Enable Enables Link initialization. If DLL Link Enable = 0, the PCI Express bus does not transmit InitFC DLLPs and does not establish a Link. */ uint32_t reserved_4_4 : 1; uint32_t ra : 1; /**< Reset Assert Triggers a recovery and forces the LTSSM to the Hot Reset state (downstream port only). */ uint32_t le : 1; /**< Loopback Enable Initiate loopback mode as a master. On a 0->1 transition, the PCIe core sends TS ordered sets with the loopback bit set to cause the link partner to enter into loopback mode as a slave. Normal transmission is not possible when LE=1. To exit loopback mode, take the link through a reset sequence. */ uint32_t sd : 1; /**< Scramble Disable Turns off data scrambling. */ uint32_t omr : 1; /**< Other Message Request When software writes a `1' to this bit, the PCI Express bus transmits the Message contained in the Other Message register. */ #else uint32_t omr : 1; uint32_t sd : 1; uint32_t le : 1; uint32_t ra : 1; uint32_t reserved_4_4 : 1; uint32_t dllle : 1; uint32_t reserved_6_6 : 1; uint32_t flm : 1; uint32_t reserved_8_15 : 8; uint32_t lme : 6; uint32_t reserved_22_24 : 3; uint32_t eccrc : 1; uint32_t reserved_26_31 : 6; #endif } s; struct cvmx_pcieepx_cfg452_s cn52xx; struct cvmx_pcieepx_cfg452_s cn52xxp1; struct cvmx_pcieepx_cfg452_s cn56xx; struct cvmx_pcieepx_cfg452_s cn56xxp1; struct cvmx_pcieepx_cfg452_s cn63xx; struct cvmx_pcieepx_cfg452_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg452 cvmx_pcieepx_cfg452_t; /** * cvmx_pcieep#_cfg453 * * PCIE_CFG453 = Four hundred fifty-fourth 32-bits of PCIE type 0 config space * (Lane Skew Register) */ union cvmx_pcieepx_cfg453 { uint32_t u32; struct cvmx_pcieepx_cfg453_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dlld : 1; /**< Disable Lane-to-Lane Deskew Disables the internal Lane-to-Lane deskew logic. */ uint32_t reserved_26_30 : 5; uint32_t ack_nak : 1; /**< Ack/Nak Disable Prevents the PCI Express bus from sending Ack and Nak DLLPs. */ uint32_t fcd : 1; /**< Flow Control Disable Prevents the PCI Express bus from sending FC DLLPs. */ uint32_t ilst : 24; /**< Insert Lane Skew for Transmit Causes skew between lanes for test purposes. There are three bits per Lane. The value is in units of one symbol time. For example, the value 010b for a Lane forces a skew of two symbol times for that Lane. The maximum skew value for any Lane is 5 symbol times. */ #else uint32_t ilst : 24; uint32_t fcd : 1; uint32_t ack_nak : 1; uint32_t reserved_26_30 : 5; uint32_t dlld : 1; #endif } s; struct cvmx_pcieepx_cfg453_s cn52xx; struct cvmx_pcieepx_cfg453_s cn52xxp1; struct cvmx_pcieepx_cfg453_s cn56xx; struct cvmx_pcieepx_cfg453_s cn56xxp1; struct cvmx_pcieepx_cfg453_s cn63xx; struct cvmx_pcieepx_cfg453_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg453 cvmx_pcieepx_cfg453_t; /** * cvmx_pcieep#_cfg454 * * PCIE_CFG454 = Four hundred fifty-fifth 32-bits of PCIE type 0 config space * (Symbol Number Register) */ union cvmx_pcieepx_cfg454 { uint32_t u32; struct cvmx_pcieepx_cfg454_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_29_31 : 3; uint32_t tmfcwt : 5; /**< Timer Modifier for Flow Control Watchdog Timer Increases the timer value for the Flow Control watchdog timer, in increments of 16 clock cycles. */ uint32_t tmanlt : 5; /**< Timer Modifier for Ack/Nak Latency Timer Increases the timer value for the Ack/Nak latency timer, in increments of 64 clock cycles. */ uint32_t tmrt : 5; /**< Timer Modifier for Replay Timer Increases the timer value for the replay timer, in increments of 64 clock cycles. */ uint32_t reserved_11_13 : 3; uint32_t nskps : 3; /**< Number of SKP Symbols */ uint32_t reserved_4_7 : 4; uint32_t ntss : 4; /**< Number of TS Symbols Sets the number of TS identifier symbols that are sent in TS1 and TS2 ordered sets. */ #else uint32_t ntss : 4; uint32_t reserved_4_7 : 4; uint32_t nskps : 3; uint32_t reserved_11_13 : 3; uint32_t tmrt : 5; uint32_t tmanlt : 5; uint32_t tmfcwt : 5; uint32_t reserved_29_31 : 3; #endif } s; struct cvmx_pcieepx_cfg454_s cn52xx; struct cvmx_pcieepx_cfg454_s cn52xxp1; struct cvmx_pcieepx_cfg454_s cn56xx; struct cvmx_pcieepx_cfg454_s cn56xxp1; struct cvmx_pcieepx_cfg454_s cn63xx; struct cvmx_pcieepx_cfg454_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg454 cvmx_pcieepx_cfg454_t; /** * cvmx_pcieep#_cfg455 * * PCIE_CFG455 = Four hundred fifty-sixth 32-bits of PCIE type 0 config space * (Symbol Timer Register/Filter Mask Register 1) */ union cvmx_pcieepx_cfg455 { uint32_t u32; struct cvmx_pcieepx_cfg455_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t m_cfg0_filt : 1; /**< Mask filtering of received Configuration Requests (RC mode only) */ uint32_t m_io_filt : 1; /**< Mask filtering of received I/O Requests (RC mode only) */ uint32_t msg_ctrl : 1; /**< Message Control The application must not change this field. */ uint32_t m_cpl_ecrc_filt : 1; /**< Mask ECRC error filtering for Completions */ uint32_t m_ecrc_filt : 1; /**< Mask ECRC error filtering */ uint32_t m_cpl_len_err : 1; /**< Mask Length mismatch error for received Completions */ uint32_t m_cpl_attr_err : 1; /**< Mask Attributes mismatch error for received Completions */ uint32_t m_cpl_tc_err : 1; /**< Mask Traffic Class mismatch error for received Completions */ uint32_t m_cpl_fun_err : 1; /**< Mask function mismatch error for received Completions */ uint32_t m_cpl_rid_err : 1; /**< Mask Requester ID mismatch error for received Completions */ uint32_t m_cpl_tag_err : 1; /**< Mask Tag error rules for received Completions */ uint32_t m_lk_filt : 1; /**< Mask Locked Request filtering */ uint32_t m_cfg1_filt : 1; /**< Mask Type 1 Configuration Request filtering */ uint32_t m_bar_match : 1; /**< Mask BAR match filtering */ uint32_t m_pois_filt : 1; /**< Mask poisoned TLP filtering */ uint32_t m_fun : 1; /**< Mask function */ uint32_t dfcwt : 1; /**< Disable FC Watchdog Timer */ uint32_t reserved_11_14 : 4; uint32_t skpiv : 11; /**< SKP Interval Value */ #else uint32_t skpiv : 11; uint32_t reserved_11_14 : 4; uint32_t dfcwt : 1; uint32_t m_fun : 1; uint32_t m_pois_filt : 1; uint32_t m_bar_match : 1; uint32_t m_cfg1_filt : 1; uint32_t m_lk_filt : 1; uint32_t m_cpl_tag_err : 1; uint32_t m_cpl_rid_err : 1; uint32_t m_cpl_fun_err : 1; uint32_t m_cpl_tc_err : 1; uint32_t m_cpl_attr_err : 1; uint32_t m_cpl_len_err : 1; uint32_t m_ecrc_filt : 1; uint32_t m_cpl_ecrc_filt : 1; uint32_t msg_ctrl : 1; uint32_t m_io_filt : 1; uint32_t m_cfg0_filt : 1; #endif } s; struct cvmx_pcieepx_cfg455_s cn52xx; struct cvmx_pcieepx_cfg455_s cn52xxp1; struct cvmx_pcieepx_cfg455_s cn56xx; struct cvmx_pcieepx_cfg455_s cn56xxp1; struct cvmx_pcieepx_cfg455_s cn63xx; struct cvmx_pcieepx_cfg455_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg455 cvmx_pcieepx_cfg455_t; /** * cvmx_pcieep#_cfg456 * * PCIE_CFG456 = Four hundred fifty-seventh 32-bits of PCIE type 0 config space * (Filter Mask Register 2) */ union cvmx_pcieepx_cfg456 { uint32_t u32; struct cvmx_pcieepx_cfg456_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_2_31 : 30; uint32_t m_vend1_drp : 1; /**< Mask Vendor MSG Type 1 dropped silently */ uint32_t m_vend0_drp : 1; /**< Mask Vendor MSG Type 0 dropped with UR error reporting. */ #else uint32_t m_vend0_drp : 1; uint32_t m_vend1_drp : 1; uint32_t reserved_2_31 : 30; #endif } s; struct cvmx_pcieepx_cfg456_s cn52xx; struct cvmx_pcieepx_cfg456_s cn52xxp1; struct cvmx_pcieepx_cfg456_s cn56xx; struct cvmx_pcieepx_cfg456_s cn56xxp1; struct cvmx_pcieepx_cfg456_s cn63xx; struct cvmx_pcieepx_cfg456_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg456 cvmx_pcieepx_cfg456_t; /** * cvmx_pcieep#_cfg458 * * PCIE_CFG458 = Four hundred fifty-ninth 32-bits of PCIE type 0 config space * (Debug Register 0) */ union cvmx_pcieepx_cfg458 { uint32_t u32; struct cvmx_pcieepx_cfg458_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dbg_info_l32 : 32; /**< Debug Info Lower 32 Bits */ #else uint32_t dbg_info_l32 : 32; #endif } s; struct cvmx_pcieepx_cfg458_s cn52xx; struct cvmx_pcieepx_cfg458_s cn52xxp1; struct cvmx_pcieepx_cfg458_s cn56xx; struct cvmx_pcieepx_cfg458_s cn56xxp1; struct cvmx_pcieepx_cfg458_s cn63xx; struct cvmx_pcieepx_cfg458_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg458 cvmx_pcieepx_cfg458_t; /** * cvmx_pcieep#_cfg459 * * PCIE_CFG459 = Four hundred sixtieth 32-bits of PCIE type 0 config space * (Debug Register 1) */ union cvmx_pcieepx_cfg459 { uint32_t u32; struct cvmx_pcieepx_cfg459_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dbg_info_u32 : 32; /**< Debug Info Upper 32 Bits */ #else uint32_t dbg_info_u32 : 32; #endif } s; struct cvmx_pcieepx_cfg459_s cn52xx; struct cvmx_pcieepx_cfg459_s cn52xxp1; struct cvmx_pcieepx_cfg459_s cn56xx; struct cvmx_pcieepx_cfg459_s cn56xxp1; struct cvmx_pcieepx_cfg459_s cn63xx; struct cvmx_pcieepx_cfg459_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg459 cvmx_pcieepx_cfg459_t; /** * cvmx_pcieep#_cfg460 * * PCIE_CFG460 = Four hundred sixty-first 32-bits of PCIE type 0 config space * (Transmit Posted FC Credit Status) */ union cvmx_pcieepx_cfg460 { uint32_t u32; struct cvmx_pcieepx_cfg460_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_20_31 : 12; uint32_t tphfcc : 8; /**< Transmit Posted Header FC Credits The Posted Header credits advertised by the receiver at the other end of the Link, updated with each UpdateFC DLLP. */ uint32_t tpdfcc : 12; /**< Transmit Posted Data FC Credits The Posted Data credits advertised by the receiver at the other end of the Link, updated with each UpdateFC DLLP. */ #else uint32_t tpdfcc : 12; uint32_t tphfcc : 8; uint32_t reserved_20_31 : 12; #endif } s; struct cvmx_pcieepx_cfg460_s cn52xx; struct cvmx_pcieepx_cfg460_s cn52xxp1; struct cvmx_pcieepx_cfg460_s cn56xx; struct cvmx_pcieepx_cfg460_s cn56xxp1; struct cvmx_pcieepx_cfg460_s cn63xx; struct cvmx_pcieepx_cfg460_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg460 cvmx_pcieepx_cfg460_t; /** * cvmx_pcieep#_cfg461 * * PCIE_CFG461 = Four hundred sixty-second 32-bits of PCIE type 0 config space * (Transmit Non-Posted FC Credit Status) */ union cvmx_pcieepx_cfg461 { uint32_t u32; struct cvmx_pcieepx_cfg461_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_20_31 : 12; uint32_t tchfcc : 8; /**< Transmit Non-Posted Header FC Credits The Non-Posted Header credits advertised by the receiver at the other end of the Link, updated with each UpdateFC DLLP. */ uint32_t tcdfcc : 12; /**< Transmit Non-Posted Data FC Credits The Non-Posted Data credits advertised by the receiver at the other end of the Link, updated with each UpdateFC DLLP. */ #else uint32_t tcdfcc : 12; uint32_t tchfcc : 8; uint32_t reserved_20_31 : 12; #endif } s; struct cvmx_pcieepx_cfg461_s cn52xx; struct cvmx_pcieepx_cfg461_s cn52xxp1; struct cvmx_pcieepx_cfg461_s cn56xx; struct cvmx_pcieepx_cfg461_s cn56xxp1; struct cvmx_pcieepx_cfg461_s cn63xx; struct cvmx_pcieepx_cfg461_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg461 cvmx_pcieepx_cfg461_t; /** * cvmx_pcieep#_cfg462 * * PCIE_CFG462 = Four hundred sixty-third 32-bits of PCIE type 0 config space * (Transmit Completion FC Credit Status ) */ union cvmx_pcieepx_cfg462 { uint32_t u32; struct cvmx_pcieepx_cfg462_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_20_31 : 12; uint32_t tchfcc : 8; /**< Transmit Completion Header FC Credits The Completion Header credits advertised by the receiver at the other end of the Link, updated with each UpdateFC DLLP. */ uint32_t tcdfcc : 12; /**< Transmit Completion Data FC Credits The Completion Data credits advertised by the receiver at the other end of the Link, updated with each UpdateFC DLLP. */ #else uint32_t tcdfcc : 12; uint32_t tchfcc : 8; uint32_t reserved_20_31 : 12; #endif } s; struct cvmx_pcieepx_cfg462_s cn52xx; struct cvmx_pcieepx_cfg462_s cn52xxp1; struct cvmx_pcieepx_cfg462_s cn56xx; struct cvmx_pcieepx_cfg462_s cn56xxp1; struct cvmx_pcieepx_cfg462_s cn63xx; struct cvmx_pcieepx_cfg462_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg462 cvmx_pcieepx_cfg462_t; /** * cvmx_pcieep#_cfg463 * * PCIE_CFG463 = Four hundred sixty-fourth 32-bits of PCIE type 0 config space * (Queue Status) */ union cvmx_pcieepx_cfg463 { uint32_t u32; struct cvmx_pcieepx_cfg463_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_3_31 : 29; uint32_t rqne : 1; /**< Received Queue Not Empty Indicates there is data in one or more of the receive buffers. */ uint32_t trbne : 1; /**< Transmit Retry Buffer Not Empty Indicates that there is data in the transmit retry buffer. */ uint32_t rtlpfccnr : 1; /**< Received TLP FC Credits Not Returned Indicates that the PCI Express bus has sent a TLP but has not yet received an UpdateFC DLLP indicating that the credits for that TLP have been restored by the receiver at the other end of the Link. */ #else uint32_t rtlpfccnr : 1; uint32_t trbne : 1; uint32_t rqne : 1; uint32_t reserved_3_31 : 29; #endif } s; struct cvmx_pcieepx_cfg463_s cn52xx; struct cvmx_pcieepx_cfg463_s cn52xxp1; struct cvmx_pcieepx_cfg463_s cn56xx; struct cvmx_pcieepx_cfg463_s cn56xxp1; struct cvmx_pcieepx_cfg463_s cn63xx; struct cvmx_pcieepx_cfg463_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg463 cvmx_pcieepx_cfg463_t; /** * cvmx_pcieep#_cfg464 * * PCIE_CFG464 = Four hundred sixty-fifth 32-bits of PCIE type 0 config space * (VC Transmit Arbitration Register 1) */ union cvmx_pcieepx_cfg464 { uint32_t u32; struct cvmx_pcieepx_cfg464_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t wrr_vc3 : 8; /**< WRR Weight for VC3 */ uint32_t wrr_vc2 : 8; /**< WRR Weight for VC2 */ uint32_t wrr_vc1 : 8; /**< WRR Weight for VC1 */ uint32_t wrr_vc0 : 8; /**< WRR Weight for VC0 */ #else uint32_t wrr_vc0 : 8; uint32_t wrr_vc1 : 8; uint32_t wrr_vc2 : 8; uint32_t wrr_vc3 : 8; #endif } s; struct cvmx_pcieepx_cfg464_s cn52xx; struct cvmx_pcieepx_cfg464_s cn52xxp1; struct cvmx_pcieepx_cfg464_s cn56xx; struct cvmx_pcieepx_cfg464_s cn56xxp1; struct cvmx_pcieepx_cfg464_s cn63xx; struct cvmx_pcieepx_cfg464_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg464 cvmx_pcieepx_cfg464_t; /** * cvmx_pcieep#_cfg465 * * PCIE_CFG465 = Four hundred sixty-sixth 32-bits of PCIE type 0 config space * (VC Transmit Arbitration Register 2) */ union cvmx_pcieepx_cfg465 { uint32_t u32; struct cvmx_pcieepx_cfg465_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t wrr_vc7 : 8; /**< WRR Weight for VC7 */ uint32_t wrr_vc6 : 8; /**< WRR Weight for VC6 */ uint32_t wrr_vc5 : 8; /**< WRR Weight for VC5 */ uint32_t wrr_vc4 : 8; /**< WRR Weight for VC4 */ #else uint32_t wrr_vc4 : 8; uint32_t wrr_vc5 : 8; uint32_t wrr_vc6 : 8; uint32_t wrr_vc7 : 8; #endif } s; struct cvmx_pcieepx_cfg465_s cn52xx; struct cvmx_pcieepx_cfg465_s cn52xxp1; struct cvmx_pcieepx_cfg465_s cn56xx; struct cvmx_pcieepx_cfg465_s cn56xxp1; struct cvmx_pcieepx_cfg465_s cn63xx; struct cvmx_pcieepx_cfg465_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg465 cvmx_pcieepx_cfg465_t; /** * cvmx_pcieep#_cfg466 * * PCIE_CFG466 = Four hundred sixty-seventh 32-bits of PCIE type 0 config space * (VC0 Posted Receive Queue Control) */ union cvmx_pcieepx_cfg466 { uint32_t u32; struct cvmx_pcieepx_cfg466_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t rx_queue_order : 1; /**< VC Ordering for Receive Queues Determines the VC ordering rule for the receive queues, used only in the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR: o 1: Strict ordering, higher numbered VCs have higher priority o 0: Round robin However, the application must not change this field. */ uint32_t type_ordering : 1; /**< TLP Type Ordering for VC0 Determines the TLP type ordering rule for VC0 receive queues, used only in the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR: o 1: Ordering of received TLPs follows the rules in PCI Express Base Specification o 0: Strict ordering for received TLPs: Posted, then Completion, then Non-Posted However, the application must not change this field. */ uint32_t reserved_24_29 : 6; uint32_t queue_mode : 3; /**< VC0 Posted TLP Queue Mode The operating mode of the Posted receive queue for VC0, used only in the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. Only one bit can be set at a time: o Bit 23: Bypass o Bit 22: Cut-through o Bit 21: Store-and-forward */ uint32_t reserved_20_20 : 1; uint32_t header_credits : 8; /**< VC0 Posted Header Credits The number of initial Posted header credits for VC0, used for all receive queue buffer configurations. This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t data_credits : 12; /**< VC0 Posted Data Credits The number of initial Posted data credits for VC0, used for all receive queue buffer configurations. This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t data_credits : 12; uint32_t header_credits : 8; uint32_t reserved_20_20 : 1; uint32_t queue_mode : 3; uint32_t reserved_24_29 : 6; uint32_t type_ordering : 1; uint32_t rx_queue_order : 1; #endif } s; struct cvmx_pcieepx_cfg466_s cn52xx; struct cvmx_pcieepx_cfg466_s cn52xxp1; struct cvmx_pcieepx_cfg466_s cn56xx; struct cvmx_pcieepx_cfg466_s cn56xxp1; struct cvmx_pcieepx_cfg466_s cn63xx; struct cvmx_pcieepx_cfg466_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg466 cvmx_pcieepx_cfg466_t; /** * cvmx_pcieep#_cfg467 * * PCIE_CFG467 = Four hundred sixty-eighth 32-bits of PCIE type 0 config space * (VC0 Non-Posted Receive Queue Control) */ union cvmx_pcieepx_cfg467 { uint32_t u32; struct cvmx_pcieepx_cfg467_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_24_31 : 8; uint32_t queue_mode : 3; /**< VC0 Non-Posted TLP Queue Mode The operating mode of the Non-Posted receive queue for VC0, used only in the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. Only one bit can be set at a time: o Bit 23: Bypass o Bit 22: Cut-through o Bit 21: Store-and-forward However, the application must not change this field. */ uint32_t reserved_20_20 : 1; uint32_t header_credits : 8; /**< VC0 Non-Posted Header Credits The number of initial Non-Posted header credits for VC0, used for all receive queue buffer configurations. This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t data_credits : 12; /**< VC0 Non-Posted Data Credits The number of initial Non-Posted data credits for VC0, used for all receive queue buffer configurations. This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t data_credits : 12; uint32_t header_credits : 8; uint32_t reserved_20_20 : 1; uint32_t queue_mode : 3; uint32_t reserved_24_31 : 8; #endif } s; struct cvmx_pcieepx_cfg467_s cn52xx; struct cvmx_pcieepx_cfg467_s cn52xxp1; struct cvmx_pcieepx_cfg467_s cn56xx; struct cvmx_pcieepx_cfg467_s cn56xxp1; struct cvmx_pcieepx_cfg467_s cn63xx; struct cvmx_pcieepx_cfg467_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg467 cvmx_pcieepx_cfg467_t; /** * cvmx_pcieep#_cfg468 * * PCIE_CFG468 = Four hundred sixty-ninth 32-bits of PCIE type 0 config space * (VC0 Completion Receive Queue Control) */ union cvmx_pcieepx_cfg468 { uint32_t u32; struct cvmx_pcieepx_cfg468_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_24_31 : 8; uint32_t queue_mode : 3; /**< VC0 Completion TLP Queue Mode The operating mode of the Completion receive queue for VC0, used only in the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. Only one bit can be set at a time: o Bit 23: Bypass o Bit 22: Cut-through o Bit 21: Store-and-forward However, the application must not change this field. */ uint32_t reserved_20_20 : 1; uint32_t header_credits : 8; /**< VC0 Completion Header Credits The number of initial Completion header credits for VC0, used for all receive queue buffer configurations. This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t data_credits : 12; /**< VC0 Completion Data Credits The number of initial Completion data credits for VC0, used for all receive queue buffer configurations. This field is writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t data_credits : 12; uint32_t header_credits : 8; uint32_t reserved_20_20 : 1; uint32_t queue_mode : 3; uint32_t reserved_24_31 : 8; #endif } s; struct cvmx_pcieepx_cfg468_s cn52xx; struct cvmx_pcieepx_cfg468_s cn52xxp1; struct cvmx_pcieepx_cfg468_s cn56xx; struct cvmx_pcieepx_cfg468_s cn56xxp1; struct cvmx_pcieepx_cfg468_s cn63xx; struct cvmx_pcieepx_cfg468_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg468 cvmx_pcieepx_cfg468_t; /** * cvmx_pcieep#_cfg490 * * PCIE_CFG490 = Four hundred ninety-first 32-bits of PCIE type 0 config space * (VC0 Posted Buffer Depth) */ union cvmx_pcieepx_cfg490 { uint32_t u32; struct cvmx_pcieepx_cfg490_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_26_31 : 6; uint32_t header_depth : 10; /**< VC0 Posted Header Queue Depth Sets the number of entries in the Posted header queue for VC0 when using the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t reserved_14_15 : 2; uint32_t data_depth : 14; /**< VC0 Posted Data Queue Depth Sets the number of entries in the Posted data queue for VC0 when using the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t data_depth : 14; uint32_t reserved_14_15 : 2; uint32_t header_depth : 10; uint32_t reserved_26_31 : 6; #endif } s; struct cvmx_pcieepx_cfg490_s cn52xx; struct cvmx_pcieepx_cfg490_s cn52xxp1; struct cvmx_pcieepx_cfg490_s cn56xx; struct cvmx_pcieepx_cfg490_s cn56xxp1; struct cvmx_pcieepx_cfg490_s cn63xx; struct cvmx_pcieepx_cfg490_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg490 cvmx_pcieepx_cfg490_t; /** * cvmx_pcieep#_cfg491 * * PCIE_CFG491 = Four hundred ninety-second 32-bits of PCIE type 0 config space * (VC0 Non-Posted Buffer Depth) */ union cvmx_pcieepx_cfg491 { uint32_t u32; struct cvmx_pcieepx_cfg491_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_26_31 : 6; uint32_t header_depth : 10; /**< VC0 Non-Posted Header Queue Depth Sets the number of entries in the Non-Posted header queue for VC0 when using the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t reserved_14_15 : 2; uint32_t data_depth : 14; /**< VC0 Non-Posted Data Queue Depth Sets the number of entries in the Non-Posted data queue for VC0 when using the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t data_depth : 14; uint32_t reserved_14_15 : 2; uint32_t header_depth : 10; uint32_t reserved_26_31 : 6; #endif } s; struct cvmx_pcieepx_cfg491_s cn52xx; struct cvmx_pcieepx_cfg491_s cn52xxp1; struct cvmx_pcieepx_cfg491_s cn56xx; struct cvmx_pcieepx_cfg491_s cn56xxp1; struct cvmx_pcieepx_cfg491_s cn63xx; struct cvmx_pcieepx_cfg491_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg491 cvmx_pcieepx_cfg491_t; /** * cvmx_pcieep#_cfg492 * * PCIE_CFG492 = Four hundred ninety-third 32-bits of PCIE type 0 config space * (VC0 Completion Buffer Depth) */ union cvmx_pcieepx_cfg492 { uint32_t u32; struct cvmx_pcieepx_cfg492_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_26_31 : 6; uint32_t header_depth : 10; /**< VC0 Completion Header Queue Depth Sets the number of entries in the Completion header queue for VC0 when using the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ uint32_t reserved_14_15 : 2; uint32_t data_depth : 14; /**< VC0 Completion Data Queue Depth Sets the number of entries in the Completion data queue for VC0 when using the segmented-buffer configuration, writable through PEM(0..1)_CFG_WR. However, the application must not change this field. */ #else uint32_t data_depth : 14; uint32_t reserved_14_15 : 2; uint32_t header_depth : 10; uint32_t reserved_26_31 : 6; #endif } s; struct cvmx_pcieepx_cfg492_s cn52xx; struct cvmx_pcieepx_cfg492_s cn52xxp1; struct cvmx_pcieepx_cfg492_s cn56xx; struct cvmx_pcieepx_cfg492_s cn56xxp1; struct cvmx_pcieepx_cfg492_s cn63xx; struct cvmx_pcieepx_cfg492_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg492 cvmx_pcieepx_cfg492_t; /** * cvmx_pcieep#_cfg515 * * PCIE_CFG515 = Five hundred sixteenth 32-bits of PCIE type 0 config space * (Port Logic Register (Gen2)) */ union cvmx_pcieepx_cfg515 { uint32_t u32; struct cvmx_pcieepx_cfg515_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_21_31 : 11; uint32_t s_d_e : 1; /**< SEL_DE_EMPHASIS Used to set the de-emphasis level for upstream ports. */ uint32_t ctcrb : 1; /**< Config Tx Compliance Receive Bit When set to 1, signals LTSSM to transmit TS ordered sets with the compliance receive bit assert (equal to 1). */ uint32_t cpyts : 1; /**< Config PHY Tx Swing Indicates the voltage level the PHY should drive. When set to 1, indicates Full Swing. When set to 0, indicates Low Swing */ uint32_t dsc : 1; /**< Directed Speed Change Indicates to the LTSSM whether or not to initiate a speed change. */ uint32_t le : 9; /**< Lane Enable Indicates the number of lanes to check for exit from electrical idle in Polling.Active and Polling.Compliance. 1 = x1, 2 = x2, etc. Used to limit the maximum link width to ignore broken lanes that detect a receiver, but will not exit electrical idle and would otherwise prevent a valid link from being configured. */ uint32_t n_fts : 8; /**< N_FTS Sets the Number of Fast Training Sequences (N_FTS) that the core advertises as its N_FTS during GEN2 Link training. This value is used to inform the Link partner about the PHYs ability to recover synchronization after a low power state. Note: Do not set N_FTS to zero; doing so can cause the LTSSM to go into the recovery state when exiting from L0s. */ #else uint32_t n_fts : 8; uint32_t le : 9; uint32_t dsc : 1; uint32_t cpyts : 1; uint32_t ctcrb : 1; uint32_t s_d_e : 1; uint32_t reserved_21_31 : 11; #endif } s; struct cvmx_pcieepx_cfg515_s cn63xx; struct cvmx_pcieepx_cfg515_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg515 cvmx_pcieepx_cfg515_t; /** * cvmx_pcieep#_cfg516 * * PCIE_CFG516 = Five hundred seventeenth 32-bits of PCIE type 0 config space * (PHY Status Register) */ union cvmx_pcieepx_cfg516 { uint32_t u32; struct cvmx_pcieepx_cfg516_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t phy_stat : 32; /**< PHY Status */ #else uint32_t phy_stat : 32; #endif } s; struct cvmx_pcieepx_cfg516_s cn52xx; struct cvmx_pcieepx_cfg516_s cn52xxp1; struct cvmx_pcieepx_cfg516_s cn56xx; struct cvmx_pcieepx_cfg516_s cn56xxp1; struct cvmx_pcieepx_cfg516_s cn63xx; struct cvmx_pcieepx_cfg516_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg516 cvmx_pcieepx_cfg516_t; /** * cvmx_pcieep#_cfg517 * * PCIE_CFG517 = Five hundred eighteenth 32-bits of PCIE type 0 config space * (PHY Control Register) */ union cvmx_pcieepx_cfg517 { uint32_t u32; struct cvmx_pcieepx_cfg517_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t phy_ctrl : 32; /**< PHY Control */ #else uint32_t phy_ctrl : 32; #endif } s; struct cvmx_pcieepx_cfg517_s cn52xx; struct cvmx_pcieepx_cfg517_s cn52xxp1; struct cvmx_pcieepx_cfg517_s cn56xx; struct cvmx_pcieepx_cfg517_s cn56xxp1; struct cvmx_pcieepx_cfg517_s cn63xx; struct cvmx_pcieepx_cfg517_s cn63xxp1; }; typedef union cvmx_pcieepx_cfg517 cvmx_pcieepx_cfg517_t; #endif