Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapist/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapist/@/kern/vfs_aio.c |
/*- * Copyright (c) 1997 John S. Dyson. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. John S. Dyson's name may not be used to endorse or promote products * derived from this software without specific prior written permission. * * DISCLAIMER: This code isn't warranted to do anything useful. Anything * bad that happens because of using this software isn't the responsibility * of the author. This software is distributed AS-IS. */ /* * This file contains support for the POSIX 1003.1B AIO/LIO facility. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/vfs_aio.c 234438 2012-04-18 19:15:59Z ambrisko $"); #include "opt_compat.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/capability.h> #include <sys/eventhandler.h> #include <sys/sysproto.h> #include <sys/filedesc.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/kthread.h> #include <sys/fcntl.h> #include <sys/file.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/unistd.h> #include <sys/posix4.h> #include <sys/proc.h> #include <sys/resourcevar.h> #include <sys/signalvar.h> #include <sys/protosw.h> #include <sys/sema.h> #include <sys/socket.h> #include <sys/socketvar.h> #include <sys/syscall.h> #include <sys/sysent.h> #include <sys/sysctl.h> #include <sys/sx.h> #include <sys/taskqueue.h> #include <sys/vnode.h> #include <sys/conf.h> #include <sys/event.h> #include <sys/mount.h> #include <machine/atomic.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/pmap.h> #include <vm/vm_map.h> #include <vm/vm_object.h> #include <vm/uma.h> #include <sys/aio.h> #include "opt_vfs_aio.h" /* * Counter for allocating reference ids to new jobs. Wrapped to 1 on * overflow. (XXX will be removed soon.) */ static u_long jobrefid; /* * Counter for aio_fsync. */ static uint64_t jobseqno; #define JOBST_NULL 0 #define JOBST_JOBQSOCK 1 #define JOBST_JOBQGLOBAL 2 #define JOBST_JOBRUNNING 3 #define JOBST_JOBFINISHED 4 #define JOBST_JOBQBUF 5 #define JOBST_JOBQSYNC 6 #ifndef MAX_AIO_PER_PROC #define MAX_AIO_PER_PROC 32 #endif #ifndef MAX_AIO_QUEUE_PER_PROC #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ #endif #ifndef MAX_AIO_PROCS #define MAX_AIO_PROCS 32 #endif #ifndef MAX_AIO_QUEUE #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ #endif #ifndef TARGET_AIO_PROCS #define TARGET_AIO_PROCS 4 #endif #ifndef MAX_BUF_AIO #define MAX_BUF_AIO 16 #endif #ifndef AIOD_TIMEOUT_DEFAULT #define AIOD_TIMEOUT_DEFAULT (10 * hz) #endif #ifndef AIOD_LIFETIME_DEFAULT #define AIOD_LIFETIME_DEFAULT (30 * hz) #endif FEATURE(aio, "Asynchronous I/O"); static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); static int max_aio_procs = MAX_AIO_PROCS; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, "Maximum number of kernel threads to use for handling async IO "); static int num_aio_procs = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, "Number of presently active kernel threads for async IO"); /* * The code will adjust the actual number of AIO processes towards this * number when it gets a chance. */ static int target_aio_procs = TARGET_AIO_PROCS; SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 0, "Preferred number of ready kernel threads for async IO"); static int max_queue_count = MAX_AIO_QUEUE; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, "Maximum number of aio requests to queue, globally"); static int num_queue_count = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, "Number of queued aio requests"); static int num_buf_aio = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, "Number of aio requests presently handled by the buf subsystem"); /* Number of async I/O thread in the process of being started */ /* XXX This should be local to aio_aqueue() */ static int num_aio_resv_start = 0; static int aiod_timeout; SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, "Timeout value for synchronous aio operations"); static int aiod_lifetime; SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, "Maximum lifetime for idle aiod"); static int unloadable = 0; SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, "Allow unload of aio (not recommended)"); static int max_aio_per_proc = MAX_AIO_PER_PROC; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 0, "Maximum active aio requests per process (stored in the process)"); static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, &max_aio_queue_per_proc, 0, "Maximum queued aio requests per process (stored in the process)"); static int max_buf_aio = MAX_BUF_AIO; SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, "Maximum buf aio requests per process (stored in the process)"); typedef struct oaiocb { int aio_fildes; /* File descriptor */ off_t aio_offset; /* File offset for I/O */ volatile void *aio_buf; /* I/O buffer in process space */ size_t aio_nbytes; /* Number of bytes for I/O */ struct osigevent aio_sigevent; /* Signal to deliver */ int aio_lio_opcode; /* LIO opcode */ int aio_reqprio; /* Request priority -- ignored */ struct __aiocb_private _aiocb_private; } oaiocb_t; /* * Below is a key of locks used to protect each member of struct aiocblist * aioliojob and kaioinfo and any backends. * * * - need not protected * a - locked by kaioinfo lock * b - locked by backend lock, the backend lock can be null in some cases, * for example, BIO belongs to this type, in this case, proc lock is * reused. * c - locked by aio_job_mtx, the lock for the generic file I/O backend. */ /* * Current, there is only two backends: BIO and generic file I/O. * socket I/O is served by generic file I/O, this is not a good idea, since * disk file I/O and any other types without O_NONBLOCK flag can block daemon * threads, if there is no thread to serve socket I/O, the socket I/O will be * delayed too long or starved, we should create some threads dedicated to * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O * systems we really need non-blocking interface, fiddling O_NONBLOCK in file * structure is not safe because there is race between userland and aio * daemons. */ struct aiocblist { TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ int jobflags; /* (a) job flags */ int jobstate; /* (b) job state */ int inputcharge; /* (*) input blockes */ int outputcharge; /* (*) output blockes */ struct buf *bp; /* (*) private to BIO backend, * buffer pointer */ struct proc *userproc; /* (*) user process */ struct ucred *cred; /* (*) active credential when created */ struct file *fd_file; /* (*) pointer to file structure */ struct aioliojob *lio; /* (*) optional lio job */ struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ struct knlist klist; /* (a) list of knotes */ struct aiocb uaiocb; /* (*) kernel I/O control block */ ksiginfo_t ksi; /* (a) realtime signal info */ struct task biotask; /* (*) private to BIO backend */ uint64_t seqno; /* (*) job number */ int pending; /* (a) number of pending I/O, aio_fsync only */ }; /* jobflags */ #define AIOCBLIST_DONE 0x01 #define AIOCBLIST_BUFDONE 0x02 #define AIOCBLIST_RUNDOWN 0x04 #define AIOCBLIST_CHECKSYNC 0x08 /* * AIO process info */ #define AIOP_FREE 0x1 /* proc on free queue */ struct aiothreadlist { int aiothreadflags; /* (c) AIO proc flags */ TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ struct thread *aiothread; /* (*) the AIO thread */ }; /* * data-structure for lio signal management */ struct aioliojob { int lioj_flags; /* (a) listio flags */ int lioj_count; /* (a) listio flags */ int lioj_finished_count; /* (a) listio flags */ struct sigevent lioj_signal; /* (a) signal on all I/O done */ TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ struct knlist klist; /* (a) list of knotes */ ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ }; #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ /* * per process aio data structure */ struct kaioinfo { struct mtx kaio_mtx; /* the lock to protect this struct */ int kaio_flags; /* (a) per process kaio flags */ int kaio_maxactive_count; /* (*) maximum number of AIOs */ int kaio_active_count; /* (c) number of currently used AIOs */ int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ int kaio_count; /* (a) size of AIO queue */ int kaio_ballowed_count; /* (*) maximum number of buffers */ int kaio_buffer_count; /* (a) number of physio buffers */ TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, * NOT USED YET. */ TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ struct task kaio_task; /* (*) task to kick aio threads */ }; #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) #define AIO_MTX(ki) (&(ki)->kaio_mtx) #define KAIO_RUNDOWN 0x1 /* process is being run down */ #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ /* * Operations used to interact with userland aio control blocks. * Different ABIs provide their own operations. */ struct aiocb_ops { int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); long (*fetch_status)(struct aiocb *ujob); long (*fetch_error)(struct aiocb *ujob); int (*store_status)(struct aiocb *ujob, long status); int (*store_error)(struct aiocb *ujob, long error); int (*store_kernelinfo)(struct aiocb *ujob, long jobref); int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); }; static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ static struct sema aio_newproc_sem; static struct mtx aio_job_mtx; static struct mtx aio_sock_mtx; static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ static struct unrhdr *aiod_unr; void aio_init_aioinfo(struct proc *p); static int aio_onceonly(void); static int aio_free_entry(struct aiocblist *aiocbe); static void aio_process(struct aiocblist *aiocbe); static int aio_newproc(int *); int aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lio, int type, struct aiocb_ops *ops); static void aio_physwakeup(struct buf *bp); static void aio_proc_rundown(void *arg, struct proc *p); static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); static int aio_qphysio(struct proc *p, struct aiocblist *iocb); static void biohelper(void *, int); static void aio_daemon(void *param); static void aio_swake_cb(struct socket *, struct sockbuf *); static int aio_unload(void); static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); #define DONE_BUF 1 #define DONE_QUEUE 2 static int aio_kick(struct proc *userp); static void aio_kick_nowait(struct proc *userp); static void aio_kick_helper(void *context, int pending); static int filt_aioattach(struct knote *kn); static void filt_aiodetach(struct knote *kn); static int filt_aio(struct knote *kn, long hint); static int filt_lioattach(struct knote *kn); static void filt_liodetach(struct knote *kn); static int filt_lio(struct knote *kn, long hint); /* * Zones for: * kaio Per process async io info * aiop async io thread data * aiocb async io jobs * aiol list io job pointer - internal to aio_suspend XXX * aiolio list io jobs */ static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; /* kqueue filters for aio */ static struct filterops aio_filtops = { .f_isfd = 0, .f_attach = filt_aioattach, .f_detach = filt_aiodetach, .f_event = filt_aio, }; static struct filterops lio_filtops = { .f_isfd = 0, .f_attach = filt_lioattach, .f_detach = filt_liodetach, .f_event = filt_lio }; static eventhandler_tag exit_tag, exec_tag; TASKQUEUE_DEFINE_THREAD(aiod_bio); /* * Main operations function for use as a kernel module. */ static int aio_modload(struct module *module, int cmd, void *arg) { int error = 0; switch (cmd) { case MOD_LOAD: aio_onceonly(); break; case MOD_UNLOAD: error = aio_unload(); break; case MOD_SHUTDOWN: break; default: error = EINVAL; break; } return (error); } static moduledata_t aio_mod = { "aio", &aio_modload, NULL }; static struct syscall_helper_data aio_syscalls[] = { SYSCALL_INIT_HELPER(aio_cancel), SYSCALL_INIT_HELPER(aio_error), SYSCALL_INIT_HELPER(aio_fsync), SYSCALL_INIT_HELPER(aio_read), SYSCALL_INIT_HELPER(aio_return), SYSCALL_INIT_HELPER(aio_suspend), SYSCALL_INIT_HELPER(aio_waitcomplete), SYSCALL_INIT_HELPER(aio_write), SYSCALL_INIT_HELPER(lio_listio), SYSCALL_INIT_HELPER(oaio_read), SYSCALL_INIT_HELPER(oaio_write), SYSCALL_INIT_HELPER(olio_listio), SYSCALL_INIT_LAST }; #ifdef COMPAT_FREEBSD32 #include <sys/mount.h> #include <sys/socket.h> #include <compat/freebsd32/freebsd32.h> #include <compat/freebsd32/freebsd32_proto.h> #include <compat/freebsd32/freebsd32_signal.h> #include <compat/freebsd32/freebsd32_syscall.h> #include <compat/freebsd32/freebsd32_util.h> static struct syscall_helper_data aio32_syscalls[] = { SYSCALL32_INIT_HELPER(freebsd32_aio_return), SYSCALL32_INIT_HELPER(freebsd32_aio_suspend), SYSCALL32_INIT_HELPER(freebsd32_aio_cancel), SYSCALL32_INIT_HELPER(freebsd32_aio_error), SYSCALL32_INIT_HELPER(freebsd32_aio_fsync), SYSCALL32_INIT_HELPER(freebsd32_aio_read), SYSCALL32_INIT_HELPER(freebsd32_aio_write), SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete), SYSCALL32_INIT_HELPER(freebsd32_lio_listio), SYSCALL32_INIT_HELPER(freebsd32_oaio_read), SYSCALL32_INIT_HELPER(freebsd32_oaio_write), SYSCALL32_INIT_HELPER(freebsd32_olio_listio), SYSCALL_INIT_LAST }; #endif DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); MODULE_VERSION(aio, 1); /* * Startup initialization */ static int aio_onceonly(void) { int error; /* XXX: should probably just use so->callback */ aio_swake = &aio_swake_cb; exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, EVENTHANDLER_PRI_ANY); exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, EVENTHANDLER_PRI_ANY); kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); TAILQ_INIT(&aio_freeproc); sema_init(&aio_newproc_sem, 0, "aio_new_proc"); mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); TAILQ_INIT(&aio_jobs); aiod_unr = new_unrhdr(1, INT_MAX, NULL); kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); aiod_timeout = AIOD_TIMEOUT_DEFAULT; aiod_lifetime = AIOD_LIFETIME_DEFAULT; jobrefid = 1; async_io_version = _POSIX_VERSION; p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); error = syscall_helper_register(aio_syscalls); if (error) return (error); #ifdef COMPAT_FREEBSD32 error = syscall32_helper_register(aio32_syscalls); if (error) return (error); #endif return (0); } /* * Callback for unload of AIO when used as a module. */ static int aio_unload(void) { int error; /* * XXX: no unloads by default, it's too dangerous. * perhaps we could do it if locked out callers and then * did an aio_proc_rundown() on each process. * * jhb: aio_proc_rundown() needs to run on curproc though, * so I don't think that would fly. */ if (!unloadable) return (EOPNOTSUPP); #ifdef COMPAT_FREEBSD32 syscall32_helper_unregister(aio32_syscalls); #endif syscall_helper_unregister(aio_syscalls); error = kqueue_del_filteropts(EVFILT_AIO); if (error) return error; error = kqueue_del_filteropts(EVFILT_LIO); if (error) return error; async_io_version = 0; aio_swake = NULL; taskqueue_free(taskqueue_aiod_bio); delete_unrhdr(aiod_unr); uma_zdestroy(kaio_zone); uma_zdestroy(aiop_zone); uma_zdestroy(aiocb_zone); uma_zdestroy(aiol_zone); uma_zdestroy(aiolio_zone); EVENTHANDLER_DEREGISTER(process_exit, exit_tag); EVENTHANDLER_DEREGISTER(process_exec, exec_tag); mtx_destroy(&aio_job_mtx); mtx_destroy(&aio_sock_mtx); sema_destroy(&aio_newproc_sem); p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); return (0); } /* * Init the per-process aioinfo structure. The aioinfo limits are set * per-process for user limit (resource) management. */ void aio_init_aioinfo(struct proc *p) { struct kaioinfo *ki; ki = uma_zalloc(kaio_zone, M_WAITOK); mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); ki->kaio_flags = 0; ki->kaio_maxactive_count = max_aio_per_proc; ki->kaio_active_count = 0; ki->kaio_qallowed_count = max_aio_queue_per_proc; ki->kaio_count = 0; ki->kaio_ballowed_count = max_buf_aio; ki->kaio_buffer_count = 0; TAILQ_INIT(&ki->kaio_all); TAILQ_INIT(&ki->kaio_done); TAILQ_INIT(&ki->kaio_jobqueue); TAILQ_INIT(&ki->kaio_bufqueue); TAILQ_INIT(&ki->kaio_liojoblist); TAILQ_INIT(&ki->kaio_sockqueue); TAILQ_INIT(&ki->kaio_syncqueue); TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); PROC_LOCK(p); if (p->p_aioinfo == NULL) { p->p_aioinfo = ki; PROC_UNLOCK(p); } else { PROC_UNLOCK(p); mtx_destroy(&ki->kaio_mtx); uma_zfree(kaio_zone, ki); } while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) aio_newproc(NULL); } static int aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) { struct thread *td; int error; error = sigev_findtd(p, sigev, &td); if (error) return (error); if (!KSI_ONQ(ksi)) { ksiginfo_set_sigev(ksi, sigev); ksi->ksi_code = SI_ASYNCIO; ksi->ksi_flags |= KSI_EXT | KSI_INS; tdsendsignal(p, td, ksi->ksi_signo, ksi); } PROC_UNLOCK(p); return (error); } /* * Free a job entry. Wait for completion if it is currently active, but don't * delay forever. If we delay, we return a flag that says that we have to * restart the queue scan. */ static int aio_free_entry(struct aiocblist *aiocbe) { struct kaioinfo *ki; struct aioliojob *lj; struct proc *p; p = aiocbe->userproc; MPASS(curproc == p); ki = p->p_aioinfo; MPASS(ki != NULL); AIO_LOCK_ASSERT(ki, MA_OWNED); MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); atomic_subtract_int(&num_queue_count, 1); ki->kaio_count--; MPASS(ki->kaio_count >= 0); TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); lj = aiocbe->lio; if (lj) { lj->lioj_count--; lj->lioj_finished_count--; if (lj->lioj_count == 0) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); /* lio is going away, we need to destroy any knotes */ knlist_delete(&lj->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&lj->lioj_ksi); PROC_UNLOCK(p); uma_zfree(aiolio_zone, lj); } } /* aiocbe is going away, we need to destroy any knotes */ knlist_delete(&aiocbe->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&aiocbe->ksi); PROC_UNLOCK(p); MPASS(aiocbe->bp == NULL); aiocbe->jobstate = JOBST_NULL; AIO_UNLOCK(ki); /* * The thread argument here is used to find the owning process * and is also passed to fo_close() which may pass it to various * places such as devsw close() routines. Because of that, we * need a thread pointer from the process owning the job that is * persistent and won't disappear out from under us or move to * another process. * * Currently, all the callers of this function call it to remove * an aiocblist from the current process' job list either via a * syscall or due to the current process calling exit() or * execve(). Thus, we know that p == curproc. We also know that * curthread can't exit since we are curthread. * * Therefore, we use curthread as the thread to pass to * knlist_delete(). This does mean that it is possible for the * thread pointer at close time to differ from the thread pointer * at open time, but this is already true of file descriptors in * a multithreaded process. */ fdrop(aiocbe->fd_file, curthread); crfree(aiocbe->cred); uma_zfree(aiocb_zone, aiocbe); AIO_LOCK(ki); return (0); } static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) { aio_proc_rundown(arg, p); } /* * Rundown the jobs for a given process. */ static void aio_proc_rundown(void *arg, struct proc *p) { struct kaioinfo *ki; struct aioliojob *lj; struct aiocblist *cbe, *cbn; struct file *fp; struct socket *so; int remove; KASSERT(curthread->td_proc == p, ("%s: called on non-curproc", __func__)); ki = p->p_aioinfo; if (ki == NULL) return; AIO_LOCK(ki); ki->kaio_flags |= KAIO_RUNDOWN; restart: /* * Try to cancel all pending requests. This code simulates * aio_cancel on all pending I/O requests. */ TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { remove = 0; mtx_lock(&aio_job_mtx); if (cbe->jobstate == JOBST_JOBQGLOBAL) { TAILQ_REMOVE(&aio_jobs, cbe, list); remove = 1; } else if (cbe->jobstate == JOBST_JOBQSOCK) { fp = cbe->fd_file; MPASS(fp->f_type == DTYPE_SOCKET); so = fp->f_data; TAILQ_REMOVE(&so->so_aiojobq, cbe, list); remove = 1; } else if (cbe->jobstate == JOBST_JOBQSYNC) { TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); remove = 1; } mtx_unlock(&aio_job_mtx); if (remove) { cbe->jobstate = JOBST_JOBFINISHED; cbe->uaiocb._aiocb_private.status = -1; cbe->uaiocb._aiocb_private.error = ECANCELED; TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); aio_bio_done_notify(p, cbe, DONE_QUEUE); } } /* Wait for all running I/O to be finished */ if (TAILQ_FIRST(&ki->kaio_bufqueue) || TAILQ_FIRST(&ki->kaio_jobqueue)) { ki->kaio_flags |= KAIO_WAKEUP; msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); goto restart; } /* Free all completed I/O requests. */ while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) aio_free_entry(cbe); while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { if (lj->lioj_count == 0) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); knlist_delete(&lj->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&lj->lioj_ksi); PROC_UNLOCK(p); uma_zfree(aiolio_zone, lj); } else { panic("LIO job not cleaned up: C:%d, FC:%d\n", lj->lioj_count, lj->lioj_finished_count); } } AIO_UNLOCK(ki); taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); mtx_destroy(&ki->kaio_mtx); uma_zfree(kaio_zone, ki); p->p_aioinfo = NULL; } /* * Select a job to run (called by an AIO daemon). */ static struct aiocblist * aio_selectjob(struct aiothreadlist *aiop) { struct aiocblist *aiocbe; struct kaioinfo *ki; struct proc *userp; mtx_assert(&aio_job_mtx, MA_OWNED); TAILQ_FOREACH(aiocbe, &aio_jobs, list) { userp = aiocbe->userproc; ki = userp->p_aioinfo; if (ki->kaio_active_count < ki->kaio_maxactive_count) { TAILQ_REMOVE(&aio_jobs, aiocbe, list); /* Account for currently active jobs. */ ki->kaio_active_count++; aiocbe->jobstate = JOBST_JOBRUNNING; break; } } return (aiocbe); } /* * Move all data to a permanent storage device, this code * simulates fsync syscall. */ static int aio_fsync_vnode(struct thread *td, struct vnode *vp) { struct mount *mp; int vfslocked; int error; vfslocked = VFS_LOCK_GIANT(vp->v_mount); if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) goto drop; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_object != NULL) { VM_OBJECT_LOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, 0); VM_OBJECT_UNLOCK(vp->v_object); } error = VOP_FSYNC(vp, MNT_WAIT, td); VOP_UNLOCK(vp, 0); vn_finished_write(mp); drop: VFS_UNLOCK_GIANT(vfslocked); return (error); } /* * The AIO processing activity. This is the code that does the I/O request for * the non-physio version of the operations. The normal vn operations are used, * and this code should work in all instances for every type of file, including * pipes, sockets, fifos, and regular files. * * XXX I don't think it works well for socket, pipe, and fifo. */ static void aio_process(struct aiocblist *aiocbe) { struct ucred *td_savedcred; struct thread *td; struct aiocb *cb; struct file *fp; struct socket *so; struct uio auio; struct iovec aiov; int cnt; int error; int oublock_st, oublock_end; int inblock_st, inblock_end; td = curthread; td_savedcred = td->td_ucred; td->td_ucred = aiocbe->cred; cb = &aiocbe->uaiocb; fp = aiocbe->fd_file; if (cb->aio_lio_opcode == LIO_SYNC) { error = 0; cnt = 0; if (fp->f_vnode != NULL) error = aio_fsync_vnode(td, fp->f_vnode); cb->_aiocb_private.error = error; cb->_aiocb_private.status = 0; td->td_ucred = td_savedcred; return; } aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; aiov.iov_len = cb->aio_nbytes; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = cb->aio_offset; auio.uio_resid = cb->aio_nbytes; cnt = cb->aio_nbytes; auio.uio_segflg = UIO_USERSPACE; auio.uio_td = td; inblock_st = td->td_ru.ru_inblock; oublock_st = td->td_ru.ru_oublock; /* * aio_aqueue() acquires a reference to the file that is * released in aio_free_entry(). */ if (cb->aio_lio_opcode == LIO_READ) { auio.uio_rw = UIO_READ; if (auio.uio_resid == 0) error = 0; else error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); } else { if (fp->f_type == DTYPE_VNODE) bwillwrite(); auio.uio_rw = UIO_WRITE; error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); } inblock_end = td->td_ru.ru_inblock; oublock_end = td->td_ru.ru_oublock; aiocbe->inputcharge = inblock_end - inblock_st; aiocbe->outputcharge = oublock_end - oublock_st; if ((error) && (auio.uio_resid != cnt)) { if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) error = 0; if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { int sigpipe = 1; if (fp->f_type == DTYPE_SOCKET) { so = fp->f_data; if (so->so_options & SO_NOSIGPIPE) sigpipe = 0; } if (sigpipe) { PROC_LOCK(aiocbe->userproc); kern_psignal(aiocbe->userproc, SIGPIPE); PROC_UNLOCK(aiocbe->userproc); } } } cnt -= auio.uio_resid; cb->_aiocb_private.error = error; cb->_aiocb_private.status = cnt; td->td_ucred = td_savedcred; } static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) { struct aioliojob *lj; struct kaioinfo *ki; struct aiocblist *scb, *scbn; int lj_done; ki = userp->p_aioinfo; AIO_LOCK_ASSERT(ki, MA_OWNED); lj = aiocbe->lio; lj_done = 0; if (lj) { lj->lioj_finished_count++; if (lj->lioj_count == lj->lioj_finished_count) lj_done = 1; } if (type == DONE_QUEUE) { aiocbe->jobflags |= AIOCBLIST_DONE; } else { aiocbe->jobflags |= AIOCBLIST_BUFDONE; } TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); aiocbe->jobstate = JOBST_JOBFINISHED; if (ki->kaio_flags & KAIO_RUNDOWN) goto notification_done; if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); KNOTE_LOCKED(&aiocbe->klist, 1); if (lj_done) { if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { lj->lioj_flags |= LIOJ_KEVENT_POSTED; KNOTE_LOCKED(&lj->klist, 1); } if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); lj->lioj_flags |= LIOJ_SIGNAL_POSTED; } } notification_done: if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { if (aiocbe->fd_file == scb->fd_file && aiocbe->seqno < scb->seqno) { if (--scb->pending == 0) { mtx_lock(&aio_job_mtx); scb->jobstate = JOBST_JOBQGLOBAL; TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); TAILQ_INSERT_TAIL(&aio_jobs, scb, list); aio_kick_nowait(userp); mtx_unlock(&aio_job_mtx); } } } } if (ki->kaio_flags & KAIO_WAKEUP) { ki->kaio_flags &= ~KAIO_WAKEUP; wakeup(&userp->p_aioinfo); } } /* * The AIO daemon, most of the actual work is done in aio_process, * but the setup (and address space mgmt) is done in this routine. */ static void aio_daemon(void *_id) { struct aiocblist *aiocbe; struct aiothreadlist *aiop; struct kaioinfo *ki; struct proc *curcp, *mycp, *userp; struct vmspace *myvm, *tmpvm; struct thread *td = curthread; int id = (intptr_t)_id; /* * Local copies of curproc (cp) and vmspace (myvm) */ mycp = td->td_proc; myvm = mycp->p_vmspace; KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); /* * Allocate and ready the aio control info. There is one aiop structure * per daemon. */ aiop = uma_zalloc(aiop_zone, M_WAITOK); aiop->aiothread = td; aiop->aiothreadflags = 0; /* The daemon resides in its own pgrp. */ sys_setsid(td, NULL); /* * Wakeup parent process. (Parent sleeps to keep from blasting away * and creating too many daemons.) */ sema_post(&aio_newproc_sem); mtx_lock(&aio_job_mtx); for (;;) { /* * curcp is the current daemon process context. * userp is the current user process context. */ curcp = mycp; /* * Take daemon off of free queue */ if (aiop->aiothreadflags & AIOP_FREE) { TAILQ_REMOVE(&aio_freeproc, aiop, list); aiop->aiothreadflags &= ~AIOP_FREE; } /* * Check for jobs. */ while ((aiocbe = aio_selectjob(aiop)) != NULL) { mtx_unlock(&aio_job_mtx); userp = aiocbe->userproc; /* * Connect to process address space for user program. */ if (userp != curcp) { /* * Save the current address space that we are * connected to. */ tmpvm = mycp->p_vmspace; /* * Point to the new user address space, and * refer to it. */ mycp->p_vmspace = userp->p_vmspace; atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); /* Activate the new mapping. */ pmap_activate(FIRST_THREAD_IN_PROC(mycp)); /* * If the old address space wasn't the daemons * own address space, then we need to remove the * daemon's reference from the other process * that it was acting on behalf of. */ if (tmpvm != myvm) { vmspace_free(tmpvm); } curcp = userp; } ki = userp->p_aioinfo; /* Do the I/O function. */ aio_process(aiocbe); mtx_lock(&aio_job_mtx); /* Decrement the active job count. */ ki->kaio_active_count--; mtx_unlock(&aio_job_mtx); AIO_LOCK(ki); TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); AIO_UNLOCK(ki); mtx_lock(&aio_job_mtx); } /* * Disconnect from user address space. */ if (curcp != mycp) { mtx_unlock(&aio_job_mtx); /* Get the user address space to disconnect from. */ tmpvm = mycp->p_vmspace; /* Get original address space for daemon. */ mycp->p_vmspace = myvm; /* Activate the daemon's address space. */ pmap_activate(FIRST_THREAD_IN_PROC(mycp)); #ifdef DIAGNOSTIC if (tmpvm == myvm) { printf("AIOD: vmspace problem -- %d\n", mycp->p_pid); } #endif /* Remove our vmspace reference. */ vmspace_free(tmpvm); curcp = mycp; mtx_lock(&aio_job_mtx); /* * We have to restart to avoid race, we only sleep if * no job can be selected, that should be * curcp == mycp. */ continue; } mtx_assert(&aio_job_mtx, MA_OWNED); TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); aiop->aiothreadflags |= AIOP_FREE; /* * If daemon is inactive for a long time, allow it to exit, * thereby freeing resources. */ if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", aiod_lifetime)) { if (TAILQ_EMPTY(&aio_jobs)) { if ((aiop->aiothreadflags & AIOP_FREE) && (num_aio_procs > target_aio_procs)) { TAILQ_REMOVE(&aio_freeproc, aiop, list); num_aio_procs--; mtx_unlock(&aio_job_mtx); uma_zfree(aiop_zone, aiop); free_unr(aiod_unr, id); #ifdef DIAGNOSTIC if (mycp->p_vmspace->vm_refcnt <= 1) { printf("AIOD: bad vm refcnt for" " exiting daemon: %d\n", mycp->p_vmspace->vm_refcnt); } #endif kproc_exit(0); } } } } mtx_unlock(&aio_job_mtx); panic("shouldn't be here\n"); } /* * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The * AIO daemon modifies its environment itself. */ static int aio_newproc(int *start) { int error; struct proc *p; int id; id = alloc_unr(aiod_unr); error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, RFNOWAIT, 0, "aiod%d", id); if (error == 0) { /* * Wait until daemon is started. */ sema_wait(&aio_newproc_sem); mtx_lock(&aio_job_mtx); num_aio_procs++; if (start != NULL) (*start)--; mtx_unlock(&aio_job_mtx); } else { free_unr(aiod_unr, id); } return (error); } /* * Try the high-performance, low-overhead physio method for eligible * VCHR devices. This method doesn't use an aio helper thread, and * thus has very low overhead. * * Assumes that the caller, aio_aqueue(), has incremented the file * structure's reference count, preventing its deallocation for the * duration of this call. */ static int aio_qphysio(struct proc *p, struct aiocblist *aiocbe) { struct aiocb *cb; struct file *fp; struct buf *bp; struct vnode *vp; struct kaioinfo *ki; struct aioliojob *lj; int error; cb = &aiocbe->uaiocb; fp = aiocbe->fd_file; if (fp->f_type != DTYPE_VNODE) return (-1); vp = fp->f_vnode; /* * If its not a disk, we don't want to return a positive error. * It causes the aio code to not fall through to try the thread * way when you're talking to a regular file. */ if (!vn_isdisk(vp, &error)) { if (error == ENOTBLK) return (-1); else return (error); } if (vp->v_bufobj.bo_bsize == 0) return (-1); if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) return (-1); if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) return (-1); if (cb->aio_nbytes > MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) return (-1); ki = p->p_aioinfo; if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) return (-1); /* Create and build a buffer header for a transfer. */ bp = (struct buf *)getpbuf(NULL); BUF_KERNPROC(bp); AIO_LOCK(ki); ki->kaio_count++; ki->kaio_buffer_count++; lj = aiocbe->lio; if (lj) lj->lioj_count++; AIO_UNLOCK(ki); /* * Get a copy of the kva from the physical buffer. */ error = 0; bp->b_bcount = cb->aio_nbytes; bp->b_bufsize = cb->aio_nbytes; bp->b_iodone = aio_physwakeup; bp->b_saveaddr = bp->b_data; bp->b_data = (void *)(uintptr_t)cb->aio_buf; bp->b_offset = cb->aio_offset; bp->b_iooffset = cb->aio_offset; bp->b_blkno = btodb(cb->aio_offset); bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; /* * Bring buffer into kernel space. */ if (vmapbuf(bp) < 0) { error = EFAULT; goto doerror; } AIO_LOCK(ki); aiocbe->bp = bp; bp->b_caller1 = (void *)aiocbe; TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); aiocbe->jobstate = JOBST_JOBQBUF; cb->_aiocb_private.status = cb->aio_nbytes; AIO_UNLOCK(ki); atomic_add_int(&num_queue_count, 1); atomic_add_int(&num_buf_aio, 1); bp->b_error = 0; TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); /* Perform transfer. */ dev_strategy(vp->v_rdev, bp); return (0); doerror: AIO_LOCK(ki); ki->kaio_count--; ki->kaio_buffer_count--; if (lj) lj->lioj_count--; aiocbe->bp = NULL; AIO_UNLOCK(ki); relpbuf(bp, NULL); return (error); } /* * Wake up aio requests that may be serviceable now. */ static void aio_swake_cb(struct socket *so, struct sockbuf *sb) { struct aiocblist *cb, *cbn; int opcode; SOCKBUF_LOCK_ASSERT(sb); if (sb == &so->so_snd) opcode = LIO_WRITE; else opcode = LIO_READ; sb->sb_flags &= ~SB_AIO; mtx_lock(&aio_job_mtx); TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { if (opcode == cb->uaiocb.aio_lio_opcode) { if (cb->jobstate != JOBST_JOBQSOCK) panic("invalid queue value"); /* XXX * We don't have actual sockets backend yet, * so we simply move the requests to the generic * file I/O backend. */ TAILQ_REMOVE(&so->so_aiojobq, cb, list); TAILQ_INSERT_TAIL(&aio_jobs, cb, list); aio_kick_nowait(cb->userproc); } } mtx_unlock(&aio_job_mtx); } static int convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) { /* * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are * supported by AIO with the old sigevent structure. */ nsig->sigev_notify = osig->sigev_notify; switch (nsig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_SIGNAL: nsig->sigev_signo = osig->__sigev_u.__sigev_signo; break; case SIGEV_KEVENT: nsig->sigev_notify_kqueue = osig->__sigev_u.__sigev_notify_kqueue; nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; break; default: return (EINVAL); } return (0); } static int aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) { struct oaiocb *ojob; int error; bzero(kjob, sizeof(struct aiocb)); error = copyin(ujob, kjob, sizeof(struct oaiocb)); if (error) return (error); ojob = (struct oaiocb *)kjob; return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); } static int aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) { return (copyin(ujob, kjob, sizeof(struct aiocb))); } static long aiocb_fetch_status(struct aiocb *ujob) { return (fuword(&ujob->_aiocb_private.status)); } static long aiocb_fetch_error(struct aiocb *ujob) { return (fuword(&ujob->_aiocb_private.error)); } static int aiocb_store_status(struct aiocb *ujob, long status) { return (suword(&ujob->_aiocb_private.status, status)); } static int aiocb_store_error(struct aiocb *ujob, long error) { return (suword(&ujob->_aiocb_private.error, error)); } static int aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) { return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); } static int aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) { return (suword(ujobp, (long)ujob)); } static struct aiocb_ops aiocb_ops = { .copyin = aiocb_copyin, .fetch_status = aiocb_fetch_status, .fetch_error = aiocb_fetch_error, .store_status = aiocb_store_status, .store_error = aiocb_store_error, .store_kernelinfo = aiocb_store_kernelinfo, .store_aiocb = aiocb_store_aiocb, }; static struct aiocb_ops aiocb_ops_osigevent = { .copyin = aiocb_copyin_old_sigevent, .fetch_status = aiocb_fetch_status, .fetch_error = aiocb_fetch_error, .store_status = aiocb_store_status, .store_error = aiocb_store_error, .store_kernelinfo = aiocb_store_kernelinfo, .store_aiocb = aiocb_store_aiocb, }; /* * Queue a new AIO request. Choosing either the threaded or direct physio VCHR * technique is done in this code. */ int aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, int type, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct file *fp; struct socket *so; struct aiocblist *aiocbe, *cb; struct kaioinfo *ki; struct kevent kev; struct sockbuf *sb; int opcode; int error; int fd, kqfd; int jid; u_short evflags; if (p->p_aioinfo == NULL) aio_init_aioinfo(p); ki = p->p_aioinfo; ops->store_status(job, -1); ops->store_error(job, 0); ops->store_kernelinfo(job, -1); if (num_queue_count >= max_queue_count || ki->kaio_count >= ki->kaio_qallowed_count) { ops->store_error(job, EAGAIN); return (EAGAIN); } aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); aiocbe->inputcharge = 0; aiocbe->outputcharge = 0; knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki)); error = ops->copyin(job, &aiocbe->uaiocb); if (error) { ops->store_error(job, error); uma_zfree(aiocb_zone, aiocbe); return (error); } if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { ops->store_error(job, EINVAL); uma_zfree(aiocb_zone, aiocbe); return (EINVAL); } if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { uma_zfree(aiocb_zone, aiocbe); return (EINVAL); } ksiginfo_init(&aiocbe->ksi); /* Save userspace address of the job info. */ aiocbe->uuaiocb = job; /* Get the opcode. */ if (type != LIO_NOP) aiocbe->uaiocb.aio_lio_opcode = type; opcode = aiocbe->uaiocb.aio_lio_opcode; /* * Validate the opcode and fetch the file object for the specified * file descriptor. * * XXXRW: Moved the opcode validation up here so that we don't * retrieve a file descriptor without knowing what the capabiltity * should be. */ fd = aiocbe->uaiocb.aio_fildes; switch (opcode) { case LIO_WRITE: error = fget_write(td, fd, CAP_WRITE | CAP_SEEK, &fp); break; case LIO_READ: error = fget_read(td, fd, CAP_READ | CAP_SEEK, &fp); break; case LIO_SYNC: error = fget(td, fd, CAP_FSYNC, &fp); break; case LIO_NOP: error = fget(td, fd, 0, &fp); break; default: error = EINVAL; } if (error) { uma_zfree(aiocb_zone, aiocbe); ops->store_error(job, error); return (error); } if (opcode == LIO_SYNC && fp->f_vnode == NULL) { error = EINVAL; goto aqueue_fail; } if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { error = EINVAL; goto aqueue_fail; } aiocbe->fd_file = fp; mtx_lock(&aio_job_mtx); jid = jobrefid++; aiocbe->seqno = jobseqno++; mtx_unlock(&aio_job_mtx); error = ops->store_kernelinfo(job, jid); if (error) { error = EINVAL; goto aqueue_fail; } aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; if (opcode == LIO_NOP) { fdrop(fp, td); uma_zfree(aiocb_zone, aiocbe); return (0); } if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) goto no_kqueue; evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags; if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { error = EINVAL; goto aqueue_fail; } kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; kev.ident = (uintptr_t)aiocbe->uuaiocb; kev.filter = EVFILT_AIO; kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; kev.data = (intptr_t)aiocbe; kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; error = kqfd_register(kqfd, &kev, td, 1); aqueue_fail: if (error) { fdrop(fp, td); uma_zfree(aiocb_zone, aiocbe); ops->store_error(job, error); goto done; } no_kqueue: ops->store_error(job, EINPROGRESS); aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; aiocbe->userproc = p; aiocbe->cred = crhold(td->td_ucred); aiocbe->jobflags = 0; aiocbe->lio = lj; if (opcode == LIO_SYNC) goto queueit; if (fp->f_type == DTYPE_SOCKET) { /* * Alternate queueing for socket ops: Reach down into the * descriptor to get the socket data. Then check to see if the * socket is ready to be read or written (based on the requested * operation). * * If it is not ready for io, then queue the aiocbe on the * socket, and set the flags so we get a call when sbnotify() * happens. * * Note if opcode is neither LIO_WRITE nor LIO_READ we lock * and unlock the snd sockbuf for no reason. */ so = fp->f_data; sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; SOCKBUF_LOCK(sb); if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == LIO_WRITE) && (!sowriteable(so)))) { sb->sb_flags |= SB_AIO; mtx_lock(&aio_job_mtx); TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); mtx_unlock(&aio_job_mtx); AIO_LOCK(ki); TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); aiocbe->jobstate = JOBST_JOBQSOCK; ki->kaio_count++; if (lj) lj->lioj_count++; AIO_UNLOCK(ki); SOCKBUF_UNLOCK(sb); atomic_add_int(&num_queue_count, 1); error = 0; goto done; } SOCKBUF_UNLOCK(sb); } if ((error = aio_qphysio(p, aiocbe)) == 0) goto done; #if 0 if (error > 0) { aiocbe->uaiocb._aiocb_private.error = error; ops->store_error(job, error); goto done; } #endif queueit: /* No buffer for daemon I/O. */ aiocbe->bp = NULL; atomic_add_int(&num_queue_count, 1); AIO_LOCK(ki); ki->kaio_count++; if (lj) lj->lioj_count++; TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); if (opcode == LIO_SYNC) { TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { if (cb->fd_file == aiocbe->fd_file && cb->uaiocb.aio_lio_opcode != LIO_SYNC && cb->seqno < aiocbe->seqno) { cb->jobflags |= AIOCBLIST_CHECKSYNC; aiocbe->pending++; } } TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { if (cb->fd_file == aiocbe->fd_file && cb->uaiocb.aio_lio_opcode != LIO_SYNC && cb->seqno < aiocbe->seqno) { cb->jobflags |= AIOCBLIST_CHECKSYNC; aiocbe->pending++; } } if (aiocbe->pending != 0) { TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); aiocbe->jobstate = JOBST_JOBQSYNC; AIO_UNLOCK(ki); goto done; } } mtx_lock(&aio_job_mtx); TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); aiocbe->jobstate = JOBST_JOBQGLOBAL; aio_kick_nowait(p); mtx_unlock(&aio_job_mtx); AIO_UNLOCK(ki); error = 0; done: return (error); } static void aio_kick_nowait(struct proc *userp) { struct kaioinfo *ki = userp->p_aioinfo; struct aiothreadlist *aiop; mtx_assert(&aio_job_mtx, MA_OWNED); if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { TAILQ_REMOVE(&aio_freeproc, aiop, list); aiop->aiothreadflags &= ~AIOP_FREE; wakeup(aiop->aiothread); } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && ((ki->kaio_active_count + num_aio_resv_start) < ki->kaio_maxactive_count)) { taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); } } static int aio_kick(struct proc *userp) { struct kaioinfo *ki = userp->p_aioinfo; struct aiothreadlist *aiop; int error, ret = 0; mtx_assert(&aio_job_mtx, MA_OWNED); retryproc: if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { TAILQ_REMOVE(&aio_freeproc, aiop, list); aiop->aiothreadflags &= ~AIOP_FREE; wakeup(aiop->aiothread); } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && ((ki->kaio_active_count + num_aio_resv_start) < ki->kaio_maxactive_count)) { num_aio_resv_start++; mtx_unlock(&aio_job_mtx); error = aio_newproc(&num_aio_resv_start); mtx_lock(&aio_job_mtx); if (error) { num_aio_resv_start--; goto retryproc; } } else { ret = -1; } return (ret); } static void aio_kick_helper(void *context, int pending) { struct proc *userp = context; mtx_lock(&aio_job_mtx); while (--pending >= 0) { if (aio_kick(userp)) break; } mtx_unlock(&aio_job_mtx); } /* * Support the aio_return system call, as a side-effect, kernel resources are * released. */ static int kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct aiocblist *cb; struct kaioinfo *ki; int status, error; ki = p->p_aioinfo; if (ki == NULL) return (EINVAL); AIO_LOCK(ki); TAILQ_FOREACH(cb, &ki->kaio_done, plist) { if (cb->uuaiocb == uaiocb) break; } if (cb != NULL) { MPASS(cb->jobstate == JOBST_JOBFINISHED); status = cb->uaiocb._aiocb_private.status; error = cb->uaiocb._aiocb_private.error; td->td_retval[0] = status; if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { td->td_ru.ru_oublock += cb->outputcharge; cb->outputcharge = 0; } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { td->td_ru.ru_inblock += cb->inputcharge; cb->inputcharge = 0; } aio_free_entry(cb); AIO_UNLOCK(ki); ops->store_error(uaiocb, error); ops->store_status(uaiocb, status); } else { error = EINVAL; AIO_UNLOCK(ki); } return (error); } int sys_aio_return(struct thread *td, struct aio_return_args *uap) { return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); } /* * Allow a process to wakeup when any of the I/O requests are completed. */ static int kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, struct timespec *ts) { struct proc *p = td->td_proc; struct timeval atv; struct kaioinfo *ki; struct aiocblist *cb, *cbfirst; int error, i, timo; timo = 0; if (ts) { if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, ts); if (itimerfix(&atv)) return (EINVAL); timo = tvtohz(&atv); } ki = p->p_aioinfo; if (ki == NULL) return (EAGAIN); if (njoblist == 0) return (0); AIO_LOCK(ki); for (;;) { cbfirst = NULL; error = 0; TAILQ_FOREACH(cb, &ki->kaio_all, allist) { for (i = 0; i < njoblist; i++) { if (cb->uuaiocb == ujoblist[i]) { if (cbfirst == NULL) cbfirst = cb; if (cb->jobstate == JOBST_JOBFINISHED) goto RETURN; } } } /* All tasks were finished. */ if (cbfirst == NULL) break; ki->kaio_flags |= KAIO_WAKEUP; error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, "aiospn", timo); if (error == ERESTART) error = EINTR; if (error) break; } RETURN: AIO_UNLOCK(ki); return (error); } int sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) { struct timespec ts, *tsp; struct aiocb **ujoblist; int error; if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) return (EINVAL); if (uap->timeout) { /* Get timespec struct. */ if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) return (error); tsp = &ts; } else tsp = NULL; ujoblist = uma_zalloc(aiol_zone, M_WAITOK); error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); if (error == 0) error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); uma_zfree(aiol_zone, ujoblist); return (error); } /* * aio_cancel cancels any non-physio aio operations not currently in * progress. */ int sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) { struct proc *p = td->td_proc; struct kaioinfo *ki; struct aiocblist *cbe, *cbn; struct file *fp; struct socket *so; int error; int remove; int cancelled = 0; int notcancelled = 0; struct vnode *vp; /* Lookup file object. */ error = fget(td, uap->fd, 0, &fp); if (error) return (error); ki = p->p_aioinfo; if (ki == NULL) goto done; if (fp->f_type == DTYPE_VNODE) { vp = fp->f_vnode; if (vn_isdisk(vp, &error)) { fdrop(fp, td); td->td_retval[0] = AIO_NOTCANCELED; return (0); } } AIO_LOCK(ki); TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { if ((uap->fd == cbe->uaiocb.aio_fildes) && ((uap->aiocbp == NULL) || (uap->aiocbp == cbe->uuaiocb))) { remove = 0; mtx_lock(&aio_job_mtx); if (cbe->jobstate == JOBST_JOBQGLOBAL) { TAILQ_REMOVE(&aio_jobs, cbe, list); remove = 1; } else if (cbe->jobstate == JOBST_JOBQSOCK) { MPASS(fp->f_type == DTYPE_SOCKET); so = fp->f_data; TAILQ_REMOVE(&so->so_aiojobq, cbe, list); remove = 1; } else if (cbe->jobstate == JOBST_JOBQSYNC) { TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); remove = 1; } mtx_unlock(&aio_job_mtx); if (remove) { TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); cbe->uaiocb._aiocb_private.status = -1; cbe->uaiocb._aiocb_private.error = ECANCELED; aio_bio_done_notify(p, cbe, DONE_QUEUE); cancelled++; } else { notcancelled++; } if (uap->aiocbp != NULL) break; } } AIO_UNLOCK(ki); done: fdrop(fp, td); if (uap->aiocbp != NULL) { if (cancelled) { td->td_retval[0] = AIO_CANCELED; return (0); } } if (notcancelled) { td->td_retval[0] = AIO_NOTCANCELED; return (0); } if (cancelled) { td->td_retval[0] = AIO_CANCELED; return (0); } td->td_retval[0] = AIO_ALLDONE; return (0); } /* * aio_error is implemented in the kernel level for compatibility purposes * only. For a user mode async implementation, it would be best to do it in * a userland subroutine. */ static int kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct aiocblist *cb; struct kaioinfo *ki; int status; ki = p->p_aioinfo; if (ki == NULL) { td->td_retval[0] = EINVAL; return (0); } AIO_LOCK(ki); TAILQ_FOREACH(cb, &ki->kaio_all, allist) { if (cb->uuaiocb == aiocbp) { if (cb->jobstate == JOBST_JOBFINISHED) td->td_retval[0] = cb->uaiocb._aiocb_private.error; else td->td_retval[0] = EINPROGRESS; AIO_UNLOCK(ki); return (0); } } AIO_UNLOCK(ki); /* * Hack for failure of aio_aqueue. */ status = ops->fetch_status(aiocbp); if (status == -1) { td->td_retval[0] = ops->fetch_error(aiocbp); return (0); } td->td_retval[0] = EINVAL; return (0); } int sys_aio_error(struct thread *td, struct aio_error_args *uap) { return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); } /* syscall - asynchronous read from a file (REALTIME) */ int sys_oaio_read(struct thread *td, struct oaio_read_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, &aiocb_ops_osigevent)); } int sys_aio_read(struct thread *td, struct aio_read_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); } /* syscall - asynchronous write to a file (REALTIME) */ int sys_oaio_write(struct thread *td, struct oaio_write_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops_osigevent)); } int sys_aio_write(struct thread *td, struct aio_write_args *uap) { return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); } static int kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, struct aiocb **acb_list, int nent, struct sigevent *sig, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct aiocb *iocb; struct kaioinfo *ki; struct aioliojob *lj; struct kevent kev; int error; int nerror; int i; if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) return (EINVAL); if (nent < 0 || nent > AIO_LISTIO_MAX) return (EINVAL); if (p->p_aioinfo == NULL) aio_init_aioinfo(p); ki = p->p_aioinfo; lj = uma_zalloc(aiolio_zone, M_WAITOK); lj->lioj_flags = 0; lj->lioj_count = 0; lj->lioj_finished_count = 0; knlist_init_mtx(&lj->klist, AIO_MTX(ki)); ksiginfo_init(&lj->lioj_ksi); /* * Setup signal. */ if (sig && (mode == LIO_NOWAIT)) { bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { /* Assume only new style KEVENT */ kev.filter = EVFILT_LIO; kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; kev.ident = (uintptr_t)uacb_list; /* something unique */ kev.data = (intptr_t)lj; /* pass user defined sigval data */ kev.udata = lj->lioj_signal.sigev_value.sival_ptr; error = kqfd_register( lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); if (error) { uma_zfree(aiolio_zone, lj); return (error); } } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { ; } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { uma_zfree(aiolio_zone, lj); return EINVAL; } lj->lioj_flags |= LIOJ_SIGNAL; } else { uma_zfree(aiolio_zone, lj); return EINVAL; } } AIO_LOCK(ki); TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); /* * Add extra aiocb count to avoid the lio to be freed * by other threads doing aio_waitcomplete or aio_return, * and prevent event from being sent until we have queued * all tasks. */ lj->lioj_count = 1; AIO_UNLOCK(ki); /* * Get pointers to the list of I/O requests. */ nerror = 0; for (i = 0; i < nent; i++) { iocb = acb_list[i]; if (iocb != NULL) { error = aio_aqueue(td, iocb, lj, LIO_NOP, ops); if (error != 0) nerror++; } } error = 0; AIO_LOCK(ki); if (mode == LIO_WAIT) { while (lj->lioj_count - 1 != lj->lioj_finished_count) { ki->kaio_flags |= KAIO_WAKEUP; error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, "aiospn", 0); if (error == ERESTART) error = EINTR; if (error) break; } } else { if (lj->lioj_count - 1 == lj->lioj_finished_count) { if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { lj->lioj_flags |= LIOJ_KEVENT_POSTED; KNOTE_LOCKED(&lj->klist, 1); } if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi); lj->lioj_flags |= LIOJ_SIGNAL_POSTED; } } } lj->lioj_count--; if (lj->lioj_count == 0) { TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); knlist_delete(&lj->klist, curthread, 1); PROC_LOCK(p); sigqueue_take(&lj->lioj_ksi); PROC_UNLOCK(p); AIO_UNLOCK(ki); uma_zfree(aiolio_zone, lj); } else AIO_UNLOCK(ki); if (nerror) return (EIO); return (error); } /* syscall - list directed I/O (REALTIME) */ int sys_olio_listio(struct thread *td, struct olio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; struct osigevent osig; int error, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > AIO_LISTIO_MAX) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &osig, sizeof(osig)); if (error) return (error); error = convert_old_sigevent(&osig, &sig); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); if (error == 0) error = kern_lio_listio(td, uap->mode, (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, &aiocb_ops_osigevent); free(acb_list, M_LIO); return (error); } /* syscall - list directed I/O (REALTIME) */ int sys_lio_listio(struct thread *td, struct lio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; int error, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > AIO_LISTIO_MAX) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &sig, sizeof(sig)); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); if (error == 0) error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, nent, sigp, &aiocb_ops); free(acb_list, M_LIO); return (error); } /* * Called from interrupt thread for physio, we should return as fast * as possible, so we schedule a biohelper task. */ static void aio_physwakeup(struct buf *bp) { struct aiocblist *aiocbe; aiocbe = (struct aiocblist *)bp->b_caller1; taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); } /* * Task routine to perform heavy tasks, process wakeup, and signals. */ static void biohelper(void *context, int pending) { struct aiocblist *aiocbe = context; struct buf *bp; struct proc *userp; struct kaioinfo *ki; int nblks; bp = aiocbe->bp; userp = aiocbe->userproc; ki = userp->p_aioinfo; AIO_LOCK(ki); aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; aiocbe->uaiocb._aiocb_private.error = 0; if (bp->b_ioflags & BIO_ERROR) aiocbe->uaiocb._aiocb_private.error = bp->b_error; nblks = btodb(aiocbe->uaiocb.aio_nbytes); if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) aiocbe->outputcharge += nblks; else aiocbe->inputcharge += nblks; aiocbe->bp = NULL; TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); ki->kaio_buffer_count--; aio_bio_done_notify(userp, aiocbe, DONE_BUF); AIO_UNLOCK(ki); /* Release mapping into kernel space. */ vunmapbuf(bp); relpbuf(bp, NULL); atomic_subtract_int(&num_buf_aio, 1); } /* syscall - wait for the next completion of an aio request */ static int kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp, struct timespec *ts, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct timeval atv; struct kaioinfo *ki; struct aiocblist *cb; struct aiocb *uuaiocb; int error, status, timo; ops->store_aiocb(aiocbp, NULL); timo = 0; if (ts) { if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, ts); if (itimerfix(&atv)) return (EINVAL); timo = tvtohz(&atv); } if (p->p_aioinfo == NULL) aio_init_aioinfo(p); ki = p->p_aioinfo; error = 0; cb = NULL; AIO_LOCK(ki); while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { ki->kaio_flags |= KAIO_WAKEUP; error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, "aiowc", timo); if (timo && error == ERESTART) error = EINTR; if (error) break; } if (cb != NULL) { MPASS(cb->jobstate == JOBST_JOBFINISHED); uuaiocb = cb->uuaiocb; status = cb->uaiocb._aiocb_private.status; error = cb->uaiocb._aiocb_private.error; td->td_retval[0] = status; if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { td->td_ru.ru_oublock += cb->outputcharge; cb->outputcharge = 0; } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { td->td_ru.ru_inblock += cb->inputcharge; cb->inputcharge = 0; } aio_free_entry(cb); AIO_UNLOCK(ki); ops->store_aiocb(aiocbp, uuaiocb); ops->store_error(uuaiocb, error); ops->store_status(uuaiocb, status); } else AIO_UNLOCK(ki); return (error); } int sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) { struct timespec ts, *tsp; int error; if (uap->timeout) { /* Get timespec struct. */ error = copyin(uap->timeout, &ts, sizeof(ts)); if (error) return (error); tsp = &ts; } else tsp = NULL; return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); } static int kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp, struct aiocb_ops *ops) { struct proc *p = td->td_proc; struct kaioinfo *ki; if (op != O_SYNC) /* XXX lack of O_DSYNC */ return (EINVAL); ki = p->p_aioinfo; if (ki == NULL) aio_init_aioinfo(p); return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops)); } int sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) { return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); } /* kqueue attach function */ static int filt_aioattach(struct knote *kn) { struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; /* * The aiocbe pointer must be validated before using it, so * registration is restricted to the kernel; the user cannot * set EV_FLAG1. */ if ((kn->kn_flags & EV_FLAG1) == 0) return (EPERM); kn->kn_ptr.p_aio = aiocbe; kn->kn_flags &= ~EV_FLAG1; knlist_add(&aiocbe->klist, kn, 0); return (0); } /* kqueue detach function */ static void filt_aiodetach(struct knote *kn) { struct knlist *knl; knl = &kn->kn_ptr.p_aio->klist; knl->kl_lock(knl->kl_lockarg); if (!knlist_empty(knl)) knlist_remove(knl, kn, 1); knl->kl_unlock(knl->kl_lockarg); } /* kqueue filter function */ /*ARGSUSED*/ static int filt_aio(struct knote *kn, long hint) { struct aiocblist *aiocbe = kn->kn_ptr.p_aio; kn->kn_data = aiocbe->uaiocb._aiocb_private.error; if (aiocbe->jobstate != JOBST_JOBFINISHED) return (0); kn->kn_flags |= EV_EOF; return (1); } /* kqueue attach function */ static int filt_lioattach(struct knote *kn) { struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; /* * The aioliojob pointer must be validated before using it, so * registration is restricted to the kernel; the user cannot * set EV_FLAG1. */ if ((kn->kn_flags & EV_FLAG1) == 0) return (EPERM); kn->kn_ptr.p_lio = lj; kn->kn_flags &= ~EV_FLAG1; knlist_add(&lj->klist, kn, 0); return (0); } /* kqueue detach function */ static void filt_liodetach(struct knote *kn) { struct knlist *knl; knl = &kn->kn_ptr.p_lio->klist; knl->kl_lock(knl->kl_lockarg); if (!knlist_empty(knl)) knlist_remove(knl, kn, 1); knl->kl_unlock(knl->kl_lockarg); } /* kqueue filter function */ /*ARGSUSED*/ static int filt_lio(struct knote *kn, long hint) { struct aioliojob * lj = kn->kn_ptr.p_lio; return (lj->lioj_flags & LIOJ_KEVENT_POSTED); } #ifdef COMPAT_FREEBSD32 struct __aiocb_private32 { int32_t status; int32_t error; uint32_t kernelinfo; }; typedef struct oaiocb32 { int aio_fildes; /* File descriptor */ uint64_t aio_offset __packed; /* File offset for I/O */ uint32_t aio_buf; /* I/O buffer in process space */ uint32_t aio_nbytes; /* Number of bytes for I/O */ struct osigevent32 aio_sigevent; /* Signal to deliver */ int aio_lio_opcode; /* LIO opcode */ int aio_reqprio; /* Request priority -- ignored */ struct __aiocb_private32 _aiocb_private; } oaiocb32_t; typedef struct aiocb32 { int32_t aio_fildes; /* File descriptor */ uint64_t aio_offset __packed; /* File offset for I/O */ uint32_t aio_buf; /* I/O buffer in process space */ uint32_t aio_nbytes; /* Number of bytes for I/O */ int __spare__[2]; uint32_t __spare2__; int aio_lio_opcode; /* LIO opcode */ int aio_reqprio; /* Request priority -- ignored */ struct __aiocb_private32 _aiocb_private; struct sigevent32 aio_sigevent; /* Signal to deliver */ } aiocb32_t; static int convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) { /* * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are * supported by AIO with the old sigevent structure. */ CP(*osig, *nsig, sigev_notify); switch (nsig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_SIGNAL: nsig->sigev_signo = osig->__sigev_u.__sigev_signo; break; case SIGEV_KEVENT: nsig->sigev_notify_kqueue = osig->__sigev_u.__sigev_notify_kqueue; PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); break; default: return (EINVAL); } return (0); } static int aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) { struct oaiocb32 job32; int error; bzero(kjob, sizeof(struct aiocb)); error = copyin(ujob, &job32, sizeof(job32)); if (error) return (error); CP(job32, *kjob, aio_fildes); CP(job32, *kjob, aio_offset); PTRIN_CP(job32, *kjob, aio_buf); CP(job32, *kjob, aio_nbytes); CP(job32, *kjob, aio_lio_opcode); CP(job32, *kjob, aio_reqprio); CP(job32, *kjob, _aiocb_private.status); CP(job32, *kjob, _aiocb_private.error); PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); return (convert_old_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); } static int convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) { CP(*sig32, *sig, sigev_notify); switch (sig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_THREAD_ID: CP(*sig32, *sig, sigev_notify_thread_id); /* FALLTHROUGH */ case SIGEV_SIGNAL: CP(*sig32, *sig, sigev_signo); break; case SIGEV_KEVENT: CP(*sig32, *sig, sigev_notify_kqueue); CP(*sig32, *sig, sigev_notify_kevent_flags); PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); break; default: return (EINVAL); } return (0); } static int aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) { struct aiocb32 job32; int error; error = copyin(ujob, &job32, sizeof(job32)); if (error) return (error); CP(job32, *kjob, aio_fildes); CP(job32, *kjob, aio_offset); PTRIN_CP(job32, *kjob, aio_buf); CP(job32, *kjob, aio_nbytes); CP(job32, *kjob, aio_lio_opcode); CP(job32, *kjob, aio_reqprio); CP(job32, *kjob, _aiocb_private.status); CP(job32, *kjob, _aiocb_private.error); PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); } static long aiocb32_fetch_status(struct aiocb *ujob) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (fuword32(&ujob32->_aiocb_private.status)); } static long aiocb32_fetch_error(struct aiocb *ujob) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (fuword32(&ujob32->_aiocb_private.error)); } static int aiocb32_store_status(struct aiocb *ujob, long status) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (suword32(&ujob32->_aiocb_private.status, status)); } static int aiocb32_store_error(struct aiocb *ujob, long error) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (suword32(&ujob32->_aiocb_private.error, error)); } static int aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) { struct aiocb32 *ujob32; ujob32 = (struct aiocb32 *)ujob; return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); } static int aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) { return (suword32(ujobp, (long)ujob)); } static struct aiocb_ops aiocb32_ops = { .copyin = aiocb32_copyin, .fetch_status = aiocb32_fetch_status, .fetch_error = aiocb32_fetch_error, .store_status = aiocb32_store_status, .store_error = aiocb32_store_error, .store_kernelinfo = aiocb32_store_kernelinfo, .store_aiocb = aiocb32_store_aiocb, }; static struct aiocb_ops aiocb32_ops_osigevent = { .copyin = aiocb32_copyin_old_sigevent, .fetch_status = aiocb32_fetch_status, .fetch_error = aiocb32_fetch_error, .store_status = aiocb32_store_status, .store_error = aiocb32_store_error, .store_kernelinfo = aiocb32_store_kernelinfo, .store_aiocb = aiocb32_store_aiocb, }; int freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) { return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); } int freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; struct aiocb **ujoblist; uint32_t *ujoblist32; int error, i; if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) return (EINVAL); if (uap->timeout) { /* Get timespec struct. */ if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; ujoblist = uma_zalloc(aiol_zone, M_WAITOK); ujoblist32 = (uint32_t *)ujoblist; error = copyin(uap->aiocbp, ujoblist32, uap->nent * sizeof(ujoblist32[0])); if (error == 0) { for (i = uap->nent; i > 0; i--) ujoblist[i] = PTRIN(ujoblist32[i]); error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); } uma_zfree(aiol_zone, ujoblist); return (error); } int freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) { return (sys_aio_cancel(td, (struct aio_cancel_args *)uap)); } int freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) { return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); } int freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, &aiocb32_ops_osigevent)); } int freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, &aiocb32_ops)); } int freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, &aiocb32_ops_osigevent)); } int freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) { return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, &aiocb32_ops)); } int freebsd32_aio_waitcomplete(struct thread *td, struct freebsd32_aio_waitcomplete_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; int error; if (uap->timeout) { /* Get timespec struct. */ error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, &aiocb32_ops)); } int freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) { return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); } int freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; struct osigevent32 osig; uint32_t *acb_list32; int error, i, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > AIO_LISTIO_MAX) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &osig, sizeof(osig)); if (error) return (error); error = convert_old_sigevent32(&osig, &sig); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); if (error) { free(acb_list32, M_LIO); return (error); } acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); for (i = 0; i < nent; i++) acb_list[i] = PTRIN(acb_list32[i]); free(acb_list32, M_LIO); error = kern_lio_listio(td, uap->mode, (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, &aiocb32_ops_osigevent); free(acb_list, M_LIO); return (error); } int freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) { struct aiocb **acb_list; struct sigevent *sigp, sig; struct sigevent32 sig32; uint32_t *acb_list32; int error, i, nent; if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) return (EINVAL); nent = uap->nent; if (nent < 0 || nent > AIO_LISTIO_MAX) return (EINVAL); if (uap->sig && (uap->mode == LIO_NOWAIT)) { error = copyin(uap->sig, &sig32, sizeof(sig32)); if (error) return (error); error = convert_sigevent32(&sig32, &sig); if (error) return (error); sigp = &sig; } else sigp = NULL; acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); if (error) { free(acb_list32, M_LIO); return (error); } acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); for (i = 0; i < nent; i++) acb_list[i] = PTRIN(acb_list32[i]); free(acb_list32, M_LIO); error = kern_lio_listio(td, uap->mode, (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, &aiocb32_ops); free(acb_list, M_LIO); return (error); } #endif