Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ip_input/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uslcom/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ether/@/dev/sdhci/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ip_input/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uslcom/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ether/@/dev/sdhci/sdhci.c |
/*- * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sdhci/sdhci.c 237224 2012-06-18 10:56:29Z glebius $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/resource.h> #include <sys/rman.h> #include <sys/sysctl.h> #include <sys/taskqueue.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <machine/resource.h> #include <machine/stdarg.h> #include <dev/mmc/bridge.h> #include <dev/mmc/mmcreg.h> #include <dev/mmc/mmcbrvar.h> #include "mmcbr_if.h" #include "sdhci.h" #define DMA_BLOCK_SIZE 4096 #define DMA_BOUNDARY 0 /* DMA reload every 4K */ /* Controller doesn't honor resets unless we touch the clock register */ #define SDHCI_QUIRK_CLOCK_BEFORE_RESET (1<<0) /* Controller really supports DMA */ #define SDHCI_QUIRK_FORCE_DMA (1<<1) /* Controller has unusable DMA engine */ #define SDHCI_QUIRK_BROKEN_DMA (1<<2) /* Controller doesn't like to be reset when there is no card inserted. */ #define SDHCI_QUIRK_NO_CARD_NO_RESET (1<<3) /* Controller has flaky internal state so reset it on each ios change */ #define SDHCI_QUIRK_RESET_ON_IOS (1<<4) /* Controller can only DMA chunk sizes that are a multiple of 32 bits */ #define SDHCI_QUIRK_32BIT_DMA_SIZE (1<<5) /* Controller needs to be reset after each request to stay stable */ #define SDHCI_QUIRK_RESET_AFTER_REQUEST (1<<6) /* Controller has an off-by-one issue with timeout value */ #define SDHCI_QUIRK_INCR_TIMEOUT_CONTROL (1<<7) /* Controller has broken read timings */ #define SDHCI_QUIRK_BROKEN_TIMINGS (1<<8) /* Controller needs lowered frequency */ #define SDHCI_QUIRK_LOWER_FREQUENCY (1<<9) static const struct sdhci_device { uint32_t model; uint16_t subvendor; char *desc; u_int quirks; } sdhci_devices[] = { { 0x08221180, 0xffff, "RICOH R5C822 SD", SDHCI_QUIRK_FORCE_DMA }, { 0xe8221180, 0xffff, "RICOH SD", SDHCI_QUIRK_FORCE_DMA }, { 0xe8231180, 0xffff, "RICOH R5CE823 SD", SDHCI_QUIRK_LOWER_FREQUENCY }, { 0x8034104c, 0xffff, "TI XX21/XX11 SD", SDHCI_QUIRK_FORCE_DMA }, { 0x05501524, 0xffff, "ENE CB712 SD", SDHCI_QUIRK_BROKEN_TIMINGS }, { 0x05511524, 0xffff, "ENE CB712 SD 2", SDHCI_QUIRK_BROKEN_TIMINGS }, { 0x07501524, 0xffff, "ENE CB714 SD", SDHCI_QUIRK_RESET_ON_IOS | SDHCI_QUIRK_BROKEN_TIMINGS }, { 0x07511524, 0xffff, "ENE CB714 SD 2", SDHCI_QUIRK_RESET_ON_IOS | SDHCI_QUIRK_BROKEN_TIMINGS }, { 0x410111ab, 0xffff, "Marvell CaFe SD", SDHCI_QUIRK_INCR_TIMEOUT_CONTROL }, { 0x2381197B, 0xffff, "JMicron JMB38X SD", SDHCI_QUIRK_32BIT_DMA_SIZE | SDHCI_QUIRK_RESET_AFTER_REQUEST }, { 0, 0xffff, NULL, 0 } }; struct sdhci_softc; struct sdhci_slot { struct sdhci_softc *sc; device_t dev; /* Slot device */ u_char num; /* Slot number */ u_char opt; /* Slot options */ #define SDHCI_HAVE_DMA 1 uint32_t max_clk; /* Max possible freq */ uint32_t timeout_clk; /* Timeout freq */ struct resource *mem_res; /* Memory resource */ int mem_rid; bus_dma_tag_t dmatag; bus_dmamap_t dmamap; u_char *dmamem; bus_addr_t paddr; /* DMA buffer address */ struct task card_task; /* Card presence check task */ struct callout card_callout; /* Card insert delay callout */ struct mmc_host host; /* Host parameters */ struct mmc_request *req; /* Current request */ struct mmc_command *curcmd; /* Current command of current request */ uint32_t intmask; /* Current interrupt mask */ uint32_t clock; /* Current clock freq. */ size_t offset; /* Data buffer offset */ uint8_t hostctrl; /* Current host control register */ u_char power; /* Current power */ u_char bus_busy; /* Bus busy status */ u_char cmd_done; /* CMD command part done flag */ u_char data_done; /* DAT command part done flag */ u_char flags; /* Request execution flags */ #define CMD_STARTED 1 #define STOP_STARTED 2 #define SDHCI_USE_DMA 4 /* Use DMA for this req. */ struct mtx mtx; /* Slot mutex */ }; struct sdhci_softc { device_t dev; /* Controller device */ u_int quirks; /* Chip specific quirks */ struct resource *irq_res; /* IRQ resource */ int irq_rid; void *intrhand; /* Interrupt handle */ int num_slots; /* Number of slots on this controller */ struct sdhci_slot slots[6]; }; SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD, 0, "sdhci driver"); int sdhci_debug; TUNABLE_INT("hw.sdhci.debug", &sdhci_debug); SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RW, &sdhci_debug, 0, "Debug level"); static inline uint8_t RD1(struct sdhci_slot *slot, bus_size_t off) { bus_barrier(slot->mem_res, 0, 0xFF, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return bus_read_1(slot->mem_res, off); } static inline void WR1(struct sdhci_slot *slot, bus_size_t off, uint8_t val) { bus_barrier(slot->mem_res, 0, 0xFF, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); bus_write_1(slot->mem_res, off, val); } static inline uint16_t RD2(struct sdhci_slot *slot, bus_size_t off) { bus_barrier(slot->mem_res, 0, 0xFF, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return bus_read_2(slot->mem_res, off); } static inline void WR2(struct sdhci_slot *slot, bus_size_t off, uint16_t val) { bus_barrier(slot->mem_res, 0, 0xFF, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); bus_write_2(slot->mem_res, off, val); } static inline uint32_t RD4(struct sdhci_slot *slot, bus_size_t off) { bus_barrier(slot->mem_res, 0, 0xFF, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return bus_read_4(slot->mem_res, off); } static inline void WR4(struct sdhci_slot *slot, bus_size_t off, uint32_t val) { bus_barrier(slot->mem_res, 0, 0xFF, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); bus_write_4(slot->mem_res, off, val); } /* bus entry points */ static int sdhci_probe(device_t dev); static int sdhci_attach(device_t dev); static int sdhci_detach(device_t dev); static void sdhci_intr(void *); static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock); static void sdhci_start(struct sdhci_slot *slot); static void sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data); static void sdhci_card_task(void *, int); /* helper routines */ #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx) #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx) #define SDHCI_LOCK_INIT(_slot) \ mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF) #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx); #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED); #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED); static int slot_printf(struct sdhci_slot *slot, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s-slot%d: ", device_get_nameunit(slot->sc->dev), slot->num); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) { printf("getaddr: error %d\n", error); return; } *(bus_addr_t *)arg = segs[0].ds_addr; } static void sdhci_dumpregs(struct sdhci_slot *slot) { slot_printf(slot, "============== REGISTER DUMP ==============\n"); slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n", RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION)); slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT)); slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n", RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE)); slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n", RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL)); slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n", RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL)); slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n", RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL)); slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n", RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS)); slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n", RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE)); slot_printf(slot, "AC12 err: 0x%08x | Slot int: 0x%08x\n", RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_SLOT_INT_STATUS)); slot_printf(slot, "Caps: 0x%08x | Max curr: 0x%08x\n", RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_MAX_CURRENT)); slot_printf(slot, "===========================================\n"); } static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask) { int timeout; uint8_t res; if (slot->sc->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { if (!(RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT)) return; } /* Some controllers need this kick or reset won't work. */ if ((mask & SDHCI_RESET_ALL) == 0 && (slot->sc->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) { uint32_t clock; /* This is to force an update */ clock = slot->clock; slot->clock = 0; sdhci_set_clock(slot, clock); } WR1(slot, SDHCI_SOFTWARE_RESET, mask); if (mask & SDHCI_RESET_ALL) { slot->clock = 0; slot->power = 0; } /* Wait max 100 ms */ timeout = 100; /* Controller clears the bits when it's done */ while ((res = RD1(slot, SDHCI_SOFTWARE_RESET)) & mask) { if (timeout == 0) { slot_printf(slot, "Reset 0x%x never completed - 0x%x.\n", (int)mask, (int)res); sdhci_dumpregs(slot); return; } timeout--; DELAY(1000); } } static void sdhci_init(struct sdhci_slot *slot) { sdhci_reset(slot, SDHCI_RESET_ALL); /* Enable interrupts. */ slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT | SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE | SDHCI_INT_ACMD12ERR; WR4(slot, SDHCI_INT_ENABLE, slot->intmask); WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } static void sdhci_lower_frequency(device_t dev) { /* Enable SD2.0 mode. */ pci_write_config(dev, SDHC_PCI_MODE_KEY, 0xfc, 1); pci_write_config(dev, SDHC_PCI_MODE, SDHC_PCI_MODE_SD20, 1); pci_write_config(dev, SDHC_PCI_MODE_KEY, 0x00, 1); /* * Some SD/MMC cards don't work with the default base * clock frequency of 200MHz. Lower it to 50Hz. */ pci_write_config(dev, SDHC_PCI_BASE_FREQ_KEY, 0x01, 1); pci_write_config(dev, SDHC_PCI_BASE_FREQ, 50, 1); pci_write_config(dev, SDHC_PCI_BASE_FREQ_KEY, 0x00, 1); } static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock) { uint32_t res; uint16_t clk; int timeout; if (clock == slot->clock) return; slot->clock = clock; /* Turn off the clock. */ WR2(slot, SDHCI_CLOCK_CONTROL, 0); /* If no clock requested - left it so. */ if (clock == 0) return; /* Looking for highest freq <= clock. */ res = slot->max_clk; for (clk = 1; clk < 256; clk <<= 1) { if (res <= clock) break; res >>= 1; } /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */ clk >>= 1; /* Now we have got divider, set it. */ clk <<= SDHCI_DIVIDER_SHIFT; WR2(slot, SDHCI_CLOCK_CONTROL, clk); /* Enable clock. */ clk |= SDHCI_CLOCK_INT_EN; WR2(slot, SDHCI_CLOCK_CONTROL, clk); /* Wait up to 10 ms until it stabilize. */ timeout = 10; while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL)) & SDHCI_CLOCK_INT_STABLE)) { if (timeout == 0) { slot_printf(slot, "Internal clock never stabilised.\n"); sdhci_dumpregs(slot); return; } timeout--; DELAY(1000); } /* Pass clock signal to the bus. */ clk |= SDHCI_CLOCK_CARD_EN; WR2(slot, SDHCI_CLOCK_CONTROL, clk); } static void sdhci_set_power(struct sdhci_slot *slot, u_char power) { uint8_t pwr; if (slot->power == power) return; slot->power = power; /* Turn off the power. */ pwr = 0; WR1(slot, SDHCI_POWER_CONTROL, pwr); /* If power down requested - left it so. */ if (power == 0) return; /* Set voltage. */ switch (1 << power) { case MMC_OCR_LOW_VOLTAGE: pwr |= SDHCI_POWER_180; break; case MMC_OCR_290_300: case MMC_OCR_300_310: pwr |= SDHCI_POWER_300; break; case MMC_OCR_320_330: case MMC_OCR_330_340: pwr |= SDHCI_POWER_330; break; } WR1(slot, SDHCI_POWER_CONTROL, pwr); /* Turn on the power. */ pwr |= SDHCI_POWER_ON; WR1(slot, SDHCI_POWER_CONTROL, pwr); } static void sdhci_read_block_pio(struct sdhci_slot *slot) { uint32_t data; char *buffer; size_t left; buffer = slot->curcmd->data->data; buffer += slot->offset; /* Transfer one block at a time. */ left = min(512, slot->curcmd->data->len - slot->offset); slot->offset += left; /* If we are too fast, broken controllers return zeroes. */ if (slot->sc->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) DELAY(10); /* Handle unalligned and alligned buffer cases. */ if ((intptr_t)buffer & 3) { while (left > 3) { data = RD4(slot, SDHCI_BUFFER); buffer[0] = data; buffer[1] = (data >> 8); buffer[2] = (data >> 16); buffer[3] = (data >> 24); buffer += 4; left -= 4; } } else { bus_read_multi_stream_4(slot->mem_res, SDHCI_BUFFER, (uint32_t *)buffer, left >> 2); left &= 3; } /* Handle uneven size case. */ if (left > 0) { data = RD4(slot, SDHCI_BUFFER); while (left > 0) { *(buffer++) = data; data >>= 8; left--; } } } static void sdhci_write_block_pio(struct sdhci_slot *slot) { uint32_t data = 0; char *buffer; size_t left; buffer = slot->curcmd->data->data; buffer += slot->offset; /* Transfer one block at a time. */ left = min(512, slot->curcmd->data->len - slot->offset); slot->offset += left; /* Handle unalligned and alligned buffer cases. */ if ((intptr_t)buffer & 3) { while (left > 3) { data = buffer[0] + (buffer[1] << 8) + (buffer[2] << 16) + (buffer[3] << 24); left -= 4; buffer += 4; WR4(slot, SDHCI_BUFFER, data); } } else { bus_write_multi_stream_4(slot->mem_res, SDHCI_BUFFER, (uint32_t *)buffer, left >> 2); left &= 3; } /* Handle uneven size case. */ if (left > 0) { while (left > 0) { data <<= 8; data += *(buffer++); left--; } WR4(slot, SDHCI_BUFFER, data); } } static void sdhci_transfer_pio(struct sdhci_slot *slot) { /* Read as many blocks as possible. */ if (slot->curcmd->data->flags & MMC_DATA_READ) { while (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_DATA_AVAILABLE) { sdhci_read_block_pio(slot); if (slot->offset >= slot->curcmd->data->len) break; } } else { while (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_SPACE_AVAILABLE) { sdhci_write_block_pio(slot); if (slot->offset >= slot->curcmd->data->len) break; } } } static void sdhci_card_delay(void *arg) { struct sdhci_slot *slot = arg; taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); } static void sdhci_card_task(void *arg, int pending) { struct sdhci_slot *slot = arg; SDHCI_LOCK(slot); if (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT) { if (slot->dev == NULL) { /* If card is present - attach mmc bus. */ slot->dev = device_add_child(slot->sc->dev, "mmc", -1); device_set_ivars(slot->dev, slot); SDHCI_UNLOCK(slot); device_probe_and_attach(slot->dev); } else SDHCI_UNLOCK(slot); } else { if (slot->dev != NULL) { /* If no card present - detach mmc bus. */ device_t d = slot->dev; slot->dev = NULL; SDHCI_UNLOCK(slot); device_delete_child(slot->sc->dev, d); } else SDHCI_UNLOCK(slot); } } static int sdhci_probe(device_t dev) { uint32_t model; uint16_t subvendor; uint8_t class, subclass; int i, result; model = (uint32_t)pci_get_device(dev) << 16; model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; subvendor = pci_get_subvendor(dev); class = pci_get_class(dev); subclass = pci_get_subclass(dev); result = ENXIO; for (i = 0; sdhci_devices[i].model != 0; i++) { if (sdhci_devices[i].model == model && (sdhci_devices[i].subvendor == 0xffff || sdhci_devices[i].subvendor == subvendor)) { device_set_desc(dev, sdhci_devices[i].desc); result = BUS_PROBE_DEFAULT; break; } } if (result == ENXIO && class == PCIC_BASEPERIPH && subclass == PCIS_BASEPERIPH_SDHC) { device_set_desc(dev, "Generic SD HCI"); result = BUS_PROBE_GENERIC; } return (result); } static int sdhci_attach(device_t dev) { struct sdhci_softc *sc = device_get_softc(dev); uint32_t model; uint16_t subvendor; uint8_t class, subclass, progif; int err, slots, bar, i; sc->dev = dev; model = (uint32_t)pci_get_device(dev) << 16; model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; subvendor = pci_get_subvendor(dev); class = pci_get_class(dev); subclass = pci_get_subclass(dev); progif = pci_get_progif(dev); /* Apply chip specific quirks. */ for (i = 0; sdhci_devices[i].model != 0; i++) { if (sdhci_devices[i].model == model && (sdhci_devices[i].subvendor == 0xffff || sdhci_devices[i].subvendor == subvendor)) { sc->quirks = sdhci_devices[i].quirks; break; } } /* Some controllers need to be bumped into the right mode. */ if (sc->quirks & SDHCI_QUIRK_LOWER_FREQUENCY) sdhci_lower_frequency(dev); /* Read slots info from PCI registers. */ slots = pci_read_config(dev, PCI_SLOT_INFO, 1); bar = PCI_SLOT_INFO_FIRST_BAR(slots); slots = PCI_SLOT_INFO_SLOTS(slots); if (slots > 6 || bar > 5) { device_printf(dev, "Incorrect slots information (%d, %d).\n", slots, bar); return (EINVAL); } /* Allocate IRQ. */ sc->irq_rid = 0; sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_SHAREABLE | RF_ACTIVE); if (sc->irq_res == NULL) { device_printf(dev, "Can't allocate IRQ\n"); return (ENOMEM); } /* Scan all slots. */ for (i = 0; i < slots; i++) { struct sdhci_slot *slot = &sc->slots[sc->num_slots]; uint32_t caps; SDHCI_LOCK_INIT(slot); slot->sc = sc; slot->num = sc->num_slots; /* Allocate memory. */ slot->mem_rid = PCIR_BAR(bar + i); slot->mem_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &slot->mem_rid, 0ul, ~0ul, 0x100, RF_ACTIVE); if (slot->mem_res == NULL) { device_printf(dev, "Can't allocate memory\n"); SDHCI_LOCK_DESTROY(slot); continue; } /* Allocate DMA tag. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), DMA_BLOCK_SIZE, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, DMA_BLOCK_SIZE, 1, DMA_BLOCK_SIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &slot->dmatag); if (err != 0) { device_printf(dev, "Can't create DMA tag\n"); SDHCI_LOCK_DESTROY(slot); continue; } /* Allocate DMA memory. */ err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem, BUS_DMA_NOWAIT, &slot->dmamap); if (err != 0) { device_printf(dev, "Can't alloc DMA memory\n"); SDHCI_LOCK_DESTROY(slot); continue; } /* Map the memory. */ err = bus_dmamap_load(slot->dmatag, slot->dmamap, (void *)slot->dmamem, DMA_BLOCK_SIZE, sdhci_getaddr, &slot->paddr, 0); if (err != 0 || slot->paddr == 0) { device_printf(dev, "Can't load DMA memory\n"); SDHCI_LOCK_DESTROY(slot); continue; } /* Initialize slot. */ sdhci_init(slot); caps = RD4(slot, SDHCI_CAPABILITIES); /* Calculate base clock frequency. */ slot->max_clk = (caps & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; if (slot->max_clk == 0) { device_printf(dev, "Hardware doesn't specify base clock " "frequency.\n"); } slot->max_clk *= 1000000; /* Calculate timeout clock frequency. */ slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT; if (slot->timeout_clk == 0) { device_printf(dev, "Hardware doesn't specify timeout clock " "frequency.\n"); } if (caps & SDHCI_TIMEOUT_CLK_UNIT) slot->timeout_clk *= 1000; slot->host.f_min = slot->max_clk / 256; slot->host.f_max = slot->max_clk; slot->host.host_ocr = 0; if (caps & SDHCI_CAN_VDD_330) slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340; if (caps & SDHCI_CAN_VDD_300) slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310; if (caps & SDHCI_CAN_VDD_180) slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE; if (slot->host.host_ocr == 0) { device_printf(dev, "Hardware doesn't report any " "support voltages.\n"); } slot->host.caps = MMC_CAP_4_BIT_DATA; if (caps & SDHCI_CAN_DO_HISPD) slot->host.caps |= MMC_CAP_HSPEED; /* Decide if we have usable DMA. */ if (caps & SDHCI_CAN_DO_DMA) slot->opt |= SDHCI_HAVE_DMA; if (class == PCIC_BASEPERIPH && subclass == PCIS_BASEPERIPH_SDHC && progif != PCI_SDHCI_IFDMA) slot->opt &= ~SDHCI_HAVE_DMA; if (sc->quirks & SDHCI_QUIRK_BROKEN_DMA) slot->opt &= ~SDHCI_HAVE_DMA; if (sc->quirks & SDHCI_QUIRK_FORCE_DMA) slot->opt |= SDHCI_HAVE_DMA; if (bootverbose || sdhci_debug) { slot_printf(slot, "%uMHz%s 4bits%s%s%s %s\n", slot->max_clk / 1000000, (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "", (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "", (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "", (caps & SDHCI_CAN_VDD_180) ? " 1.8V" : "", (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO"); sdhci_dumpregs(slot); } TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot); callout_init(&slot->card_callout, 1); sc->num_slots++; } device_printf(dev, "%d slot(s) allocated\n", sc->num_slots); /* Activate the interrupt */ err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, sdhci_intr, sc, &sc->intrhand); if (err) device_printf(dev, "Can't setup IRQ\n"); pci_enable_busmaster(dev); /* Process cards detection. */ for (i = 0; i < sc->num_slots; i++) { struct sdhci_slot *slot = &sc->slots[i]; sdhci_card_task(slot, 0); } return (0); } static int sdhci_detach(device_t dev) { struct sdhci_softc *sc = device_get_softc(dev); int i; bus_teardown_intr(dev, sc->irq_res, sc->intrhand); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); for (i = 0; i < sc->num_slots; i++) { struct sdhci_slot *slot = &sc->slots[i]; device_t d; callout_drain(&slot->card_callout); taskqueue_drain(taskqueue_swi_giant, &slot->card_task); SDHCI_LOCK(slot); d = slot->dev; slot->dev = NULL; SDHCI_UNLOCK(slot); if (d != NULL) device_delete_child(dev, d); SDHCI_LOCK(slot); sdhci_reset(slot, SDHCI_RESET_ALL); SDHCI_UNLOCK(slot); bus_dmamap_unload(slot->dmatag, slot->dmamap); bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); bus_dma_tag_destroy(slot->dmatag); bus_release_resource(dev, SYS_RES_MEMORY, slot->mem_rid, slot->mem_res); SDHCI_LOCK_DESTROY(slot); } return (0); } static int sdhci_suspend(device_t dev) { struct sdhci_softc *sc = device_get_softc(dev); int i, err; err = bus_generic_suspend(dev); if (err) return (err); for (i = 0; i < sc->num_slots; i++) sdhci_reset(&sc->slots[i], SDHCI_RESET_ALL); return (0); } static int sdhci_resume(device_t dev) { struct sdhci_softc *sc = device_get_softc(dev); int i; for (i = 0; i < sc->num_slots; i++) sdhci_init(&sc->slots[i]); return (bus_generic_resume(dev)); } static int sdhci_update_ios(device_t brdev, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); struct mmc_ios *ios = &slot->host.ios; SDHCI_LOCK(slot); /* Do full reset on bus power down to clear from any state. */ if (ios->power_mode == power_off) { WR4(slot, SDHCI_SIGNAL_ENABLE, 0); sdhci_init(slot); } /* Configure the bus. */ sdhci_set_clock(slot, ios->clock); sdhci_set_power(slot, (ios->power_mode == power_off)?0:ios->vdd); if (ios->bus_width == bus_width_4) slot->hostctrl |= SDHCI_CTRL_4BITBUS; else slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; if (ios->timing == bus_timing_hs) slot->hostctrl |= SDHCI_CTRL_HISPD; else slot->hostctrl &= ~SDHCI_CTRL_HISPD; WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); /* Some controllers like reset after bus changes. */ if(slot->sc->quirks & SDHCI_QUIRK_RESET_ON_IOS) sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); SDHCI_UNLOCK(slot); return (0); } static void sdhci_set_transfer_mode(struct sdhci_slot *slot, struct mmc_data *data) { uint16_t mode; if (data == NULL) return; mode = SDHCI_TRNS_BLK_CNT_EN; if (data->len > 512) mode |= SDHCI_TRNS_MULTI; if (data->flags & MMC_DATA_READ) mode |= SDHCI_TRNS_READ; if (slot->req->stop) mode |= SDHCI_TRNS_ACMD12; if (slot->flags & SDHCI_USE_DMA) mode |= SDHCI_TRNS_DMA; WR2(slot, SDHCI_TRANSFER_MODE, mode); } static void sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd) { struct mmc_request *req = slot->req; int flags, timeout; uint32_t mask, state; slot->curcmd = cmd; slot->cmd_done = 0; cmd->error = MMC_ERR_NONE; /* This flags combination is not supported by controller. */ if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { slot_printf(slot, "Unsupported response type!\n"); cmd->error = MMC_ERR_FAILED; slot->req = NULL; slot->curcmd = NULL; req->done(req); return; } /* Read controller present state. */ state = RD4(slot, SDHCI_PRESENT_STATE); /* Do not issue command if there is no card, clock or power. * Controller will not detect timeout without clock active. */ if ((state & SDHCI_CARD_PRESENT) == 0 || slot->power == 0 || slot->clock == 0) { cmd->error = MMC_ERR_FAILED; slot->req = NULL; slot->curcmd = NULL; req->done(req); return; } /* Always wait for free CMD bus. */ mask = SDHCI_CMD_INHIBIT; /* Wait for free DAT if we have data or busy signal. */ if (cmd->data || (cmd->flags & MMC_RSP_BUSY)) mask |= SDHCI_DAT_INHIBIT; /* We shouldn't wait for DAT for stop commands. */ if (cmd == slot->req->stop) mask &= ~SDHCI_DAT_INHIBIT; /* Wait for bus no more then 10 ms. */ timeout = 10; while (state & mask) { if (timeout == 0) { slot_printf(slot, "Controller never released " "inhibit bit(s).\n"); sdhci_dumpregs(slot); cmd->error = MMC_ERR_FAILED; slot->req = NULL; slot->curcmd = NULL; req->done(req); return; } timeout--; DELAY(1000); state = RD4(slot, SDHCI_PRESENT_STATE); } /* Prepare command flags. */ if (!(cmd->flags & MMC_RSP_PRESENT)) flags = SDHCI_CMD_RESP_NONE; else if (cmd->flags & MMC_RSP_136) flags = SDHCI_CMD_RESP_LONG; else if (cmd->flags & MMC_RSP_BUSY) flags = SDHCI_CMD_RESP_SHORT_BUSY; else flags = SDHCI_CMD_RESP_SHORT; if (cmd->flags & MMC_RSP_CRC) flags |= SDHCI_CMD_CRC; if (cmd->flags & MMC_RSP_OPCODE) flags |= SDHCI_CMD_INDEX; if (cmd->data) flags |= SDHCI_CMD_DATA; if (cmd->opcode == MMC_STOP_TRANSMISSION) flags |= SDHCI_CMD_TYPE_ABORT; /* Prepare data. */ sdhci_start_data(slot, cmd->data); /* * Interrupt aggregation: To reduce total number of interrupts * group response interrupt with data interrupt when possible. * If there going to be data interrupt, mask response one. */ if (slot->data_done == 0) { WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask &= ~SDHCI_INT_RESPONSE); } /* Set command argument. */ WR4(slot, SDHCI_ARGUMENT, cmd->arg); /* Set data transfer mode. */ sdhci_set_transfer_mode(slot, cmd->data); /* Set command flags. */ WR1(slot, SDHCI_COMMAND_FLAGS, flags); /* Start command. */ WR1(slot, SDHCI_COMMAND, cmd->opcode); } static void sdhci_finish_command(struct sdhci_slot *slot) { int i; slot->cmd_done = 1; /* Interrupt aggregation: Restore command interrupt. * Main restore point for the case when command interrupt * happened first. */ WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= SDHCI_INT_RESPONSE); /* In case of error - reset host and return. */ if (slot->curcmd->error) { sdhci_reset(slot, SDHCI_RESET_CMD); sdhci_reset(slot, SDHCI_RESET_DATA); sdhci_start(slot); return; } /* If command has response - fetch it. */ if (slot->curcmd->flags & MMC_RSP_PRESENT) { if (slot->curcmd->flags & MMC_RSP_136) { /* CRC is stripped so we need one byte shift. */ uint8_t extra = 0; for (i = 0; i < 4; i++) { uint32_t val = RD4(slot, SDHCI_RESPONSE + i * 4); slot->curcmd->resp[3 - i] = (val << 8) + extra; extra = val >> 24; } } else slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE); } /* If data ready - finish. */ if (slot->data_done) sdhci_start(slot); } static void sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data) { uint32_t target_timeout, current_timeout; uint8_t div; if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { slot->data_done = 1; return; } slot->data_done = 0; /* Calculate and set data timeout.*/ /* XXX: We should have this from mmc layer, now assume 1 sec. */ target_timeout = 1000000; div = 0; current_timeout = (1 << 13) * 1000 / slot->timeout_clk; while (current_timeout < target_timeout) { div++; current_timeout <<= 1; if (div >= 0xF) break; } /* Compensate for an off-by-one error in the CaFe chip.*/ if (slot->sc->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL) div++; if (div >= 0xF) { slot_printf(slot, "Timeout too large!\n"); div = 0xE; } WR1(slot, SDHCI_TIMEOUT_CONTROL, div); if (data == NULL) return; /* Use DMA if possible. */ if ((slot->opt & SDHCI_HAVE_DMA)) slot->flags |= SDHCI_USE_DMA; /* If data is small, broken DMA may return zeroes instead of data, */ if ((slot->sc->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) && (data->len <= 512)) slot->flags &= ~SDHCI_USE_DMA; /* Some controllers require even block sizes. */ if ((slot->sc->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) && ((data->len) & 0x3)) slot->flags &= ~SDHCI_USE_DMA; /* Load DMA buffer. */ if (slot->flags & SDHCI_USE_DMA) { if (data->flags & MMC_DATA_READ) bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREREAD); else { memcpy(slot->dmamem, data->data, (data->len < DMA_BLOCK_SIZE)?data->len:DMA_BLOCK_SIZE); bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREWRITE); } WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); /* Interrupt aggregation: Mask border interrupt * for the last page and unmask else. */ if (data->len == DMA_BLOCK_SIZE) slot->intmask &= ~SDHCI_INT_DMA_END; else slot->intmask |= SDHCI_INT_DMA_END; WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } /* Current data offset for both PIO and DMA. */ slot->offset = 0; /* Set block size and request IRQ on 4K border. */ WR2(slot, SDHCI_BLOCK_SIZE, SDHCI_MAKE_BLKSZ(DMA_BOUNDARY, (data->len < 512)?data->len:512)); /* Set block count. */ WR2(slot, SDHCI_BLOCK_COUNT, (data->len + 511) / 512); } static void sdhci_finish_data(struct sdhci_slot *slot) { struct mmc_data *data = slot->curcmd->data; slot->data_done = 1; /* Interrupt aggregation: Restore command interrupt. * Auxillary restore point for the case when data interrupt * happened first. */ if (!slot->cmd_done) { WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= SDHCI_INT_RESPONSE); } /* Unload rest of data from DMA buffer. */ if (slot->flags & SDHCI_USE_DMA) { if (data->flags & MMC_DATA_READ) { size_t left = data->len - slot->offset; bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTREAD); memcpy((u_char*)data->data + slot->offset, slot->dmamem, (left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE); } else bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTWRITE); } /* If there was error - reset the host. */ if (slot->curcmd->error) { sdhci_reset(slot, SDHCI_RESET_CMD); sdhci_reset(slot, SDHCI_RESET_DATA); sdhci_start(slot); return; } /* If we already have command response - finish. */ if (slot->cmd_done) sdhci_start(slot); } static void sdhci_start(struct sdhci_slot *slot) { struct mmc_request *req; req = slot->req; if (req == NULL) return; if (!(slot->flags & CMD_STARTED)) { slot->flags |= CMD_STARTED; sdhci_start_command(slot, req->cmd); return; } /* We don't need this until using Auto-CMD12 feature if (!(slot->flags & STOP_STARTED) && req->stop) { slot->flags |= STOP_STARTED; sdhci_start_command(slot, req->stop); return; } */ if (sdhci_debug > 1) slot_printf(slot, "result: %d\n", req->cmd->error); if (!req->cmd->error && (slot->sc->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) { sdhci_reset(slot, SDHCI_RESET_CMD); sdhci_reset(slot, SDHCI_RESET_DATA); } /* We must be done -- bad idea to do this while locked? */ slot->req = NULL; slot->curcmd = NULL; req->done(req); } static int sdhci_request(device_t brdev, device_t reqdev, struct mmc_request *req) { struct sdhci_slot *slot = device_get_ivars(reqdev); SDHCI_LOCK(slot); if (slot->req != NULL) { SDHCI_UNLOCK(slot); return (EBUSY); } if (sdhci_debug > 1) { slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", req->cmd->opcode, req->cmd->arg, req->cmd->flags, (req->cmd->data)?(u_int)req->cmd->data->len:0, (req->cmd->data)?req->cmd->data->flags:0); } slot->req = req; slot->flags = 0; sdhci_start(slot); SDHCI_UNLOCK(slot); if (dumping) { while (slot->req != NULL) { sdhci_intr(slot->sc); DELAY(10); } } return (0); } static int sdhci_get_ro(device_t brdev, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); uint32_t val; SDHCI_LOCK(slot); val = RD4(slot, SDHCI_PRESENT_STATE); SDHCI_UNLOCK(slot); return (!(val & SDHCI_WRITE_PROTECT)); } static int sdhci_acquire_host(device_t brdev, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); int err = 0; SDHCI_LOCK(slot); while (slot->bus_busy) msleep(slot, &slot->mtx, 0, "sdhciah", 0); slot->bus_busy++; /* Activate led. */ WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED); SDHCI_UNLOCK(slot); return (err); } static int sdhci_release_host(device_t brdev, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); SDHCI_LOCK(slot); /* Deactivate led. */ WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED); slot->bus_busy--; SDHCI_UNLOCK(slot); wakeup(slot); return (0); } static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask) { if (!slot->curcmd) { slot_printf(slot, "Got command interrupt 0x%08x, but " "there is no active command.\n", intmask); sdhci_dumpregs(slot); return; } if (intmask & SDHCI_INT_TIMEOUT) slot->curcmd->error = MMC_ERR_TIMEOUT; else if (intmask & SDHCI_INT_CRC) slot->curcmd->error = MMC_ERR_BADCRC; else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) slot->curcmd->error = MMC_ERR_FIFO; sdhci_finish_command(slot); } static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask) { if (!slot->curcmd) { slot_printf(slot, "Got data interrupt 0x%08x, but " "there is no active command.\n", intmask); sdhci_dumpregs(slot); return; } if (slot->curcmd->data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { slot_printf(slot, "Got data interrupt 0x%08x, but " "there is no active data operation.\n", intmask); sdhci_dumpregs(slot); return; } if (intmask & SDHCI_INT_DATA_TIMEOUT) slot->curcmd->error = MMC_ERR_TIMEOUT; else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) slot->curcmd->error = MMC_ERR_BADCRC; if (slot->curcmd->data == NULL && (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DMA_END))) { slot_printf(slot, "Got data interrupt 0x%08x, but " "there is busy-only command.\n", intmask); sdhci_dumpregs(slot); slot->curcmd->error = MMC_ERR_INVALID; } if (slot->curcmd->error) { /* No need to continue after any error. */ sdhci_finish_data(slot); return; } /* Handle PIO interrupt. */ if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) sdhci_transfer_pio(slot); /* Handle DMA border. */ if (intmask & SDHCI_INT_DMA_END) { struct mmc_data *data = slot->curcmd->data; size_t left; /* Unload DMA buffer... */ left = data->len - slot->offset; if (data->flags & MMC_DATA_READ) { bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTREAD); memcpy((u_char*)data->data + slot->offset, slot->dmamem, (left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE); } else { bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTWRITE); } /* ... and reload it again. */ slot->offset += DMA_BLOCK_SIZE; left = data->len - slot->offset; if (data->flags & MMC_DATA_READ) { bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREREAD); } else { memcpy(slot->dmamem, (u_char*)data->data + slot->offset, (left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE); bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREWRITE); } /* Interrupt aggregation: Mask border interrupt * for the last page. */ if (left == DMA_BLOCK_SIZE) { slot->intmask &= ~SDHCI_INT_DMA_END; WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } /* Restart DMA. */ WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); } /* We have got all data. */ if (intmask & SDHCI_INT_DATA_END) sdhci_finish_data(slot); } static void sdhci_acmd_irq(struct sdhci_slot *slot) { uint16_t err; err = RD4(slot, SDHCI_ACMD12_ERR); if (!slot->curcmd) { slot_printf(slot, "Got AutoCMD12 error 0x%04x, but " "there is no active command.\n", err); sdhci_dumpregs(slot); return; } slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", err); sdhci_reset(slot, SDHCI_RESET_CMD); } static void sdhci_intr(void *arg) { struct sdhci_softc *sc = (struct sdhci_softc *)arg; int i; for (i = 0; i < sc->num_slots; i++) { struct sdhci_slot *slot = &sc->slots[i]; uint32_t intmask; SDHCI_LOCK(slot); /* Read slot interrupt status. */ intmask = RD4(slot, SDHCI_INT_STATUS); if (intmask == 0 || intmask == 0xffffffff) { SDHCI_UNLOCK(slot); continue; } if (sdhci_debug > 2) slot_printf(slot, "Interrupt %#x\n", intmask); /* Handle card presence interrupts. */ if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { WR4(slot, SDHCI_INT_STATUS, intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)); if (intmask & SDHCI_INT_CARD_REMOVE) { if (bootverbose || sdhci_debug) slot_printf(slot, "Card removed\n"); callout_stop(&slot->card_callout); taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); } if (intmask & SDHCI_INT_CARD_INSERT) { if (bootverbose || sdhci_debug) slot_printf(slot, "Card inserted\n"); callout_reset(&slot->card_callout, hz / 2, sdhci_card_delay, slot); } intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); } /* Handle command interrupts. */ if (intmask & SDHCI_INT_CMD_MASK) { WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK); sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK); } /* Handle data interrupts. */ if (intmask & SDHCI_INT_DATA_MASK) { WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK); sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK); } /* Handle AutoCMD12 error interrupt. */ if (intmask & SDHCI_INT_ACMD12ERR) { WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR); sdhci_acmd_irq(slot); } intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK); intmask &= ~SDHCI_INT_ACMD12ERR; intmask &= ~SDHCI_INT_ERROR; /* Handle bus power interrupt. */ if (intmask & SDHCI_INT_BUS_POWER) { WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER); slot_printf(slot, "Card is consuming too much power!\n"); intmask &= ~SDHCI_INT_BUS_POWER; } /* The rest is unknown. */ if (intmask) { WR4(slot, SDHCI_INT_STATUS, intmask); slot_printf(slot, "Unexpected interrupt 0x%08x.\n", intmask); sdhci_dumpregs(slot); } SDHCI_UNLOCK(slot); } } static int sdhci_read_ivar(device_t bus, device_t child, int which, uintptr_t *result) { struct sdhci_slot *slot = device_get_ivars(child); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: *result = slot->host.ios.bus_mode; break; case MMCBR_IVAR_BUS_WIDTH: *result = slot->host.ios.bus_width; break; case MMCBR_IVAR_CHIP_SELECT: *result = slot->host.ios.chip_select; break; case MMCBR_IVAR_CLOCK: *result = slot->host.ios.clock; break; case MMCBR_IVAR_F_MIN: *result = slot->host.f_min; break; case MMCBR_IVAR_F_MAX: *result = slot->host.f_max; break; case MMCBR_IVAR_HOST_OCR: *result = slot->host.host_ocr; break; case MMCBR_IVAR_MODE: *result = slot->host.mode; break; case MMCBR_IVAR_OCR: *result = slot->host.ocr; break; case MMCBR_IVAR_POWER_MODE: *result = slot->host.ios.power_mode; break; case MMCBR_IVAR_VDD: *result = slot->host.ios.vdd; break; case MMCBR_IVAR_CAPS: *result = slot->host.caps; break; case MMCBR_IVAR_TIMING: *result = slot->host.ios.timing; break; case MMCBR_IVAR_MAX_DATA: *result = 65535; break; } return (0); } static int sdhci_write_ivar(device_t bus, device_t child, int which, uintptr_t value) { struct sdhci_slot *slot = device_get_ivars(child); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: slot->host.ios.bus_mode = value; break; case MMCBR_IVAR_BUS_WIDTH: slot->host.ios.bus_width = value; break; case MMCBR_IVAR_CHIP_SELECT: slot->host.ios.chip_select = value; break; case MMCBR_IVAR_CLOCK: if (value > 0) { uint32_t clock = slot->max_clk; int i; for (i = 0; i < 8; i++) { if (clock <= value) break; clock >>= 1; } slot->host.ios.clock = clock; } else slot->host.ios.clock = 0; break; case MMCBR_IVAR_MODE: slot->host.mode = value; break; case MMCBR_IVAR_OCR: slot->host.ocr = value; break; case MMCBR_IVAR_POWER_MODE: slot->host.ios.power_mode = value; break; case MMCBR_IVAR_VDD: slot->host.ios.vdd = value; break; case MMCBR_IVAR_TIMING: slot->host.ios.timing = value; break; case MMCBR_IVAR_CAPS: case MMCBR_IVAR_HOST_OCR: case MMCBR_IVAR_F_MIN: case MMCBR_IVAR_F_MAX: case MMCBR_IVAR_MAX_DATA: return (EINVAL); } return (0); } static device_method_t sdhci_methods[] = { /* device_if */ DEVMETHOD(device_probe, sdhci_probe), DEVMETHOD(device_attach, sdhci_attach), DEVMETHOD(device_detach, sdhci_detach), DEVMETHOD(device_suspend, sdhci_suspend), DEVMETHOD(device_resume, sdhci_resume), /* Bus interface */ DEVMETHOD(bus_read_ivar, sdhci_read_ivar), DEVMETHOD(bus_write_ivar, sdhci_write_ivar), /* mmcbr_if */ DEVMETHOD(mmcbr_update_ios, sdhci_update_ios), DEVMETHOD(mmcbr_request, sdhci_request), DEVMETHOD(mmcbr_get_ro, sdhci_get_ro), DEVMETHOD(mmcbr_acquire_host, sdhci_acquire_host), DEVMETHOD(mmcbr_release_host, sdhci_release_host), {0, 0}, }; static driver_t sdhci_driver = { "sdhci", sdhci_methods, sizeof(struct sdhci_softc), }; static devclass_t sdhci_devclass; DRIVER_MODULE(sdhci, pci, sdhci_driver, sdhci_devclass, 0, 0);