Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urio/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/aic7xxx/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urio/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/aic7xxx/aic7xxx_osm.c |
/*- * Bus independent FreeBSD shim for the aic7xxx based Adaptec SCSI controllers * * Copyright (c) 1994-2001 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: //depot/aic7xxx/freebsd/dev/aic7xxx/aic7xxx_osm.c#20 $ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/aic7xxx/aic7xxx_osm.c 237825 2012-06-29 21:33:36Z ken $"); #include <dev/aic7xxx/aic7xxx_osm.h> #include <dev/aic7xxx/aic7xxx_inline.h> #include <sys/kthread.h> #ifndef AHC_TMODE_ENABLE #define AHC_TMODE_ENABLE 0 #endif #include <dev/aic7xxx/aic_osm_lib.c> #define ccb_scb_ptr spriv_ptr0 devclass_t ahc_devclass; #if 0 static void ahc_dump_targcmd(struct target_cmd *cmd); #endif static int ahc_modevent(module_t mod, int type, void *data); static void ahc_action(struct cam_sim *sim, union ccb *ccb); static void ahc_get_tran_settings(struct ahc_softc *ahc, int our_id, char channel, struct ccb_trans_settings *cts); static void ahc_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg); static void ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments, int error); static void ahc_poll(struct cam_sim *sim); static void ahc_setup_data(struct ahc_softc *ahc, struct cam_sim *sim, struct ccb_scsiio *csio, struct scb *scb); static void ahc_abort_ccb(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb); static int ahc_create_path(struct ahc_softc *ahc, char channel, u_int target, u_int lun, struct cam_path **path); static int ahc_create_path(struct ahc_softc *ahc, char channel, u_int target, u_int lun, struct cam_path **path) { path_id_t path_id; if (channel == 'B') path_id = cam_sim_path(ahc->platform_data->sim_b); else path_id = cam_sim_path(ahc->platform_data->sim); return (xpt_create_path(path, /*periph*/NULL, path_id, target, lun)); } int ahc_map_int(struct ahc_softc *ahc) { int error; int zero; int shareable; zero = 0; shareable = (ahc->flags & AHC_EDGE_INTERRUPT) ? 0: RF_SHAREABLE; ahc->platform_data->irq = bus_alloc_resource_any(ahc->dev_softc, SYS_RES_IRQ, &zero, RF_ACTIVE | shareable); if (ahc->platform_data->irq == NULL) { device_printf(ahc->dev_softc, "bus_alloc_resource() failed to allocate IRQ\n"); return (ENOMEM); } ahc->platform_data->irq_res_type = SYS_RES_IRQ; /* Hook up our interrupt handler */ error = bus_setup_intr(ahc->dev_softc, ahc->platform_data->irq, INTR_TYPE_CAM|INTR_MPSAFE, NULL, ahc_platform_intr, ahc, &ahc->platform_data->ih); if (error != 0) device_printf(ahc->dev_softc, "bus_setup_intr() failed: %d\n", error); return (error); } int aic7770_map_registers(struct ahc_softc *ahc, u_int unused_ioport_arg) { struct resource *regs; int rid; rid = 0; regs = bus_alloc_resource_any(ahc->dev_softc, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (regs == NULL) { device_printf(ahc->dev_softc, "Unable to map I/O space?!\n"); return ENOMEM; } ahc->platform_data->regs_res_type = SYS_RES_IOPORT; ahc->platform_data->regs_res_id = rid, ahc->platform_data->regs = regs; ahc->tag = rman_get_bustag(regs); ahc->bsh = rman_get_bushandle(regs); return (0); } /* * Attach all the sub-devices we can find */ int ahc_attach(struct ahc_softc *ahc) { char ahc_info[256]; struct ccb_setasync csa; struct cam_devq *devq; int bus_id; int bus_id2; struct cam_sim *sim; struct cam_sim *sim2; struct cam_path *path; struct cam_path *path2; int count; count = 0; sim = NULL; sim2 = NULL; path = NULL; path2 = NULL; /* * Create a thread to perform all recovery. */ if (ahc_spawn_recovery_thread(ahc) != 0) goto fail; ahc_controller_info(ahc, ahc_info); printf("%s\n", ahc_info); ahc_lock(ahc); /* * Attach secondary channel first if the user has * declared it the primary channel. */ if ((ahc->features & AHC_TWIN) != 0 && (ahc->flags & AHC_PRIMARY_CHANNEL) != 0) { bus_id = 1; bus_id2 = 0; } else { bus_id = 0; bus_id2 = 1; } /* * Create the device queue for our SIM(s). */ devq = cam_simq_alloc(AHC_MAX_QUEUE); if (devq == NULL) goto fail; /* * Construct our first channel SIM entry */ sim = cam_sim_alloc(ahc_action, ahc_poll, "ahc", ahc, device_get_unit(ahc->dev_softc), &ahc->platform_data->mtx, 1, AHC_MAX_QUEUE, devq); if (sim == NULL) { cam_simq_free(devq); goto fail; } if (xpt_bus_register(sim, ahc->dev_softc, bus_id) != CAM_SUCCESS) { cam_sim_free(sim, /*free_devq*/TRUE); sim = NULL; goto fail; } if (xpt_create_path(&path, /*periph*/NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, /*free_devq*/TRUE); sim = NULL; goto fail; } xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = ahc_async; csa.callback_arg = sim; xpt_action((union ccb *)&csa); count++; if (ahc->features & AHC_TWIN) { sim2 = cam_sim_alloc(ahc_action, ahc_poll, "ahc", ahc, device_get_unit(ahc->dev_softc), &ahc->platform_data->mtx, 1, AHC_MAX_QUEUE, devq); if (sim2 == NULL) { printf("ahc_attach: Unable to attach second " "bus due to resource shortage"); goto fail; } if (xpt_bus_register(sim2, ahc->dev_softc, bus_id2) != CAM_SUCCESS) { printf("ahc_attach: Unable to attach second " "bus due to resource shortage"); /* * We do not want to destroy the device queue * because the first bus is using it. */ cam_sim_free(sim2, /*free_devq*/FALSE); goto fail; } if (xpt_create_path(&path2, /*periph*/NULL, cam_sim_path(sim2), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(sim2)); cam_sim_free(sim2, /*free_devq*/FALSE); sim2 = NULL; goto fail; } xpt_setup_ccb(&csa.ccb_h, path2, /*priority*/5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = ahc_async; csa.callback_arg = sim2; xpt_action((union ccb *)&csa); count++; } fail: if ((ahc->features & AHC_TWIN) != 0 && (ahc->flags & AHC_PRIMARY_CHANNEL) != 0) { ahc->platform_data->sim_b = sim; ahc->platform_data->path_b = path; ahc->platform_data->sim = sim2; ahc->platform_data->path = path2; } else { ahc->platform_data->sim = sim; ahc->platform_data->path = path; ahc->platform_data->sim_b = sim2; ahc->platform_data->path_b = path2; } ahc_unlock(ahc); if (count != 0) { /* We have to wait until after any system dumps... */ ahc->platform_data->eh = EVENTHANDLER_REGISTER(shutdown_final, ahc_shutdown, ahc, SHUTDOWN_PRI_DEFAULT); ahc_intr_enable(ahc, TRUE); } return (count); } /* * Catch an interrupt from the adapter */ void ahc_platform_intr(void *arg) { struct ahc_softc *ahc; ahc = (struct ahc_softc *)arg; ahc_lock(ahc); ahc_intr(ahc); ahc_unlock(ahc); } /* * We have an scb which has been processed by the * adaptor, now we look to see how the operation * went. */ void ahc_done(struct ahc_softc *ahc, struct scb *scb) { union ccb *ccb; CAM_DEBUG(scb->io_ctx->ccb_h.path, CAM_DEBUG_TRACE, ("ahc_done - scb %d\n", scb->hscb->tag)); ccb = scb->io_ctx; LIST_REMOVE(scb, pending_links); if ((scb->flags & SCB_TIMEDOUT) != 0) LIST_REMOVE(scb, timedout_links); if ((scb->flags & SCB_UNTAGGEDQ) != 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &ahc->untagged_queues[target_offset]; TAILQ_REMOVE(untagged_q, scb, links.tqe); scb->flags &= ~SCB_UNTAGGEDQ; ahc_run_untagged_queue(ahc, untagged_q); } callout_stop(&scb->io_timer); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmasync_op_t op; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_POSTREAD; else op = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(ahc->buffer_dmat, scb->dmamap, op); bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap); } if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { struct cam_path *ccb_path; /* * If we have finally disconnected, clean up our * pending device state. * XXX - There may be error states that cause where * we will remain connected. */ ccb_path = ccb->ccb_h.path; if (ahc->pending_device != NULL && xpt_path_comp(ahc->pending_device->path, ccb_path) == 0) { if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) { ahc->pending_device = NULL; } else { if (bootverbose) { xpt_print_path(ccb->ccb_h.path); printf("Still connected\n"); } aic_freeze_ccb(ccb); } } if (aic_get_transaction_status(scb) == CAM_REQ_INPROG) ccb->ccb_h.status |= CAM_REQ_CMP; ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ahc_free_scb(ahc, scb); xpt_done(ccb); return; } /* * If the recovery SCB completes, we have to be * out of our timeout. */ if ((scb->flags & SCB_RECOVERY_SCB) != 0) { struct scb *list_scb; ahc->scb_data->recovery_scbs--; if (aic_get_transaction_status(scb) == CAM_BDR_SENT || aic_get_transaction_status(scb) == CAM_REQ_ABORTED) aic_set_transaction_status(scb, CAM_CMD_TIMEOUT); if (ahc->scb_data->recovery_scbs == 0) { /* * All recovery actions have completed successfully, * so reinstate the timeouts for all other pending * commands. */ LIST_FOREACH(list_scb, &ahc->pending_scbs, pending_links) { aic_scb_timer_reset(list_scb, aic_get_timeout(scb)); } ahc_print_path(ahc, scb); printf("no longer in timeout, status = %x\n", ccb->ccb_h.status); } } /* Don't clobber any existing error state */ if (aic_get_transaction_status(scb) == CAM_REQ_INPROG) { ccb->ccb_h.status |= CAM_REQ_CMP; } else if ((scb->flags & SCB_SENSE) != 0) { /* * We performed autosense retrieval. * * Zero any sense not transferred by the * device. The SCSI spec mandates that any * untransfered data should be assumed to be * zero. Complete the 'bounce' of sense information * through buffers accessible via bus-space by * copying it into the clients csio. */ memset(&ccb->csio.sense_data, 0, sizeof(ccb->csio.sense_data)); memcpy(&ccb->csio.sense_data, ahc_get_sense_buf(ahc, scb), (aic_le32toh(scb->sg_list->len) & AHC_SG_LEN_MASK) - ccb->csio.sense_resid); scb->io_ctx->ccb_h.status |= CAM_AUTOSNS_VALID; } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ahc_free_scb(ahc, scb); xpt_done(ccb); } static void ahc_action(struct cam_sim *sim, union ccb *ccb) { struct ahc_softc *ahc; struct ahc_tmode_lstate *lstate; u_int target_id; u_int our_id; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahc_action\n")); ahc = (struct ahc_softc *)cam_sim_softc(sim); target_id = ccb->ccb_h.target_id; our_id = SIM_SCSI_ID(ahc, sim); switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ case XPT_CONT_TARGET_IO:/* Continue Host Target I/O Connection*/ { struct ahc_tmode_tstate *tstate; cam_status status; status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate, TRUE); if (status != CAM_REQ_CMP) { if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { /* Response from the black hole device */ tstate = NULL; lstate = ahc->black_hole; } else { ccb->ccb_h.status = status; xpt_done(ccb); break; } } if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) { SLIST_INSERT_HEAD(&lstate->accept_tios, &ccb->ccb_h, sim_links.sle); ccb->ccb_h.status = CAM_REQ_INPROG; if ((ahc->flags & AHC_TQINFIFO_BLOCKED) != 0) ahc_run_tqinfifo(ahc, /*paused*/FALSE); break; } /* * The target_id represents the target we attempt to * select. In target mode, this is the initiator of * the original command. */ our_id = target_id; target_id = ccb->csio.init_id; /* FALLTHROUGH */ } case XPT_SCSI_IO: /* Execute the requested I/O operation */ case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ { struct scb *scb; struct hardware_scb *hscb; if ((ahc->flags & AHC_INITIATORROLE) == 0 && (ccb->ccb_h.func_code == XPT_SCSI_IO || ccb->ccb_h.func_code == XPT_RESET_DEV)) { ccb->ccb_h.status = CAM_PROVIDE_FAIL; xpt_done(ccb); return; } /* * get an scb to use. */ if ((scb = ahc_get_scb(ahc)) == NULL) { xpt_freeze_simq(sim, /*count*/1); ahc->flags |= AHC_RESOURCE_SHORTAGE; ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); return; } hscb = scb->hscb; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_SUBTRACE, ("start scb(%p)\n", scb)); scb->io_ctx = ccb; /* * So we can find the SCB when an abort is requested */ ccb->ccb_h.ccb_scb_ptr = scb; /* * Put all the arguments for the xfer in the scb */ hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahc, sim, target_id, our_id); hscb->lun = ccb->ccb_h.target_lun; if (ccb->ccb_h.func_code == XPT_RESET_DEV) { hscb->cdb_len = 0; scb->flags |= SCB_DEVICE_RESET; hscb->control |= MK_MESSAGE; ahc_execute_scb(scb, NULL, 0, 0); } else { if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { struct target_data *tdata; tdata = &hscb->shared_data.tdata; if (ahc->pending_device == lstate) scb->flags |= SCB_TARGET_IMMEDIATE; hscb->control |= TARGET_SCB; scb->flags |= SCB_TARGET_SCB; tdata->target_phases = 0; if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) { tdata->target_phases |= SPHASE_PENDING; tdata->scsi_status = ccb->csio.scsi_status; } if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) tdata->target_phases |= NO_DISCONNECT; tdata->initiator_tag = ccb->csio.tag_id; } if (ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) hscb->control |= ccb->csio.tag_action; ahc_setup_data(ahc, sim, &ccb->csio, scb); } break; } case XPT_NOTIFY_ACKNOWLEDGE: case XPT_IMMEDIATE_NOTIFY: { struct ahc_tmode_tstate *tstate; struct ahc_tmode_lstate *lstate; cam_status status; status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate, TRUE); if (status != CAM_REQ_CMP) { ccb->ccb_h.status = status; xpt_done(ccb); break; } SLIST_INSERT_HEAD(&lstate->immed_notifies, &ccb->ccb_h, sim_links.sle); ccb->ccb_h.status = CAM_REQ_INPROG; ahc_send_lstate_events(ahc, lstate); break; } case XPT_EN_LUN: /* Enable LUN as a target */ ahc_handle_en_lun(ahc, sim, ccb); xpt_done(ccb); break; case XPT_ABORT: /* Abort the specified CCB */ { ahc_abort_ccb(ahc, sim, ccb); break; } case XPT_SET_TRAN_SETTINGS: { struct ahc_devinfo devinfo; struct ccb_trans_settings *cts; struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; uint16_t *discenable; uint16_t *tagenable; u_int update_type; cts = &ccb->cts; scsi = &cts->proto_specific.scsi; spi = &cts->xport_specific.spi; ahc_compile_devinfo(&devinfo, SIM_SCSI_ID(ahc, sim), cts->ccb_h.target_id, cts->ccb_h.target_lun, SIM_CHANNEL(ahc, sim), ROLE_UNKNOWN); tinfo = ahc_fetch_transinfo(ahc, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); update_type = 0; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { update_type |= AHC_TRANS_GOAL; discenable = &tstate->discenable; tagenable = &tstate->tagenable; tinfo->curr.protocol_version = cts->protocol_version; tinfo->curr.transport_version = cts->transport_version; tinfo->goal.protocol_version = cts->protocol_version; tinfo->goal.transport_version = cts->transport_version; } else if (cts->type == CTS_TYPE_USER_SETTINGS) { update_type |= AHC_TRANS_USER; discenable = &ahc->user_discenable; tagenable = &ahc->user_tagenable; tinfo->user.protocol_version = cts->protocol_version; tinfo->user.transport_version = cts->transport_version; } else { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) *discenable |= devinfo.target_mask; else *discenable &= ~devinfo.target_mask; } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) *tagenable |= devinfo.target_mask; else *tagenable &= ~devinfo.target_mask; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { ahc_validate_width(ahc, /*tinfo limit*/NULL, &spi->bus_width, ROLE_UNKNOWN); ahc_set_width(ahc, &devinfo, spi->bus_width, update_type, /*paused*/FALSE); } if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) { if (update_type == AHC_TRANS_USER) spi->ppr_options = tinfo->user.ppr_options; else spi->ppr_options = tinfo->goal.ppr_options; } if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) { if (update_type == AHC_TRANS_USER) spi->sync_offset = tinfo->user.offset; else spi->sync_offset = tinfo->goal.offset; } if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { if (update_type == AHC_TRANS_USER) spi->sync_period = tinfo->user.period; else spi->sync_period = tinfo->goal.period; } if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) { struct ahc_syncrate *syncrate; u_int maxsync; if ((ahc->features & AHC_ULTRA2) != 0) maxsync = AHC_SYNCRATE_DT; else if ((ahc->features & AHC_ULTRA) != 0) maxsync = AHC_SYNCRATE_ULTRA; else maxsync = AHC_SYNCRATE_FAST; if (spi->bus_width != MSG_EXT_WDTR_BUS_16_BIT) spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; syncrate = ahc_find_syncrate(ahc, &spi->sync_period, &spi->ppr_options, maxsync); ahc_validate_offset(ahc, /*tinfo limit*/NULL, syncrate, &spi->sync_offset, spi->bus_width, ROLE_UNKNOWN); /* We use a period of 0 to represent async */ if (spi->sync_offset == 0) { spi->sync_period = 0; spi->ppr_options = 0; } ahc_set_syncrate(ahc, &devinfo, syncrate, spi->sync_period, spi->sync_offset, spi->ppr_options, update_type, /*paused*/FALSE); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_GET_TRAN_SETTINGS: /* Get default/user set transfer settings for the target */ { ahc_get_tran_settings(ahc, SIM_SCSI_ID(ahc, sim), SIM_CHANNEL(ahc, sim), &ccb->cts); xpt_done(ccb); break; } case XPT_CALC_GEOMETRY: { int extended; extended = SIM_IS_SCSIBUS_B(ahc, sim) ? ahc->flags & AHC_EXTENDED_TRANS_B : ahc->flags & AHC_EXTENDED_TRANS_A; aic_calc_geometry(&ccb->ccg, extended); xpt_done(ccb); break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ { int found; found = ahc_reset_channel(ahc, SIM_CHANNEL(ahc, sim), /*initiate reset*/TRUE); if (bootverbose) { xpt_print_path(SIM_PATH(ahc, sim)); printf("SCSI bus reset delivered. " "%d SCBs aborted.\n", found); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE; if ((ahc->features & AHC_WIDE) != 0) cpi->hba_inquiry |= PI_WIDE_16; if ((ahc->features & AHC_TARGETMODE) != 0) { cpi->target_sprt = PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO; } else { cpi->target_sprt = 0; } cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = (ahc->features & AHC_WIDE) ? 15 : 7; cpi->max_lun = AHC_NUM_LUNS - 1; if (SIM_IS_SCSIBUS_B(ahc, sim)) { cpi->initiator_id = ahc->our_id_b; if ((ahc->flags & AHC_RESET_BUS_B) == 0) cpi->hba_misc |= PIM_NOBUSRESET; } else { cpi->initiator_id = ahc->our_id; if ((ahc->flags & AHC_RESET_BUS_A) == 0) cpi->hba_misc |= PIM_NOBUSRESET; } cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; cpi->transport = XPORT_SPI; cpi->transport_version = 2; cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; if ((ahc->features & AHC_DT) != 0) { cpi->transport_version = 3; cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_DT_ST; } cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_PROVIDE_FAIL; xpt_done(ccb); break; } } static void ahc_get_tran_settings(struct ahc_softc *ahc, int our_id, char channel, struct ccb_trans_settings *cts) { struct ahc_devinfo devinfo; struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; struct ahc_initiator_tinfo *targ_info; struct ahc_tmode_tstate *tstate; struct ahc_transinfo *tinfo; scsi = &cts->proto_specific.scsi; spi = &cts->xport_specific.spi; ahc_compile_devinfo(&devinfo, our_id, cts->ccb_h.target_id, cts->ccb_h.target_lun, channel, ROLE_UNKNOWN); targ_info = ahc_fetch_transinfo(ahc, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); if (cts->type == CTS_TYPE_CURRENT_SETTINGS) tinfo = &targ_info->curr; else tinfo = &targ_info->user; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; if (cts->type == CTS_TYPE_USER_SETTINGS) { if ((ahc->user_discenable & devinfo.target_mask) != 0) spi->flags |= CTS_SPI_FLAGS_DISC_ENB; if ((ahc->user_tagenable & devinfo.target_mask) != 0) scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } else { if ((tstate->discenable & devinfo.target_mask) != 0) spi->flags |= CTS_SPI_FLAGS_DISC_ENB; if ((tstate->tagenable & devinfo.target_mask) != 0) scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } cts->protocol_version = tinfo->protocol_version; cts->transport_version = tinfo->transport_version; spi->sync_period = tinfo->period; spi->sync_offset = tinfo->offset; spi->bus_width = tinfo->width; spi->ppr_options = tinfo->ppr_options; cts->protocol = PROTO_SCSI; cts->transport = XPORT_SPI; spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET | CTS_SPI_VALID_BUS_WIDTH | CTS_SPI_VALID_PPR_OPTIONS; if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) { scsi->valid = CTS_SCSI_VALID_TQ; spi->valid |= CTS_SPI_VALID_DISC; } else { scsi->valid = 0; } cts->ccb_h.status = CAM_REQ_CMP; } static void ahc_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg) { struct ahc_softc *ahc; struct cam_sim *sim; sim = (struct cam_sim *)callback_arg; ahc = (struct ahc_softc *)cam_sim_softc(sim); switch (code) { case AC_LOST_DEVICE: { struct ahc_devinfo devinfo; ahc_compile_devinfo(&devinfo, SIM_SCSI_ID(ahc, sim), xpt_path_target_id(path), xpt_path_lun_id(path), SIM_CHANNEL(ahc, sim), ROLE_UNKNOWN); /* * Revert to async/narrow transfers * for the next device. */ ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHC_TRANS_GOAL|AHC_TRANS_CUR, /*paused*/FALSE); ahc_set_syncrate(ahc, &devinfo, /*syncrate*/NULL, /*period*/0, /*offset*/0, /*ppr_options*/0, AHC_TRANS_GOAL|AHC_TRANS_CUR, /*paused*/FALSE); break; } default: break; } } static void ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments, int error) { struct scb *scb; union ccb *ccb; struct ahc_softc *ahc; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; u_int mask; scb = (struct scb *)arg; ccb = scb->io_ctx; ahc = scb->ahc_softc; if (error != 0) { if (error == EFBIG) aic_set_transaction_status(scb, CAM_REQ_TOO_BIG); else aic_set_transaction_status(scb, CAM_REQ_CMP_ERR); if (nsegments != 0) bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap); ahc_free_scb(ahc, scb); xpt_done(ccb); return; } if (nsegments != 0) { struct ahc_dma_seg *sg; bus_dma_segment_t *end_seg; bus_dmasync_op_t op; end_seg = dm_segs + nsegments; /* Copy the segments into our SG list */ sg = scb->sg_list; while (dm_segs < end_seg) { uint32_t len; sg->addr = aic_htole32(dm_segs->ds_addr); len = dm_segs->ds_len | ((dm_segs->ds_addr >> 8) & 0x7F000000); sg->len = aic_htole32(len); sg++; dm_segs++; } /* * Note where to find the SG entries in bus space. * We also set the full residual flag which the * sequencer will clear as soon as a data transfer * occurs. */ scb->hscb->sgptr = aic_htole32(scb->sg_list_phys|SG_FULL_RESID); if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; bus_dmamap_sync(ahc->buffer_dmat, scb->dmamap, op); if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { struct target_data *tdata; tdata = &scb->hscb->shared_data.tdata; tdata->target_phases |= DPHASE_PENDING; /* * CAM data direction is relative to the initiator. */ if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) tdata->data_phase = P_DATAOUT; else tdata->data_phase = P_DATAIN; /* * If the transfer is of an odd length and in the * "in" direction (scsi->HostBus), then it may * trigger a bug in the 'WideODD' feature of * non-Ultra2 chips. Force the total data-length * to be even by adding an extra, 1 byte, SG, * element. We do this even if we are not currently * negotiated wide as negotiation could occur before * this command is executed. */ if ((ahc->bugs & AHC_TMODE_WIDEODD_BUG) != 0 && (ccb->csio.dxfer_len & 0x1) != 0 && (ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) { nsegments++; if (nsegments > AHC_NSEG) { aic_set_transaction_status(scb, CAM_REQ_TOO_BIG); bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap); ahc_free_scb(ahc, scb); xpt_done(ccb); return; } sg->addr = aic_htole32(ahc->dma_bug_buf); sg->len = aic_htole32(1); sg++; } } sg--; sg->len |= aic_htole32(AHC_DMA_LAST_SEG); /* Copy the first SG into the "current" data pointer area */ scb->hscb->dataptr = scb->sg_list->addr; scb->hscb->datacnt = scb->sg_list->len; } else { scb->hscb->sgptr = aic_htole32(SG_LIST_NULL); scb->hscb->dataptr = 0; scb->hscb->datacnt = 0; } scb->sg_count = nsegments; /* * Last time we need to check if this SCB needs to * be aborted. */ if (aic_get_transaction_status(scb) != CAM_REQ_INPROG) { if (nsegments != 0) bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap); ahc_free_scb(ahc, scb); xpt_done(ccb); return; } tinfo = ahc_fetch_transinfo(ahc, SCSIID_CHANNEL(ahc, scb->hscb->scsiid), SCSIID_OUR_ID(scb->hscb->scsiid), SCSIID_TARGET(ahc, scb->hscb->scsiid), &tstate); mask = SCB_GET_TARGET_MASK(ahc, scb); scb->hscb->scsirate = tinfo->scsirate; scb->hscb->scsioffset = tinfo->curr.offset; if ((tstate->ultraenb & mask) != 0) scb->hscb->control |= ULTRAENB; if ((tstate->discenable & mask) != 0 && (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0) scb->hscb->control |= DISCENB; if ((ccb->ccb_h.flags & CAM_NEGOTIATE) != 0 && (tinfo->goal.width != 0 || tinfo->goal.offset != 0 || tinfo->goal.ppr_options != 0)) { scb->flags |= SCB_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } else if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); ccb->ccb_h.status |= CAM_SIM_QUEUED; /* * We only allow one untagged transaction * per target in the initiator role unless * we are storing a full busy target *lun* * table in SCB space. */ if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0 && (ahc->flags & AHC_SCB_BTT) == 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &(ahc->untagged_queues[target_offset]); TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); scb->flags |= SCB_UNTAGGEDQ; if (TAILQ_FIRST(untagged_q) != scb) { return; } } scb->flags |= SCB_ACTIVE; /* * Timers are disabled while recovery is in progress. */ aic_scb_timer_start(scb); if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) { /* Define a mapping from our tag to the SCB. */ ahc->scb_data->scbindex[scb->hscb->tag] = scb; ahc_pause(ahc); if ((ahc->flags & AHC_PAGESCBS) == 0) ahc_outb(ahc, SCBPTR, scb->hscb->tag); ahc_outb(ahc, TARG_IMMEDIATE_SCB, scb->hscb->tag); ahc_unpause(ahc); } else { ahc_queue_scb(ahc, scb); } } static void ahc_poll(struct cam_sim *sim) { struct ahc_softc *ahc; ahc = (struct ahc_softc *)cam_sim_softc(sim); ahc_intr(ahc); } static void ahc_setup_data(struct ahc_softc *ahc, struct cam_sim *sim, struct ccb_scsiio *csio, struct scb *scb) { struct hardware_scb *hscb; struct ccb_hdr *ccb_h; hscb = scb->hscb; ccb_h = &csio->ccb_h; csio->resid = 0; csio->sense_resid = 0; if (ccb_h->func_code == XPT_SCSI_IO) { hscb->cdb_len = csio->cdb_len; if ((ccb_h->flags & CAM_CDB_POINTER) != 0) { if (hscb->cdb_len > sizeof(hscb->cdb32) || (ccb_h->flags & CAM_CDB_PHYS) != 0) { aic_set_transaction_status(scb, CAM_REQ_INVALID); ahc_free_scb(ahc, scb); xpt_done((union ccb *)csio); return; } if (hscb->cdb_len > 12) { memcpy(hscb->cdb32, csio->cdb_io.cdb_ptr, hscb->cdb_len); scb->flags |= SCB_CDB32_PTR; } else { memcpy(hscb->shared_data.cdb, csio->cdb_io.cdb_ptr, hscb->cdb_len); } } else { if (hscb->cdb_len > 12) { memcpy(hscb->cdb32, csio->cdb_io.cdb_bytes, hscb->cdb_len); scb->flags |= SCB_CDB32_PTR; } else { memcpy(hscb->shared_data.cdb, csio->cdb_io.cdb_bytes, hscb->cdb_len); } } } /* Only use S/G if there is a transfer */ if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) { /* We've been given a pointer to a single buffer */ if ((ccb_h->flags & CAM_DATA_PHYS) == 0) { int s; int error; s = splsoftvm(); error = bus_dmamap_load(ahc->buffer_dmat, scb->dmamap, csio->data_ptr, csio->dxfer_len, ahc_execute_scb, scb, /*flags*/0); if (error == EINPROGRESS) { /* * So as to maintain ordering, * freeze the controller queue * until our mapping is * returned. */ xpt_freeze_simq(sim, /*count*/1); scb->io_ctx->ccb_h.status |= CAM_RELEASE_SIMQ; } splx(s); } else { struct bus_dma_segment seg; /* Pointer to physical buffer */ if (csio->dxfer_len > AHC_MAXTRANSFER_SIZE) panic("ahc_setup_data - Transfer size " "larger than can device max"); seg.ds_addr = (bus_addr_t)(vm_offset_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; ahc_execute_scb(scb, &seg, 1, 0); } } else { struct bus_dma_segment *segs; if ((ccb_h->flags & CAM_DATA_PHYS) != 0) panic("ahc_setup_data - Physical segment " "pointers unsupported"); if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0) panic("ahc_setup_data - Virtual segment " "addresses unsupported"); /* Just use the segments provided */ segs = (struct bus_dma_segment *)csio->data_ptr; ahc_execute_scb(scb, segs, csio->sglist_cnt, 0); } } else { ahc_execute_scb(scb, NULL, 0, 0); } } static void ahc_abort_ccb(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb) { union ccb *abort_ccb; abort_ccb = ccb->cab.abort_ccb; switch (abort_ccb->ccb_h.func_code) { case XPT_ACCEPT_TARGET_IO: case XPT_IMMEDIATE_NOTIFY: case XPT_CONT_TARGET_IO: { struct ahc_tmode_tstate *tstate; struct ahc_tmode_lstate *lstate; struct ccb_hdr_slist *list; cam_status status; status = ahc_find_tmode_devs(ahc, sim, abort_ccb, &tstate, &lstate, TRUE); if (status != CAM_REQ_CMP) { ccb->ccb_h.status = status; break; } if (abort_ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) list = &lstate->accept_tios; else if (abort_ccb->ccb_h.func_code == XPT_IMMEDIATE_NOTIFY) list = &lstate->immed_notifies; else list = NULL; if (list != NULL) { struct ccb_hdr *curelm; int found; curelm = SLIST_FIRST(list); found = 0; if (curelm == &abort_ccb->ccb_h) { found = 1; SLIST_REMOVE_HEAD(list, sim_links.sle); } else { while(curelm != NULL) { struct ccb_hdr *nextelm; nextelm = SLIST_NEXT(curelm, sim_links.sle); if (nextelm == &abort_ccb->ccb_h) { found = 1; SLIST_NEXT(curelm, sim_links.sle) = SLIST_NEXT(nextelm, sim_links.sle); break; } curelm = nextelm; } } if (found) { abort_ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(abort_ccb); ccb->ccb_h.status = CAM_REQ_CMP; } else { xpt_print_path(abort_ccb->ccb_h.path); printf("Not found\n"); ccb->ccb_h.status = CAM_PATH_INVALID; } break; } /* FALLTHROUGH */ } case XPT_SCSI_IO: /* XXX Fully implement the hard ones */ ccb->ccb_h.status = CAM_UA_ABORT; break; default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); } void ahc_send_async(struct ahc_softc *ahc, char channel, u_int target, u_int lun, ac_code code, void *opt_arg) { struct ccb_trans_settings cts; struct cam_path *path; void *arg; int error; arg = NULL; error = ahc_create_path(ahc, channel, target, lun, &path); if (error != CAM_REQ_CMP) return; switch (code) { case AC_TRANSFER_NEG: { struct ccb_trans_settings_scsi *scsi; cts.type = CTS_TYPE_CURRENT_SETTINGS; scsi = &cts.proto_specific.scsi; cts.ccb_h.path = path; cts.ccb_h.target_id = target; cts.ccb_h.target_lun = lun; ahc_get_tran_settings(ahc, channel == 'A' ? ahc->our_id : ahc->our_id_b, channel, &cts); arg = &cts; scsi->valid &= ~CTS_SCSI_VALID_TQ; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; if (opt_arg == NULL) break; if (*((ahc_queue_alg *)opt_arg) == AHC_QUEUE_TAGGED) scsi->flags |= ~CTS_SCSI_FLAGS_TAG_ENB; scsi->valid |= CTS_SCSI_VALID_TQ; break; } case AC_SENT_BDR: case AC_BUS_RESET: break; default: panic("ahc_send_async: Unexpected async event"); } xpt_async(code, path, arg); xpt_free_path(path); } void ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, int enable) { } int ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) { ahc->platform_data = malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ahc->platform_data == NULL) return (ENOMEM); return (0); } void ahc_platform_free(struct ahc_softc *ahc) { struct ahc_platform_data *pdata; pdata = ahc->platform_data; if (pdata != NULL) { if (pdata->regs != NULL) bus_release_resource(ahc->dev_softc, pdata->regs_res_type, pdata->regs_res_id, pdata->regs); if (pdata->irq != NULL) bus_release_resource(ahc->dev_softc, pdata->irq_res_type, 0, pdata->irq); if (pdata->sim_b != NULL) { xpt_async(AC_LOST_DEVICE, pdata->path_b, NULL); xpt_free_path(pdata->path_b); xpt_bus_deregister(cam_sim_path(pdata->sim_b)); cam_sim_free(pdata->sim_b, /*free_devq*/TRUE); } if (pdata->sim != NULL) { xpt_async(AC_LOST_DEVICE, pdata->path, NULL); xpt_free_path(pdata->path); xpt_bus_deregister(cam_sim_path(pdata->sim)); cam_sim_free(pdata->sim, /*free_devq*/TRUE); } if (pdata->eh != NULL) EVENTHANDLER_DEREGISTER(shutdown_final, pdata->eh); free(ahc->platform_data, M_DEVBUF); } } int ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc) { /* We don't sort softcs under FreeBSD so report equal always */ return (0); } int ahc_detach(device_t dev) { struct ahc_softc *ahc; device_printf(dev, "detaching device\n"); ahc = device_get_softc(dev); ahc_lock(ahc); TAILQ_REMOVE(&ahc_tailq, ahc, links); ahc_intr_enable(ahc, FALSE); bus_teardown_intr(dev, ahc->platform_data->irq, ahc->platform_data->ih); ahc_unlock(ahc); ahc_free(ahc); return (0); } #if 0 static void ahc_dump_targcmd(struct target_cmd *cmd) { uint8_t *byte; uint8_t *last_byte; int i; byte = &cmd->initiator_channel; /* Debugging info for received commands */ last_byte = &cmd[1].initiator_channel; i = 0; while (byte < last_byte) { if (i == 0) printf("\t"); printf("%#x", *byte++); i++; if (i == 8) { printf("\n"); i = 0; } else { printf(", "); } } } #endif static int ahc_modevent(module_t mod, int type, void *data) { /* XXX Deal with busy status on unload. */ /* XXX Deal with unknown events */ return 0; } static moduledata_t ahc_mod = { "ahc", ahc_modevent, NULL }; DECLARE_MODULE(ahc, ahc_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE); MODULE_DEPEND(ahc, cam, 1, 1, 1); MODULE_VERSION(ahc, 1);