Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ip_input/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uslcom/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ether/@/ofed/drivers/infiniband/core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ip_input/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uslcom/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/ether/@/ofed/drivers/infiniband/core/cma.c |
/* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/completion.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/mutex.h> #include <linux/random.h> #include <linux/idr.h> #include <linux/inetdevice.h> #include <net/tcp.h> #include <net/ipv6.h> #include <rdma/rdma_cm.h> #include <rdma/rdma_cm_ib.h> #include <rdma/ib_cache.h> #include <rdma/ib_cm.h> #include <rdma/ib_sa.h> #include <rdma/iw_cm.h> MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("Generic RDMA CM Agent"); MODULE_LICENSE("Dual BSD/GPL"); static int tavor_quirk = 0; module_param_named(tavor_quirk, tavor_quirk, int, 0644); MODULE_PARM_DESC(tavor_quirk, "Tavor performance quirk: limit MTU to 1K if > 0"); int unify_tcp_port_space = 0; module_param(unify_tcp_port_space, int, 0644); MODULE_PARM_DESC(unify_tcp_port_space, "Unify the host TCP and RDMA port " "space allocation (default=0)"); #define CMA_CM_RESPONSE_TIMEOUT 20 #define CMA_MAX_CM_RETRIES 15 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) #define IBOE_PACKET_LIFETIME 18 static int cma_response_timeout = CMA_CM_RESPONSE_TIMEOUT; module_param_named(cma_response_timeout, cma_response_timeout, int, 0644); MODULE_PARM_DESC(cma_response_timeout, "CMA_CM_RESPONSE_TIMEOUT default=20"); static int def_prec2sl = 3; module_param_named(def_prec2sl, def_prec2sl, int, 0644); MODULE_PARM_DESC(def_prec2sl, "Default value for SL priority with RoCE. Valid values 0 - 7"); static void cma_add_one(struct ib_device *device); static void cma_remove_one(struct ib_device *device); static struct ib_client cma_client = { .name = "cma", .add = cma_add_one, .remove = cma_remove_one }; static struct ib_sa_client sa_client; static struct rdma_addr_client addr_client; static LIST_HEAD(dev_list); static LIST_HEAD(listen_any_list); static DEFINE_MUTEX(lock); static struct workqueue_struct *cma_wq; static DEFINE_IDR(sdp_ps); static DEFINE_IDR(tcp_ps); static DEFINE_IDR(udp_ps); static DEFINE_IDR(ipoib_ps); static int next_port; struct cma_device { struct list_head list; struct ib_device *device; struct completion comp; atomic_t refcount; struct list_head id_list; }; enum cma_state { CMA_IDLE, CMA_ADDR_QUERY, CMA_ADDR_RESOLVED, CMA_ROUTE_QUERY, CMA_ROUTE_RESOLVED, CMA_CONNECT, CMA_DISCONNECT, CMA_ADDR_BOUND, CMA_LISTEN, CMA_DEVICE_REMOVAL, CMA_DESTROYING }; struct rdma_bind_list { struct idr *ps; struct hlist_head owners; unsigned short port; }; /* * Device removal can occur at anytime, so we need extra handling to * serialize notifying the user of device removal with other callbacks. * We do this by disabling removal notification while a callback is in process, * and reporting it after the callback completes. */ struct rdma_id_private { struct rdma_cm_id id; struct rdma_bind_list *bind_list; struct socket *sock; struct hlist_node node; struct list_head list; /* listen_any_list or cma_device.list */ struct list_head listen_list; /* per device listens */ struct cma_device *cma_dev; struct list_head mc_list; int internal_id; enum cma_state state; spinlock_t lock; struct mutex qp_mutex; struct completion comp; atomic_t refcount; struct mutex handler_mutex; int backlog; int timeout_ms; struct ib_sa_query *query; int query_id; union { struct ib_cm_id *ib; struct iw_cm_id *iw; } cm_id; u32 seq_num; u32 qkey; u32 qp_num; u8 srq; u8 tos; }; struct cma_multicast { struct rdma_id_private *id_priv; union { struct ib_sa_multicast *ib; } multicast; struct list_head list; void *context; struct sockaddr_storage addr; struct kref mcref; }; struct cma_work { struct work_struct work; struct rdma_id_private *id; enum cma_state old_state; enum cma_state new_state; struct rdma_cm_event event; }; struct cma_ndev_work { struct work_struct work; struct rdma_id_private *id; struct rdma_cm_event event; }; struct iboe_mcast_work { struct work_struct work; struct rdma_id_private *id; struct cma_multicast *mc; }; union cma_ip_addr { struct in6_addr ip6; struct { __be32 pad[3]; __be32 addr; } ip4; }; struct cma_hdr { u8 cma_version; u8 ip_version; /* IP version: 7:4 */ __be16 port; union cma_ip_addr src_addr; union cma_ip_addr dst_addr; }; struct sdp_hh { u8 bsdh[16]; u8 sdp_version; /* Major version: 7:4 */ u8 ip_version; /* IP version: 7:4 */ u8 sdp_specific1[10]; __be16 port; __be16 sdp_specific2; union cma_ip_addr src_addr; union cma_ip_addr dst_addr; }; struct sdp_hah { u8 bsdh[16]; u8 sdp_version; }; #define CMA_VERSION 0x00 #define SDP_MAJ_VERSION 0x2 static int cma_comp(struct rdma_id_private *id_priv, enum cma_state comp) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); ret = (id_priv->state == comp); spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static int cma_comp_exch(struct rdma_id_private *id_priv, enum cma_state comp, enum cma_state exch) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); if ((ret = (id_priv->state == comp))) id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static enum cma_state cma_exch(struct rdma_id_private *id_priv, enum cma_state exch) { unsigned long flags; enum cma_state old; spin_lock_irqsave(&id_priv->lock, flags); old = id_priv->state; id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return old; } static inline u8 cma_get_ip_ver(struct cma_hdr *hdr) { return hdr->ip_version >> 4; } static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) { hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); } static inline u8 sdp_get_majv(u8 sdp_version) { return sdp_version >> 4; } static inline u8 sdp_get_ip_ver(struct sdp_hh *hh) { return hh->ip_version >> 4; } static inline void sdp_set_ip_ver(struct sdp_hh *hh, u8 ip_ver) { hh->ip_version = (ip_ver << 4) | (hh->ip_version & 0xF); } static inline int cma_is_ud_ps(enum rdma_port_space ps) { return (ps == RDMA_PS_UDP || ps == RDMA_PS_IPOIB); } static void cma_attach_to_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { atomic_inc(&cma_dev->refcount); id_priv->cma_dev = cma_dev; id_priv->id.device = cma_dev->device; id_priv->id.route.addr.dev_addr.transport = rdma_node_get_transport(cma_dev->device->node_type); list_add_tail(&id_priv->list, &cma_dev->id_list); } static inline void cma_deref_dev(struct cma_device *cma_dev) { if (atomic_dec_and_test(&cma_dev->refcount)) complete(&cma_dev->comp); } static inline void release_mc(struct kref *kref) { struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref); kfree(mc->multicast.ib); kfree(mc); } static void cma_detach_from_dev(struct rdma_id_private *id_priv) { list_del(&id_priv->list); cma_deref_dev(id_priv->cma_dev); id_priv->cma_dev = NULL; } static int cma_set_qkey(struct rdma_id_private *id_priv) { struct ib_sa_mcmember_rec rec; int ret = 0; if (id_priv->qkey) return 0; switch (id_priv->id.ps) { case RDMA_PS_UDP: id_priv->qkey = RDMA_UDP_QKEY; break; case RDMA_PS_IPOIB: ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (!ret) id_priv->qkey = be32_to_cpu(rec.qkey); break; default: break; } return ret; } static int cma_acquire_dev(struct rdma_id_private *id_priv) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct cma_device *cma_dev; union ib_gid gid; int ret = -ENODEV; if (dev_addr->dev_type != ARPHRD_INFINIBAND) { iboe_addr_get_sgid(dev_addr, &gid); list_for_each_entry(cma_dev, &dev_list, list) { ret = ib_find_cached_gid(cma_dev->device, &gid, &id_priv->id.port_num, NULL); if (!ret) goto out; } } memcpy(&gid, dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof gid); list_for_each_entry(cma_dev, &dev_list, list) { ret = ib_find_cached_gid(cma_dev->device, &gid, &id_priv->id.port_num, NULL); if (!ret) break; } out: if (!ret) cma_attach_to_dev(id_priv, cma_dev); return ret; } static void cma_deref_id(struct rdma_id_private *id_priv) { if (atomic_dec_and_test(&id_priv->refcount)) complete(&id_priv->comp); } static int cma_disable_callback(struct rdma_id_private *id_priv, enum cma_state state) { mutex_lock(&id_priv->handler_mutex); if (id_priv->state != state) { mutex_unlock(&id_priv->handler_mutex); return -EINVAL; } return 0; } static int cma_has_cm_dev(struct rdma_id_private *id_priv) { return (id_priv->id.device && id_priv->cm_id.ib); } struct rdma_cm_id *rdma_create_id(rdma_cm_event_handler event_handler, void *context, enum rdma_port_space ps) { struct rdma_id_private *id_priv; id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); if (!id_priv) return ERR_PTR(-ENOMEM); id_priv->state = CMA_IDLE; id_priv->id.context = context; id_priv->id.event_handler = event_handler; id_priv->id.ps = ps; spin_lock_init(&id_priv->lock); mutex_init(&id_priv->qp_mutex); init_completion(&id_priv->comp); atomic_set(&id_priv->refcount, 1); mutex_init(&id_priv->handler_mutex); INIT_LIST_HEAD(&id_priv->listen_list); INIT_LIST_HEAD(&id_priv->mc_list); get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); return &id_priv->id; } EXPORT_SYMBOL(rdma_create_id); static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTR; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTS; qp_attr.sq_psn = 0; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); return ret; } static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; return ib_modify_qp(qp, &qp_attr, qp_attr_mask); } int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { struct rdma_id_private *id_priv; struct ib_qp *qp; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id->device != pd->device) return -EINVAL; qp = ib_create_qp(pd, qp_init_attr); if (IS_ERR(qp)) return PTR_ERR(qp); if (cma_is_ud_ps(id_priv->id.ps)) ret = cma_init_ud_qp(id_priv, qp); else ret = cma_init_conn_qp(id_priv, qp); if (ret) goto err; id->qp = qp; id_priv->qp_num = qp->qp_num; id_priv->srq = (qp->srq != NULL); return 0; err: ib_destroy_qp(qp); return ret; } EXPORT_SYMBOL(rdma_create_qp); void rdma_destroy_qp(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); mutex_lock(&id_priv->qp_mutex); ib_destroy_qp(id_priv->id.qp); id_priv->id.qp = NULL; mutex_unlock(&id_priv->qp_mutex); } EXPORT_SYMBOL(rdma_destroy_qp); static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } /* Need to update QP attributes from default values. */ qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); if (ret) goto out; qp_attr.qp_state = IB_QPS_RTR; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; if (conn_param) qp_attr.max_dest_rd_atomic = conn_param->responder_resources; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_rts(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_RTS; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; if (conn_param) qp_attr.max_rd_atomic = conn_param->initiator_depth; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_err(struct rdma_id_private *id_priv) { struct ib_qp_attr qp_attr; int ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_ERR; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int ret; u16 pkey; if (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num) == IB_LINK_LAYER_INFINIBAND) pkey = ib_addr_get_pkey(dev_addr); else pkey = 0xffff; ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, pkey, &qp_attr->pkey_index); if (ret) return ret; qp_attr->port_num = id_priv->id.port_num; *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; if (cma_is_ud_ps(id_priv->id.ps)) { ret = cma_set_qkey(id_priv); if (ret) return ret; qp_attr->qkey = id_priv->qkey; *qp_attr_mask |= IB_QP_QKEY; } else { qp_attr->qp_access_flags = 0; *qp_attr_mask |= IB_QP_ACCESS_FLAGS; } return 0; } int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_id_private *id_priv; int ret = 0; id_priv = container_of(id, struct rdma_id_private, id); switch (rdma_node_get_transport(id_priv->id.device->node_type)) { case RDMA_TRANSPORT_IB: if (!id_priv->cm_id.ib || cma_is_ud_ps(id_priv->id.ps)) ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); else ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, qp_attr_mask); if (qp_attr->qp_state == IB_QPS_RTR) qp_attr->rq_psn = id_priv->seq_num; break; case RDMA_TRANSPORT_IWARP: if (!id_priv->cm_id.iw) { qp_attr->qp_access_flags = 0; *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; } else ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, qp_attr_mask); break; default: ret = -ENOSYS; break; } return ret; } EXPORT_SYMBOL(rdma_init_qp_attr); static inline int cma_zero_addr(struct sockaddr *addr) { struct in6_addr *ip6; if (addr->sa_family == AF_INET) return ipv4_is_zeronet( ((struct sockaddr_in *)addr)->sin_addr.s_addr); else { ip6 = &((struct sockaddr_in6 *) addr)->sin6_addr; return (ip6->s6_addr32[0] | ip6->s6_addr32[1] | ip6->s6_addr32[2] | ip6->s6_addr32[3]) == 0; } } static inline int cma_loopback_addr(struct sockaddr *addr) { if (addr->sa_family == AF_INET) return ipv4_is_loopback( ((struct sockaddr_in *) addr)->sin_addr.s_addr); else return ipv6_addr_loopback( &((struct sockaddr_in6 *) addr)->sin6_addr); } static inline int cma_any_addr(struct sockaddr *addr) { return cma_zero_addr(addr) || cma_loopback_addr(addr); } static inline __be16 cma_port(struct sockaddr *addr) { if (addr->sa_family == AF_INET) return ((struct sockaddr_in *) addr)->sin_port; else return ((struct sockaddr_in6 *) addr)->sin6_port; } static inline int cma_any_port(struct sockaddr *addr) { return !cma_port(addr); } static int cma_get_net_info(void *hdr, enum rdma_port_space ps, u8 *ip_ver, __be16 *port, union cma_ip_addr **src, union cma_ip_addr **dst) { switch (ps) { case RDMA_PS_SDP: if (sdp_get_majv(((struct sdp_hh *) hdr)->sdp_version) != SDP_MAJ_VERSION) return -EINVAL; *ip_ver = sdp_get_ip_ver(hdr); *port = ((struct sdp_hh *) hdr)->port; *src = &((struct sdp_hh *) hdr)->src_addr; *dst = &((struct sdp_hh *) hdr)->dst_addr; break; default: if (((struct cma_hdr *) hdr)->cma_version != CMA_VERSION) return -EINVAL; *ip_ver = cma_get_ip_ver(hdr); *port = ((struct cma_hdr *) hdr)->port; *src = &((struct cma_hdr *) hdr)->src_addr; *dst = &((struct cma_hdr *) hdr)->dst_addr; break; } if (*ip_ver != 4 && *ip_ver != 6) return -EINVAL; return 0; } static void cma_save_net_info(struct rdma_addr *addr, struct rdma_addr *listen_addr, u8 ip_ver, __be16 port, union cma_ip_addr *src, union cma_ip_addr *dst) { struct sockaddr_in *listen4, *ip4; struct sockaddr_in6 *listen6, *ip6; switch (ip_ver) { case 4: listen4 = (struct sockaddr_in *) &listen_addr->src_addr; ip4 = (struct sockaddr_in *) &addr->src_addr; ip4->sin_family = listen4->sin_family; ip4->sin_addr.s_addr = dst->ip4.addr; ip4->sin_port = listen4->sin_port; ip4 = (struct sockaddr_in *) &addr->dst_addr; ip4->sin_family = listen4->sin_family; ip4->sin_addr.s_addr = src->ip4.addr; ip4->sin_port = port; break; case 6: listen6 = (struct sockaddr_in6 *) &listen_addr->src_addr; ip6 = (struct sockaddr_in6 *) &addr->src_addr; ip6->sin6_family = listen6->sin6_family; ip6->sin6_addr = dst->ip6; ip6->sin6_port = listen6->sin6_port; ip6 = (struct sockaddr_in6 *) &addr->dst_addr; ip6->sin6_family = listen6->sin6_family; ip6->sin6_addr = src->ip6; ip6->sin6_port = port; break; default: break; } } static inline int cma_user_data_offset(enum rdma_port_space ps) { switch (ps) { case RDMA_PS_SDP: return 0; default: return sizeof(struct cma_hdr); } } static void cma_cancel_route(struct rdma_id_private *id_priv) { switch (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num)) { case IB_LINK_LAYER_INFINIBAND: if (id_priv->query) ib_sa_cancel_query(id_priv->query_id, id_priv->query); break; default: break; } } static void cma_cancel_listens(struct rdma_id_private *id_priv) { struct rdma_id_private *dev_id_priv; /* * Remove from listen_any_list to prevent added devices from spawning * additional listen requests. */ mutex_lock(&lock); list_del(&id_priv->list); while (!list_empty(&id_priv->listen_list)) { dev_id_priv = list_entry(id_priv->listen_list.next, struct rdma_id_private, listen_list); /* sync with device removal to avoid duplicate destruction */ list_del_init(&dev_id_priv->list); list_del(&dev_id_priv->listen_list); mutex_unlock(&lock); rdma_destroy_id(&dev_id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); } static void cma_cancel_operation(struct rdma_id_private *id_priv, enum cma_state state) { switch (state) { case CMA_ADDR_QUERY: rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); break; case CMA_ROUTE_QUERY: cma_cancel_route(id_priv); break; case CMA_LISTEN: if (cma_any_addr((struct sockaddr *) &id_priv->id.route.addr.src_addr) && !id_priv->cma_dev) cma_cancel_listens(id_priv); break; default: break; } } static void cma_release_port(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; if (!bind_list) return; mutex_lock(&lock); hlist_del(&id_priv->node); if (hlist_empty(&bind_list->owners)) { idr_remove(bind_list->ps, bind_list->port); kfree(bind_list); } mutex_unlock(&lock); if (id_priv->sock) sock_release(id_priv->sock); } static void cma_leave_mc_groups(struct rdma_id_private *id_priv) { struct cma_multicast *mc; while (!list_empty(&id_priv->mc_list)) { mc = container_of(id_priv->mc_list.next, struct cma_multicast, list); list_del(&mc->list); switch (rdma_port_get_link_layer(id_priv->cma_dev->device, id_priv->id.port_num)) { case IB_LINK_LAYER_INFINIBAND: ib_sa_free_multicast(mc->multicast.ib); kfree(mc); break; case IB_LINK_LAYER_ETHERNET: kref_put(&mc->mcref, release_mc); break; default: break; } } } void rdma_destroy_id(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; enum cma_state state; id_priv = container_of(id, struct rdma_id_private, id); state = cma_exch(id_priv, CMA_DESTROYING); cma_cancel_operation(id_priv, state); mutex_lock(&lock); if (id_priv->cma_dev) { mutex_unlock(&lock); switch (rdma_node_get_transport(id_priv->id.device->node_type)) { case RDMA_TRANSPORT_IB: if (id_priv->cm_id.ib && !IS_ERR(id_priv->cm_id.ib)) ib_destroy_cm_id(id_priv->cm_id.ib); break; case RDMA_TRANSPORT_IWARP: if (id_priv->cm_id.iw && !IS_ERR(id_priv->cm_id.iw)) iw_destroy_cm_id(id_priv->cm_id.iw); break; default: break; } cma_leave_mc_groups(id_priv); mutex_lock(&lock); cma_detach_from_dev(id_priv); } mutex_unlock(&lock); cma_release_port(id_priv); cma_deref_id(id_priv); wait_for_completion(&id_priv->comp); if (id_priv->internal_id) cma_deref_id(id_priv->id.context); kfree(id_priv->id.route.path_rec); kfree(id_priv); } EXPORT_SYMBOL(rdma_destroy_id); static int cma_rep_recv(struct rdma_id_private *id_priv) { int ret; ret = cma_modify_qp_rtr(id_priv, NULL); if (ret) goto reject; ret = cma_modify_qp_rts(id_priv, NULL); if (ret) goto reject; ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, NULL, 0); return ret; } static int cma_verify_rep(struct rdma_id_private *id_priv, void *data) { if (id_priv->id.ps == RDMA_PS_SDP && sdp_get_majv(((struct sdp_hah *) data)->sdp_version) != SDP_MAJ_VERSION) return -EINVAL; return 0; } static void cma_set_rep_event_data(struct rdma_cm_event *event, struct ib_cm_rep_event_param *rep_data, void *private_data) { event->param.conn.private_data = private_data; event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; event->param.conn.responder_resources = rep_data->responder_resources; event->param.conn.initiator_depth = rep_data->initiator_depth; event->param.conn.flow_control = rep_data->flow_control; event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; event->param.conn.srq = rep_data->srq; event->param.conn.qp_num = rep_data->remote_qpn; } static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; int ret = 0; if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && cma_disable_callback(id_priv, CMA_CONNECT)) || (ib_event->event == IB_CM_TIMEWAIT_EXIT && cma_disable_callback(id_priv, CMA_DISCONNECT))) return 0; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_REQ_ERROR: case IB_CM_REP_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_REP_RECEIVED: event.status = cma_verify_rep(id_priv, ib_event->private_data); if (event.status) event.event = RDMA_CM_EVENT_CONNECT_ERROR; else if (id_priv->id.qp && id_priv->id.ps != RDMA_PS_SDP) { event.status = cma_rep_recv(id_priv); event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : RDMA_CM_EVENT_ESTABLISHED; } else event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, ib_event->private_data); break; case IB_CM_RTU_RECEIVED: case IB_CM_USER_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; break; case IB_CM_DREQ_ERROR: event.status = -ETIMEDOUT; /* fall through */ case IB_CM_DREQ_RECEIVED: case IB_CM_DREP_RECEIVED: if (!cma_comp_exch(id_priv, CMA_CONNECT, CMA_DISCONNECT)) goto out; event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IB_CM_TIMEWAIT_EXIT: event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; break; case IB_CM_MRA_RECEIVED: /* ignore event */ goto out; case IB_CM_REJ_RECEIVED: cma_modify_qp_err(id_priv); event.status = ib_event->param.rej_rcvd.reason; event.event = RDMA_CM_EVENT_REJECTED; event.param.conn.private_data = ib_event->private_data; event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; break; default: printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, CMA_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; struct rdma_route *rt; union cma_ip_addr *src, *dst; __be16 port; u8 ip_ver; int ret; if (cma_get_net_info(ib_event->private_data, listen_id->ps, &ip_ver, &port, &src, &dst)) goto err; id = rdma_create_id(listen_id->event_handler, listen_id->context, listen_id->ps); if (IS_ERR(id)) goto err; cma_save_net_info(&id->route.addr, &listen_id->route.addr, ip_ver, port, src, dst); rt = &id->route; rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths, GFP_KERNEL); if (!rt->path_rec) goto destroy_id; rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path; if (rt->num_paths == 2) rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; if (cma_any_addr((struct sockaddr *) &rt->addr.src_addr)) { rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); ib_addr_set_pkey(&rt->addr.dev_addr, rt->path_rec[0].pkey); } else { ret = rdma_translate_ip((struct sockaddr *) &rt->addr.src_addr, &rt->addr.dev_addr); if (ret) goto destroy_id; } rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); id_priv = container_of(id, struct rdma_id_private, id); id_priv->state = CMA_CONNECT; return id_priv; destroy_id: rdma_destroy_id(id); err: return NULL; } static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; union cma_ip_addr *src, *dst; __be16 port; u8 ip_ver; int ret; id = rdma_create_id(listen_id->event_handler, listen_id->context, listen_id->ps); if (IS_ERR(id)) return NULL; if (cma_get_net_info(ib_event->private_data, listen_id->ps, &ip_ver, &port, &src, &dst)) goto err; cma_save_net_info(&id->route.addr, &listen_id->route.addr, ip_ver, port, src, dst); if (!cma_any_addr((struct sockaddr *) &id->route.addr.src_addr)) { ret = rdma_translate_ip((struct sockaddr *) &id->route.addr.src_addr, &id->route.addr.dev_addr); if (ret) goto err; } id_priv = container_of(id, struct rdma_id_private, id); id_priv->state = CMA_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static void cma_set_req_event_data(struct rdma_cm_event *event, struct ib_cm_req_event_param *req_data, void *private_data, int offset) { event->param.conn.private_data = private_data + offset; event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; event->param.conn.responder_resources = req_data->responder_resources; event->param.conn.initiator_depth = req_data->initiator_depth; event->param.conn.flow_control = req_data->flow_control; event->param.conn.retry_count = req_data->retry_count; event->param.conn.rnr_retry_count = req_data->rnr_retry_count; event->param.conn.srq = req_data->srq; event->param.conn.qp_num = req_data->remote_qpn; } static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *listen_id, *conn_id; struct rdma_cm_event event; int offset, ret; listen_id = cm_id->context; if (cma_disable_callback(listen_id, CMA_LISTEN)) return -ECONNABORTED; memset(&event, 0, sizeof event); offset = cma_user_data_offset(listen_id->id.ps); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; if (cma_is_ud_ps(listen_id->id.ps)) { conn_id = cma_new_udp_id(&listen_id->id, ib_event); event.param.ud.private_data = ib_event->private_data + offset; event.param.ud.private_data_len = IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; } else { conn_id = cma_new_conn_id(&listen_id->id, ib_event); cma_set_req_event_data(&event, &ib_event->param.req_rcvd, ib_event->private_data, offset); } if (!conn_id) { ret = -ENOMEM; goto out; } mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); mutex_lock(&lock); ret = cma_acquire_dev(conn_id); mutex_unlock(&lock); if (ret) goto release_conn_id; conn_id->cm_id.ib = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_ib_handler; ret = conn_id->id.event_handler(&conn_id->id, &event); if (!ret) { /* * Acquire mutex to prevent user executing rdma_destroy_id() * while we're accessing the cm_id. */ mutex_lock(&lock); if (cma_comp(conn_id, CMA_CONNECT) && !cma_is_ud_ps(conn_id->id.ps)) ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); mutex_unlock(&lock); mutex_unlock(&conn_id->handler_mutex); goto out; } /* Destroy the CM ID by returning a non-zero value. */ conn_id->cm_id.ib = NULL; release_conn_id: cma_exch(conn_id, CMA_DESTROYING); mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(&conn_id->id); out: mutex_unlock(&listen_id->handler_mutex); return ret; } static __be64 cma_get_service_id(enum rdma_port_space ps, struct sockaddr *addr) { return cpu_to_be64(((u64)ps << 16) + be16_to_cpu(cma_port(addr))); } static void cma_set_compare_data(enum rdma_port_space ps, struct sockaddr *addr, struct ib_cm_compare_data *compare) { struct cma_hdr *cma_data, *cma_mask; struct sdp_hh *sdp_data, *sdp_mask; __be32 ip4_addr; struct in6_addr ip6_addr; memset(compare, 0, sizeof *compare); cma_data = (void *) compare->data; cma_mask = (void *) compare->mask; sdp_data = (void *) compare->data; sdp_mask = (void *) compare->mask; switch (addr->sa_family) { case AF_INET: ip4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr; if (ps == RDMA_PS_SDP) { sdp_set_ip_ver(sdp_data, 4); sdp_set_ip_ver(sdp_mask, 0xF); sdp_data->dst_addr.ip4.addr = ip4_addr; sdp_mask->dst_addr.ip4.addr = htonl(~0); } else { cma_set_ip_ver(cma_data, 4); cma_set_ip_ver(cma_mask, 0xF); cma_data->dst_addr.ip4.addr = ip4_addr; cma_mask->dst_addr.ip4.addr = htonl(~0); } break; #ifdef INET6 case AF_INET6: ip6_addr = ((struct sockaddr_in6 *) addr)->sin6_addr; if (ps == RDMA_PS_SDP) { sdp_set_ip_ver(sdp_data, 6); sdp_set_ip_ver(sdp_mask, 0xF); sdp_data->dst_addr.ip6 = ip6_addr; memset(&sdp_mask->dst_addr.ip6, 0xFF, sizeof sdp_mask->dst_addr.ip6); } else { cma_set_ip_ver(cma_data, 6); cma_set_ip_ver(cma_mask, 0xF); cma_data->dst_addr.ip6 = ip6_addr; memset(&cma_mask->dst_addr.ip6, 0xFF, sizeof cma_mask->dst_addr.ip6); } break; #endif default: break; } } static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) { struct rdma_id_private *id_priv = iw_id->context; struct rdma_cm_event event; struct sockaddr_in *sin; int ret = 0; if (cma_disable_callback(id_priv, CMA_CONNECT)) return 0; memset(&event, 0, sizeof event); switch (iw_event->event) { case IW_CM_EVENT_CLOSE: event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IW_CM_EVENT_CONNECT_REPLY: sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr; *sin = iw_event->local_addr; sin = (struct sockaddr_in *) &id_priv->id.route.addr.dst_addr; *sin = iw_event->remote_addr; switch (iw_event->status) { case 0: event.event = RDMA_CM_EVENT_ESTABLISHED; break; case -ECONNRESET: case -ECONNREFUSED: event.event = RDMA_CM_EVENT_REJECTED; break; case -ETIMEDOUT: event.event = RDMA_CM_EVENT_UNREACHABLE; break; default: event.event = RDMA_CM_EVENT_CONNECT_ERROR; break; } break; case IW_CM_EVENT_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; break; default: BUG_ON(1); } event.status = iw_event->status; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.iw = NULL; cma_exch(id_priv, CMA_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } mutex_unlock(&id_priv->handler_mutex); return ret; } static int iw_conn_req_handler(struct iw_cm_id *cm_id, struct iw_cm_event *iw_event) { struct rdma_cm_id *new_cm_id; struct rdma_id_private *listen_id, *conn_id; struct sockaddr_in *sin; struct net_device *dev = NULL; struct rdma_cm_event event; int ret; struct ib_device_attr attr; listen_id = cm_id->context; if (cma_disable_callback(listen_id, CMA_LISTEN)) return -ECONNABORTED; /* Create a new RDMA id for the new IW CM ID */ new_cm_id = rdma_create_id(listen_id->id.event_handler, listen_id->id.context, RDMA_PS_TCP); if (IS_ERR(new_cm_id)) { ret = -ENOMEM; goto out; } conn_id = container_of(new_cm_id, struct rdma_id_private, id); mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); conn_id->state = CMA_CONNECT; dev = ip_dev_find(NULL, iw_event->local_addr.sin_addr.s_addr); if (!dev) { ret = -EADDRNOTAVAIL; mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } ret = rdma_copy_addr(&conn_id->id.route.addr.dev_addr, dev, NULL); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } mutex_lock(&lock); ret = cma_acquire_dev(conn_id); mutex_unlock(&lock); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; sin = (struct sockaddr_in *) &new_cm_id->route.addr.src_addr; *sin = iw_event->local_addr; sin = (struct sockaddr_in *) &new_cm_id->route.addr.dst_addr; *sin = iw_event->remote_addr; ret = ib_query_device(conn_id->id.device, &attr); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; event.param.conn.initiator_depth = attr.max_qp_init_rd_atom; event.param.conn.responder_resources = attr.max_qp_rd_atom; ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) { /* User wants to destroy the CM ID */ conn_id->cm_id.iw = NULL; cma_exch(conn_id, CMA_DESTROYING); mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(&conn_id->id); goto out; } mutex_unlock(&conn_id->handler_mutex); out: if (dev) dev_put(dev); mutex_unlock(&listen_id->handler_mutex); return ret; } static int cma_ib_listen(struct rdma_id_private *id_priv) { struct ib_cm_compare_data compare_data; struct sockaddr *addr; __be64 svc_id; int ret; id_priv->cm_id.ib = ib_create_cm_id(id_priv->id.device, cma_req_handler, id_priv); if (IS_ERR(id_priv->cm_id.ib)) return PTR_ERR(id_priv->cm_id.ib); addr = (struct sockaddr *) &id_priv->id.route.addr.src_addr; svc_id = cma_get_service_id(id_priv->id.ps, addr); if (cma_any_addr(addr)) ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, NULL); else { cma_set_compare_data(id_priv->id.ps, addr, &compare_data); ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, &compare_data); } if (ret) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } return ret; } static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) { int ret; struct sockaddr_in *sin; id_priv->cm_id.iw = iw_create_cm_id(id_priv->id.device, iw_conn_req_handler, id_priv); if (IS_ERR(id_priv->cm_id.iw)) return PTR_ERR(id_priv->cm_id.iw); sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr; id_priv->cm_id.iw->local_addr = *sin; ret = iw_cm_listen(id_priv->cm_id.iw, backlog); if (ret) { iw_destroy_cm_id(id_priv->cm_id.iw); id_priv->cm_id.iw = NULL; } return ret; } static int cma_listen_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rdma_id_private *id_priv = id->context; id->context = id_priv->id.context; id->event_handler = id_priv->id.event_handler; return id_priv->id.event_handler(id, event); } static void cma_listen_on_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { struct rdma_id_private *dev_id_priv; struct rdma_cm_id *id; int ret; id = rdma_create_id(cma_listen_handler, id_priv, id_priv->id.ps); if (IS_ERR(id)) return; dev_id_priv = container_of(id, struct rdma_id_private, id); dev_id_priv->state = CMA_ADDR_BOUND; memcpy(&id->route.addr.src_addr, &id_priv->id.route.addr.src_addr, ip_addr_size((struct sockaddr *) &id_priv->id.route.addr.src_addr)); cma_attach_to_dev(dev_id_priv, cma_dev); list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); atomic_inc(&id_priv->refcount); dev_id_priv->internal_id = 1; ret = rdma_listen(id, id_priv->backlog); if (ret) printk(KERN_WARNING "RDMA CMA: cma_listen_on_dev, error %d, " "listening on device %s\n", ret, cma_dev->device->name); } static void cma_listen_on_all(struct rdma_id_private *id_priv) { struct cma_device *cma_dev; mutex_lock(&lock); list_add_tail(&id_priv->list, &listen_any_list); list_for_each_entry(cma_dev, &dev_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); } int rdma_listen(struct rdma_cm_id *id, int backlog) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == CMA_IDLE) { ((struct sockaddr *) &id->route.addr.src_addr)->sa_family = AF_INET; ret = rdma_bind_addr(id, (struct sockaddr *) &id->route.addr.src_addr); if (ret) return ret; } if (!cma_comp_exch(id_priv, CMA_ADDR_BOUND, CMA_LISTEN)) return -EINVAL; id_priv->backlog = backlog; if (id->device) { switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: ret = cma_ib_listen(id_priv); if (ret) goto err; break; case RDMA_TRANSPORT_IWARP: ret = cma_iw_listen(id_priv, backlog); if (ret) goto err; break; default: ret = -ENOSYS; goto err; } } else cma_listen_on_all(id_priv); return 0; err: id_priv->backlog = 0; cma_comp_exch(id_priv, CMA_LISTEN, CMA_ADDR_BOUND); return ret; } EXPORT_SYMBOL(rdma_listen); void rdma_set_service_type(struct rdma_cm_id *id, int tos) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); id_priv->tos = (u8) tos; } EXPORT_SYMBOL(rdma_set_service_type); static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec, void *context) { struct cma_work *work = context; struct rdma_route *route; route = &work->id->id.route; if (!status) { route->num_paths = 1; *route->path_rec = *path_rec; } else { work->old_state = CMA_ROUTE_QUERY; work->new_state = CMA_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; work->event.status = status; } queue_work(cma_wq, &work->work); } static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms, struct cma_work *work) { struct rdma_addr *addr = &id_priv->id.route.addr; struct ib_sa_path_rec path_rec; ib_sa_comp_mask comp_mask; struct sockaddr_in6 *sin6; memset(&path_rec, 0, sizeof path_rec); rdma_addr_get_sgid(&addr->dev_addr, &path_rec.sgid); rdma_addr_get_dgid(&addr->dev_addr, &path_rec.dgid); path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(&addr->dev_addr)); path_rec.numb_path = 1; path_rec.reversible = 1; path_rec.service_id = cma_get_service_id(id_priv->id.ps, (struct sockaddr *) &addr->dst_addr); comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; if (addr->src_addr.ss_family == AF_INET) { path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); comp_mask |= IB_SA_PATH_REC_QOS_CLASS; } else { sin6 = (struct sockaddr_in6 *) &addr->src_addr; path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; } if (tavor_quirk) { path_rec.mtu_selector = IB_SA_LT; path_rec.mtu = IB_MTU_2048; } id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, id_priv->id.port_num, &path_rec, comp_mask, timeout_ms, GFP_KERNEL, cma_query_handler, work, &id_priv->query); return (id_priv->query_id < 0) ? id_priv->query_id : 0; } static void cma_work_handler(struct work_struct *_work) { struct cma_work *work = container_of(_work, struct cma_work, work); struct rdma_id_private *id_priv = work->id; int destroy = 0; mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) goto out; if (id_priv->id.event_handler(&id_priv->id, &work->event)) { cma_exch(id_priv, CMA_DESTROYING); destroy = 1; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); if (destroy) rdma_destroy_id(&id_priv->id); kfree(work); } static void cma_ndev_work_handler(struct work_struct *_work) { struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work); struct rdma_id_private *id_priv = work->id; int destroy = 0; mutex_lock(&id_priv->handler_mutex); if (id_priv->state == CMA_DESTROYING || id_priv->state == CMA_DEVICE_REMOVAL) goto out; if (id_priv->id.event_handler(&id_priv->id, &work->event)) { cma_exch(id_priv, CMA_DESTROYING); destroy = 1; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); if (destroy) rdma_destroy_id(&id_priv->id); kfree(work); } static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms) { struct rdma_route *route = &id_priv->id.route; struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = CMA_ROUTE_QUERY; work->new_state = CMA_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } ret = cma_query_ib_route(id_priv, timeout_ms, work); if (ret) goto err2; return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_set_ib_paths(struct rdma_cm_id *id, struct ib_sa_path_rec *path_rec, int num_paths) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, CMA_ADDR_RESOLVED, CMA_ROUTE_RESOLVED)) return -EINVAL; id->route.path_rec = kmalloc(sizeof *path_rec * num_paths, GFP_KERNEL); if (!id->route.path_rec) { ret = -ENOMEM; goto err; } memcpy(id->route.path_rec, path_rec, sizeof *path_rec * num_paths); return 0; err: cma_comp_exch(id_priv, CMA_ROUTE_RESOLVED, CMA_ADDR_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_set_ib_paths); static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms) { struct cma_work *work; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = CMA_ROUTE_QUERY; work->new_state = CMA_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; queue_work(cma_wq, &work->work); return 0; } static u8 tos_to_sl(u8 tos) { return def_prec2sl & 7; } static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) { struct rdma_route *route = &id_priv->id.route; struct rdma_addr *addr = &route->addr; struct cma_work *work; int ret; struct sockaddr_in *src_addr = (struct sockaddr_in *)&route->addr.src_addr; struct sockaddr_in *dst_addr = (struct sockaddr_in *)&route->addr.dst_addr; struct net_device *ndev = NULL; u16 vid; if (src_addr->sin_family != dst_addr->sin_family) return -EINVAL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } route->num_paths = 1; if (addr->dev_addr.bound_dev_if) ndev = dev_get_by_index(&init_net, addr->dev_addr.bound_dev_if); if (!ndev) { ret = -ENODEV; goto err2; } vid = rdma_vlan_dev_vlan_id(ndev); iboe_mac_vlan_to_ll(&route->path_rec->sgid, addr->dev_addr.src_dev_addr, vid); iboe_mac_vlan_to_ll(&route->path_rec->dgid, addr->dev_addr.dst_dev_addr, vid); route->path_rec->hop_limit = 1; route->path_rec->reversible = 1; route->path_rec->pkey = cpu_to_be16(0xffff); route->path_rec->mtu_selector = IB_SA_EQ; route->path_rec->sl = tos_to_sl(id_priv->tos); #ifdef __linux__ route->path_rec->mtu = iboe_get_mtu(ndev->mtu); #else route->path_rec->mtu = iboe_get_mtu(ndev->if_mtu); #endif route->path_rec->rate_selector = IB_SA_EQ; route->path_rec->rate = iboe_get_rate(ndev); dev_put(ndev); route->path_rec->packet_life_time_selector = IB_SA_EQ; route->path_rec->packet_life_time = IBOE_PACKET_LIFETIME; if (!route->path_rec->mtu) { ret = -EINVAL; goto err2; } work->old_state = CMA_ROUTE_QUERY; work->new_state = CMA_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; work->event.status = 0; queue_work(cma_wq, &work->work); return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, CMA_ADDR_RESOLVED, CMA_ROUTE_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: switch (rdma_port_get_link_layer(id->device, id->port_num)) { case IB_LINK_LAYER_INFINIBAND: ret = cma_resolve_ib_route(id_priv, timeout_ms); break; case IB_LINK_LAYER_ETHERNET: ret = cma_resolve_iboe_route(id_priv); break; default: ret = -ENOSYS; } break; case RDMA_TRANSPORT_IWARP: ret = cma_resolve_iw_route(id_priv, timeout_ms); break; default: ret = -ENOSYS; break; } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, CMA_ROUTE_QUERY, CMA_ADDR_RESOLVED); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_route); static int cma_bind_loopback(struct rdma_id_private *id_priv) { struct cma_device *cma_dev; struct ib_port_attr port_attr; union ib_gid gid; u16 pkey; int ret; u8 p; mutex_lock(&lock); if (list_empty(&dev_list)) { ret = -ENODEV; goto out; } list_for_each_entry(cma_dev, &dev_list, list) for (p = 1; p <= cma_dev->device->phys_port_cnt; ++p) if (!ib_query_port(cma_dev->device, p, &port_attr) && port_attr.state == IB_PORT_ACTIVE) goto port_found; p = 1; cma_dev = list_entry(dev_list.next, struct cma_device, list); port_found: ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid); if (ret) goto out; ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); if (ret) goto out; id_priv->id.route.addr.dev_addr.dev_type = (rdma_port_get_link_layer(cma_dev->device, p) == IB_LINK_LAYER_INFINIBAND) ? ARPHRD_INFINIBAND : ARPHRD_ETHER; rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); id_priv->id.port_num = p; cma_attach_to_dev(id_priv, cma_dev); out: mutex_unlock(&lock); return ret; } static void addr_handler(int status, struct sockaddr *src_addr, struct rdma_dev_addr *dev_addr, void *context) { struct rdma_id_private *id_priv = context; struct rdma_cm_event event; memset(&event, 0, sizeof event); mutex_lock(&id_priv->handler_mutex); /* * Grab mutex to block rdma_destroy_id() from removing the device while * we're trying to acquire it. */ mutex_lock(&lock); if (!cma_comp_exch(id_priv, CMA_ADDR_QUERY, CMA_ADDR_RESOLVED)) { mutex_unlock(&lock); goto out; } if (!status && !id_priv->cma_dev) status = cma_acquire_dev(id_priv); mutex_unlock(&lock); if (status) { if (!cma_comp_exch(id_priv, CMA_ADDR_RESOLVED, CMA_ADDR_BOUND)) goto out; event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = status; } else { memcpy(&id_priv->id.route.addr.src_addr, src_addr, ip_addr_size(src_addr)); event.event = RDMA_CM_EVENT_ADDR_RESOLVED; } if (id_priv->id.event_handler(&id_priv->id, &event)) { cma_exch(id_priv, CMA_DESTROYING); mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); rdma_destroy_id(&id_priv->id); return; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); } static int cma_resolve_loopback(struct rdma_id_private *id_priv) { struct cma_work *work; struct sockaddr *src, *dst; union ib_gid gid; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_bind_loopback(id_priv); if (ret) goto err; } rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); src = (struct sockaddr *) &id_priv->id.route.addr.src_addr; if (cma_zero_addr(src)) { dst = (struct sockaddr *) &id_priv->id.route.addr.dst_addr; if ((src->sa_family = dst->sa_family) == AF_INET) { ((struct sockaddr_in *) src)->sin_addr.s_addr = ((struct sockaddr_in *) dst)->sin_addr.s_addr; } else { ipv6_addr_copy(&((struct sockaddr_in6 *) src)->sin6_addr, &((struct sockaddr_in6 *) dst)->sin6_addr); } } work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = CMA_ADDR_QUERY; work->new_state = CMA_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr) { if (!src_addr || !src_addr->sa_family) { src_addr = (struct sockaddr *) &id->route.addr.src_addr; if ((src_addr->sa_family = dst_addr->sa_family) == AF_INET6) { ((struct sockaddr_in6 *) src_addr)->sin6_scope_id = ((struct sockaddr_in6 *) dst_addr)->sin6_scope_id; } } return rdma_bind_addr(id, src_addr); } int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == CMA_IDLE) { ret = cma_bind_addr(id, src_addr, dst_addr); if (ret) return ret; } if (!cma_comp_exch(id_priv, CMA_ADDR_BOUND, CMA_ADDR_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); memcpy(&id->route.addr.dst_addr, dst_addr, ip_addr_size(dst_addr)); if (cma_any_addr(dst_addr)) ret = cma_resolve_loopback(id_priv); else ret = rdma_resolve_ip(&addr_client, (struct sockaddr *) &id->route.addr.src_addr, dst_addr, &id->route.addr.dev_addr, timeout_ms, addr_handler, id_priv); if (ret) goto err; return 0; err: cma_comp_exch(id_priv, CMA_ADDR_QUERY, CMA_ADDR_BOUND); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_addr); static void cma_bind_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv) { struct sockaddr_in *sin; sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr; sin->sin_port = htons(bind_list->port); id_priv->bind_list = bind_list; hlist_add_head(&id_priv->node, &bind_list->owners); } static int cma_alloc_port(struct idr *ps, struct rdma_id_private *id_priv, unsigned short snum) { struct rdma_bind_list *bind_list; int port, ret; bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); if (!bind_list) return -ENOMEM; do { ret = idr_get_new_above(ps, bind_list, snum, &port); } while ((ret == -EAGAIN) && idr_pre_get(ps, GFP_KERNEL)); if (ret) goto err1; if (port != snum) { ret = -EADDRNOTAVAIL; goto err2; } bind_list->ps = ps; bind_list->port = (unsigned short) port; cma_bind_port(bind_list, id_priv); return 0; err2: idr_remove(ps, port); err1: kfree(bind_list); return ret; } static int cma_alloc_any_port(struct idr *ps, struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list; int port, ret, low, high; bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); if (!bind_list) return -ENOMEM; retry: /* FIXME: add proper port randomization per like inet_csk_get_port */ do { ret = idr_get_new_above(ps, bind_list, next_port, &port); } while ((ret == -EAGAIN) && idr_pre_get(ps, GFP_KERNEL)); if (ret) goto err1; inet_get_local_port_range(&low, &high); if (port > high) { if (next_port != low) { idr_remove(ps, port); next_port = low; goto retry; } ret = -EADDRNOTAVAIL; goto err2; } if (port == high) next_port = low; else next_port = port + 1; bind_list->ps = ps; bind_list->port = (unsigned short) port; cma_bind_port(bind_list, id_priv); return 0; err2: idr_remove(ps, port); err1: kfree(bind_list); return ret; } static int cma_use_port(struct idr *ps, struct rdma_id_private *id_priv) { struct rdma_id_private *cur_id; struct sockaddr_in *sin, *cur_sin; struct rdma_bind_list *bind_list; struct hlist_node *node; unsigned short snum; sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr; snum = ntohs(sin->sin_port); #ifdef __linux__ if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; #endif bind_list = idr_find(ps, snum); if (!bind_list) return cma_alloc_port(ps, id_priv, snum); /* * We don't support binding to any address if anyone is bound to * a specific address on the same port. */ if (cma_any_addr((struct sockaddr *) &id_priv->id.route.addr.src_addr)) return -EADDRNOTAVAIL; hlist_for_each_entry(cur_id, node, &bind_list->owners, node) { if (cma_any_addr((struct sockaddr *) &cur_id->id.route.addr.src_addr)) return -EADDRNOTAVAIL; cur_sin = (struct sockaddr_in *) &cur_id->id.route.addr.src_addr; if (sin->sin_addr.s_addr == cur_sin->sin_addr.s_addr) return -EADDRINUSE; } cma_bind_port(bind_list, id_priv); return 0; } static int cma_get_tcp_port(struct rdma_id_private *id_priv) { int ret; int size; struct socket *sock; ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret) return ret; #ifdef __linux__ ret = sock->ops->bind(sock, (struct sockaddr *) &id_priv->id.route.addr.src_addr, ip_addr_size((struct sockaddr *) &id_priv->id.route.addr.src_addr)); #else ret = -sobind(sock, (struct sockaddr *)&id_priv->id.route.addr.src_addr, curthread); #endif if (ret) { sock_release(sock); return ret; } size = ip_addr_size((struct sockaddr *) &id_priv->id.route.addr.src_addr); ret = sock_getname(sock, (struct sockaddr *) &id_priv->id.route.addr.src_addr, &size, 0); if (ret) { sock_release(sock); return ret; } id_priv->sock = sock; return 0; } static int cma_get_port(struct rdma_id_private *id_priv) { struct idr *ps; int ret; switch (id_priv->id.ps) { case RDMA_PS_SDP: ps = &sdp_ps; break; case RDMA_PS_TCP: ps = &tcp_ps; if (unify_tcp_port_space) { ret = cma_get_tcp_port(id_priv); if (ret) goto out; } break; case RDMA_PS_UDP: ps = &udp_ps; break; case RDMA_PS_IPOIB: ps = &ipoib_ps; break; default: return -EPROTONOSUPPORT; } mutex_lock(&lock); if (cma_any_port((struct sockaddr *) &id_priv->id.route.addr.src_addr)) ret = cma_alloc_any_port(ps, id_priv); else ret = cma_use_port(ps, id_priv); mutex_unlock(&lock); out: return ret; } static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, struct sockaddr *addr) { #if defined(INET6) struct sockaddr_in6 *sin6; if (addr->sa_family != AF_INET6) return 0; sin6 = (struct sockaddr_in6 *) addr; #ifdef __linux__ if ((ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL) && #else if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) && #endif !sin6->sin6_scope_id) return -EINVAL; dev_addr->bound_dev_if = sin6->sin6_scope_id; #endif return 0; } int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; int ret; if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6) return -EAFNOSUPPORT; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, CMA_IDLE, CMA_ADDR_BOUND)) return -EINVAL; ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); if (ret) goto err1; if (!cma_any_addr(addr)) { ret = rdma_translate_ip(addr, &id->route.addr.dev_addr); if (ret) goto err1; mutex_lock(&lock); ret = cma_acquire_dev(id_priv); mutex_unlock(&lock); if (ret) goto err1; } memcpy(&id->route.addr.src_addr, addr, ip_addr_size(addr)); ret = cma_get_port(id_priv); if (ret) goto err2; return 0; err2: if (id_priv->cma_dev) { mutex_lock(&lock); cma_detach_from_dev(id_priv); mutex_unlock(&lock); } err1: cma_comp_exch(id_priv, CMA_ADDR_BOUND, CMA_IDLE); return ret; } EXPORT_SYMBOL(rdma_bind_addr); static int cma_format_hdr(void *hdr, enum rdma_port_space ps, struct rdma_route *route) { struct cma_hdr *cma_hdr; struct sdp_hh *sdp_hdr; if (route->addr.src_addr.ss_family == AF_INET) { struct sockaddr_in *src4, *dst4; src4 = (struct sockaddr_in *) &route->addr.src_addr; dst4 = (struct sockaddr_in *) &route->addr.dst_addr; switch (ps) { case RDMA_PS_SDP: sdp_hdr = hdr; if (sdp_get_majv(sdp_hdr->sdp_version) != SDP_MAJ_VERSION) return -EINVAL; sdp_set_ip_ver(sdp_hdr, 4); sdp_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; sdp_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; sdp_hdr->port = src4->sin_port; break; default: cma_hdr = hdr; cma_hdr->cma_version = CMA_VERSION; cma_set_ip_ver(cma_hdr, 4); cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; cma_hdr->port = src4->sin_port; break; } } else { struct sockaddr_in6 *src6, *dst6; src6 = (struct sockaddr_in6 *) &route->addr.src_addr; dst6 = (struct sockaddr_in6 *) &route->addr.dst_addr; switch (ps) { case RDMA_PS_SDP: sdp_hdr = hdr; if (sdp_get_majv(sdp_hdr->sdp_version) != SDP_MAJ_VERSION) return -EINVAL; sdp_set_ip_ver(sdp_hdr, 6); sdp_hdr->src_addr.ip6 = src6->sin6_addr; sdp_hdr->dst_addr.ip6 = dst6->sin6_addr; sdp_hdr->port = src6->sin6_port; break; default: cma_hdr = hdr; cma_hdr->cma_version = CMA_VERSION; cma_set_ip_ver(cma_hdr, 6); cma_hdr->src_addr.ip6 = src6->sin6_addr; cma_hdr->dst_addr.ip6 = dst6->sin6_addr; cma_hdr->port = src6->sin6_port; break; } } return 0; } static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd; int ret = 0; if (cma_disable_callback(id_priv, CMA_CONNECT)) return 0; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_SIDR_REQ_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_SIDR_REP_RECEIVED: event.param.ud.private_data = ib_event->private_data; event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; if (rep->status != IB_SIDR_SUCCESS) { event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = ib_event->param.sidr_rep_rcvd.status; break; } ret = cma_set_qkey(id_priv); if (ret) { event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = -EINVAL; break; } if (id_priv->qkey != rep->qkey) { event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -EINVAL; break; } ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num, id_priv->id.route.path_rec, &event.param.ud.ah_attr); event.param.ud.qp_num = rep->qpn; event.param.ud.qkey = rep->qkey; event.event = RDMA_CM_EVENT_ESTABLISHED; event.status = 0; break; default: printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, CMA_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_sidr_req_param req; struct rdma_route *route; int ret; req.private_data_len = sizeof(struct cma_hdr) + conn_param->private_data_len; req.private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!req.private_data) return -ENOMEM; if (conn_param->private_data && conn_param->private_data_len) memcpy((void *) req.private_data + sizeof(struct cma_hdr), conn_param->private_data, conn_param->private_data_len); route = &id_priv->id.route; ret = cma_format_hdr((void *) req.private_data, id_priv->id.ps, route); if (ret) goto out; id_priv->cm_id.ib = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, id_priv); if (IS_ERR(id_priv->cm_id.ib)) { ret = PTR_ERR(id_priv->cm_id.ib); goto out; } req.path = route->path_rec; req.service_id = cma_get_service_id(id_priv->id.ps, (struct sockaddr *) &route->addr.dst_addr); req.timeout_ms = 1 << (cma_response_timeout - 8); req.max_cm_retries = CMA_MAX_CM_RETRIES; ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); if (ret) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } out: kfree(req.private_data); return ret; } static int cma_connect_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_req_param req; struct rdma_route *route; void *private_data; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv->id.ps); req.private_data_len = offset + conn_param->private_data_len; private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; if (conn_param->private_data && conn_param->private_data_len) memcpy(private_data + offset, conn_param->private_data, conn_param->private_data_len); id_priv->cm_id.ib = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); if (IS_ERR(id_priv->cm_id.ib)) { ret = PTR_ERR(id_priv->cm_id.ib); goto out; } route = &id_priv->id.route; ret = cma_format_hdr(private_data, id_priv->id.ps, route); if (ret) goto out; req.private_data = private_data; req.primary_path = &route->path_rec[0]; if (route->num_paths == 2) req.alternate_path = &route->path_rec[1]; req.service_id = cma_get_service_id(id_priv->id.ps, (struct sockaddr *) &route->addr.dst_addr); req.qp_num = id_priv->qp_num; req.qp_type = IB_QPT_RC; req.starting_psn = id_priv->seq_num; req.responder_resources = conn_param->responder_resources; req.initiator_depth = conn_param->initiator_depth; req.flow_control = conn_param->flow_control; req.retry_count = conn_param->retry_count; req.rnr_retry_count = conn_param->rnr_retry_count; req.remote_cm_response_timeout = cma_response_timeout; req.local_cm_response_timeout = cma_response_timeout; req.max_cm_retries = CMA_MAX_CM_RETRIES; req.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_req(id_priv->cm_id.ib, &req); out: if (ret && !IS_ERR(id_priv->cm_id.ib)) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } kfree(private_data); return ret; } static int cma_connect_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_id *cm_id; struct sockaddr_in* sin; int ret; struct iw_cm_conn_param iw_param; cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); if (IS_ERR(cm_id)) { ret = PTR_ERR(cm_id); goto out; } id_priv->cm_id.iw = cm_id; sin = (struct sockaddr_in*) &id_priv->id.route.addr.src_addr; cm_id->local_addr = *sin; sin = (struct sockaddr_in*) &id_priv->id.route.addr.dst_addr; cm_id->remote_addr = *sin; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; if (id_priv->id.qp) iw_param.qpn = id_priv->qp_num; else iw_param.qpn = conn_param->qp_num; ret = iw_cm_connect(cm_id, &iw_param); out: if (ret && !IS_ERR(cm_id)) { iw_destroy_cm_id(cm_id); id_priv->cm_id.iw = NULL; } return ret; } int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, CMA_ROUTE_RESOLVED, CMA_CONNECT)) return -EINVAL; if (!id->qp) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: if (cma_is_ud_ps(id->ps)) ret = cma_resolve_ib_udp(id_priv, conn_param); else ret = cma_connect_ib(id_priv, conn_param); break; case RDMA_TRANSPORT_IWARP: ret = cma_connect_iw(id_priv, conn_param); break; default: ret = -ENOSYS; break; } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, CMA_CONNECT, CMA_ROUTE_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_connect); static int cma_accept_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_rep_param rep; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; ret = cma_modify_qp_rts(id_priv, conn_param); if (ret) goto out; memset(&rep, 0, sizeof rep); rep.qp_num = id_priv->qp_num; rep.starting_psn = id_priv->seq_num; rep.private_data = conn_param->private_data; rep.private_data_len = conn_param->private_data_len; rep.responder_resources = conn_param->responder_resources; rep.initiator_depth = conn_param->initiator_depth; rep.failover_accepted = 0; rep.flow_control = conn_param->flow_control; rep.rnr_retry_count = conn_param->rnr_retry_count; rep.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); out: return ret; } static int cma_accept_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_conn_param iw_param; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) return ret; iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; if (id_priv->id.qp) { iw_param.qpn = id_priv->qp_num; } else iw_param.qpn = conn_param->qp_num; return iw_cm_accept(id_priv->cm_id.iw, &iw_param); } static int cma_send_sidr_rep(struct rdma_id_private *id_priv, enum ib_cm_sidr_status status, const void *private_data, int private_data_len) { struct ib_cm_sidr_rep_param rep; int ret; memset(&rep, 0, sizeof rep); rep.status = status; if (status == IB_SIDR_SUCCESS) { ret = cma_set_qkey(id_priv); if (ret) return ret; rep.qp_num = id_priv->qp_num; rep.qkey = id_priv->qkey; } rep.private_data = private_data; rep.private_data_len = private_data_len; return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); } int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp(id_priv, CMA_CONNECT)) return -EINVAL; if (!id->qp && conn_param) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: if (cma_is_ud_ps(id->ps)) ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, conn_param->private_data, conn_param->private_data_len); else if (conn_param) ret = cma_accept_ib(id_priv, conn_param); else ret = cma_rep_recv(id_priv); break; case RDMA_TRANSPORT_IWARP: ret = cma_accept_iw(id_priv, conn_param); break; default: ret = -ENOSYS; break; } if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); rdma_reject(id, NULL, 0); return ret; } EXPORT_SYMBOL(rdma_accept); int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_has_cm_dev(id_priv)) return -EINVAL; switch (id->device->node_type) { case RDMA_NODE_IB_CA: ret = ib_cm_notify(id_priv->cm_id.ib, event); break; default: ret = 0; break; } return ret; } EXPORT_SYMBOL(rdma_notify); int rdma_reject(struct rdma_cm_id *id, const void *private_data, u8 private_data_len) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_has_cm_dev(id_priv)) return -EINVAL; switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: if (cma_is_ud_ps(id->ps)) ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, private_data, private_data_len); else ret = ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, private_data, private_data_len); break; case RDMA_TRANSPORT_IWARP: ret = iw_cm_reject(id_priv->cm_id.iw, private_data, private_data_len); break; default: ret = -ENOSYS; break; } return ret; } EXPORT_SYMBOL(rdma_reject); int rdma_disconnect(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_has_cm_dev(id_priv)) return -EINVAL; switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: ret = cma_modify_qp_err(id_priv); if (ret) goto out; /* Initiate or respond to a disconnect. */ if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0); break; case RDMA_TRANSPORT_IWARP: ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); break; default: ret = -EINVAL; break; } out: return ret; } EXPORT_SYMBOL(rdma_disconnect); static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) { struct rdma_id_private *id_priv; struct cma_multicast *mc = multicast->context; struct rdma_cm_event event; int ret; id_priv = mc->id_priv; if (cma_disable_callback(id_priv, CMA_ADDR_BOUND) && cma_disable_callback(id_priv, CMA_ADDR_RESOLVED)) return 0; mutex_lock(&id_priv->qp_mutex); if (!status && id_priv->id.qp) status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid, multicast->rec.mlid); mutex_unlock(&id_priv->qp_mutex); memset(&event, 0, sizeof event); event.status = status; event.param.ud.private_data = mc->context; if (!status) { event.event = RDMA_CM_EVENT_MULTICAST_JOIN; ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, &multicast->rec, &event.param.ud.ah_attr); event.param.ud.qp_num = 0xFFFFFF; event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey); } else event.event = RDMA_CM_EVENT_MULTICAST_ERROR; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { cma_exch(id_priv, CMA_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return 0; } mutex_unlock(&id_priv->handler_mutex); return 0; } static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, union ib_gid *mgid) { unsigned char mc_map[MAX_ADDR_LEN]; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct sockaddr_in *sin = (struct sockaddr_in *) addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if ((addr->sa_family == AF_INET6) && ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 0xFF10A01B)) { /* IPv6 address is an SA assigned MGID. */ memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else if ((addr->sa_family == AF_INET6)) { ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } else { ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } } static int cma_join_ib_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct ib_sa_mcmember_rec rec; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; ib_sa_comp_mask comp_mask; int ret; ib_addr_get_mgid(dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (ret) return ret; cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); if (id_priv->id.ps == RDMA_PS_UDP) rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); rdma_addr_get_sgid(dev_addr, &rec.port_gid); rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); rec.join_state = 1; comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | IB_SA_MCMEMBER_REC_FLOW_LABEL | IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; if (id_priv->id.ps == RDMA_PS_IPOIB) comp_mask |= IB_SA_MCMEMBER_REC_RATE | IB_SA_MCMEMBER_REC_RATE_SELECTOR; mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device, id_priv->id.port_num, &rec, comp_mask, GFP_KERNEL, cma_ib_mc_handler, mc); if (IS_ERR(mc->multicast.ib)) return PTR_ERR(mc->multicast.ib); return 0; } static void iboe_mcast_work_handler(struct work_struct *work) { struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work); struct cma_multicast *mc = mw->mc; struct ib_sa_multicast *m = mc->multicast.ib; mc->multicast.ib->context = mc; cma_ib_mc_handler(0, m); kref_put(&mc->mcref, release_mc); kfree(mw); } static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid) { struct sockaddr_in *sin = (struct sockaddr_in *)addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if (addr->sa_family == AF_INET6) memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); else { mgid->raw[0] = 0xff; mgid->raw[1] = 0x0e; mgid->raw[2] = 0; mgid->raw[3] = 0; mgid->raw[4] = 0; mgid->raw[5] = 0; mgid->raw[6] = 0; mgid->raw[7] = 0; mgid->raw[8] = 0; mgid->raw[9] = 0; mgid->raw[10] = 0xff; mgid->raw[11] = 0xff; *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; } } static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct iboe_mcast_work *work; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int err; struct sockaddr *addr = (struct sockaddr *)&mc->addr; struct net_device *ndev = NULL; if (cma_zero_addr((struct sockaddr *)&mc->addr)) return -EINVAL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL); if (!mc->multicast.ib) { err = -ENOMEM; goto out1; } cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid); mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff); if (id_priv->id.ps == RDMA_PS_UDP) mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); if (dev_addr->bound_dev_if) ndev = dev_get_by_index(&init_net, dev_addr->bound_dev_if); if (!ndev) { err = -ENODEV; goto out2; } mc->multicast.ib->rec.rate = iboe_get_rate(ndev); mc->multicast.ib->rec.hop_limit = 1; #ifdef __linux__ mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu); #else mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->if_mtu); #endif dev_put(ndev); if (!mc->multicast.ib->rec.mtu) { err = -EINVAL; goto out2; } iboe_addr_get_sgid(dev_addr, &mc->multicast.ib->rec.port_gid); work->id = id_priv; work->mc = mc; INIT_WORK(&work->work, iboe_mcast_work_handler); kref_get(&mc->mcref); queue_work(cma_wq, &work->work); return 0; out2: kfree(mc->multicast.ib); out1: kfree(work); return err; } int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, void *context) { struct rdma_id_private *id_priv; struct cma_multicast *mc; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp(id_priv, CMA_ADDR_BOUND) && !cma_comp(id_priv, CMA_ADDR_RESOLVED)) return -EINVAL; mc = kmalloc(sizeof *mc, GFP_KERNEL); if (!mc) return -ENOMEM; memcpy(&mc->addr, addr, ip_addr_size(addr)); mc->context = context; mc->id_priv = id_priv; spin_lock(&id_priv->lock); list_add(&mc->list, &id_priv->mc_list); spin_unlock(&id_priv->lock); switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: switch (rdma_port_get_link_layer(id->device, id->port_num)) { case IB_LINK_LAYER_INFINIBAND: ret = cma_join_ib_multicast(id_priv, mc); break; case IB_LINK_LAYER_ETHERNET: kref_init(&mc->mcref); ret = cma_iboe_join_multicast(id_priv, mc); break; default: ret = -EINVAL; } break; default: ret = -ENOSYS; break; } if (ret) { spin_lock_irq(&id_priv->lock); list_del(&mc->list); spin_unlock_irq(&id_priv->lock); kfree(mc); } return ret; } EXPORT_SYMBOL(rdma_join_multicast); void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; struct cma_multicast *mc; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irq(&id_priv->lock); list_for_each_entry(mc, &id_priv->mc_list, list) { if (!memcmp(&mc->addr, addr, ip_addr_size(addr))) { list_del(&mc->list); spin_unlock_irq(&id_priv->lock); if (id->qp) ib_detach_mcast(id->qp, &mc->multicast.ib->rec.mgid, mc->multicast.ib->rec.mlid); if (rdma_node_get_transport(id_priv->cma_dev->device->node_type) == RDMA_TRANSPORT_IB) { switch (rdma_port_get_link_layer(id->device, id->port_num)) { case IB_LINK_LAYER_INFINIBAND: ib_sa_free_multicast(mc->multicast.ib); kfree(mc); break; case IB_LINK_LAYER_ETHERNET: kref_put(&mc->mcref, release_mc); break; default: break; } } return; } } spin_unlock_irq(&id_priv->lock); } EXPORT_SYMBOL(rdma_leave_multicast); static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) { struct rdma_dev_addr *dev_addr; struct cma_ndev_work *work; dev_addr = &id_priv->id.route.addr.dev_addr; #ifdef __linux__ if ((dev_addr->bound_dev_if == ndev->ifindex) && memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { printk(KERN_INFO "RDMA CM addr change for ndev %s used by id %p\n", ndev->name, &id_priv->id); #else if ((dev_addr->bound_dev_if == ndev->if_index) && memcmp(dev_addr->src_dev_addr, IF_LLADDR(ndev), ndev->if_addrlen)) { printk(KERN_INFO "RDMA CM addr change for ndev %s used by id %p\n", ndev->if_xname, &id_priv->id); #endif work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; INIT_WORK(&work->work, cma_ndev_work_handler); work->id = id_priv; work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; atomic_inc(&id_priv->refcount); queue_work(cma_wq, &work->work); } return 0; } static int cma_netdev_callback(struct notifier_block *self, unsigned long event, void *ctx) { struct net_device *ndev = (struct net_device *)ctx; struct cma_device *cma_dev; struct rdma_id_private *id_priv; int ret = NOTIFY_DONE; #ifdef __linux__ if (dev_net(ndev) != &init_net) return NOTIFY_DONE; if (event != NETDEV_BONDING_FAILOVER) return NOTIFY_DONE; if (!(ndev->flags & IFF_MASTER) || !(ndev->priv_flags & IFF_BONDING)) return NOTIFY_DONE; #else if (event != NETDEV_DOWN && event != NETDEV_UNREGISTER) return NOTIFY_DONE; #endif mutex_lock(&lock); list_for_each_entry(cma_dev, &dev_list, list) list_for_each_entry(id_priv, &cma_dev->id_list, list) { ret = cma_netdev_change(ndev, id_priv); if (ret) goto out; } out: mutex_unlock(&lock); return ret; } static struct notifier_block cma_nb = { .notifier_call = cma_netdev_callback }; static void cma_add_one(struct ib_device *device) { struct cma_device *cma_dev; struct rdma_id_private *id_priv; cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); if (!cma_dev) return; cma_dev->device = device; init_completion(&cma_dev->comp); atomic_set(&cma_dev->refcount, 1); INIT_LIST_HEAD(&cma_dev->id_list); ib_set_client_data(device, &cma_client, cma_dev); mutex_lock(&lock); list_add_tail(&cma_dev->list, &dev_list); list_for_each_entry(id_priv, &listen_any_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); } static int cma_remove_id_dev(struct rdma_id_private *id_priv) { struct rdma_cm_event event; enum cma_state state; int ret = 0; /* Record that we want to remove the device */ state = cma_exch(id_priv, CMA_DEVICE_REMOVAL); if (state == CMA_DESTROYING) return 0; cma_cancel_operation(id_priv, state); mutex_lock(&id_priv->handler_mutex); /* Check for destruction from another callback. */ if (!cma_comp(id_priv, CMA_DEVICE_REMOVAL)) goto out; memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_DEVICE_REMOVAL; ret = id_priv->id.event_handler(&id_priv->id, &event); out: mutex_unlock(&id_priv->handler_mutex); return ret; } static void cma_process_remove(struct cma_device *cma_dev) { struct rdma_id_private *id_priv; int ret; mutex_lock(&lock); while (!list_empty(&cma_dev->id_list)) { id_priv = list_entry(cma_dev->id_list.next, struct rdma_id_private, list); list_del(&id_priv->listen_list); list_del_init(&id_priv->list); atomic_inc(&id_priv->refcount); mutex_unlock(&lock); ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv); cma_deref_id(id_priv); if (ret) rdma_destroy_id(&id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); cma_deref_dev(cma_dev); wait_for_completion(&cma_dev->comp); } static void cma_remove_one(struct ib_device *device) { struct cma_device *cma_dev; cma_dev = ib_get_client_data(device, &cma_client); if (!cma_dev) return; mutex_lock(&lock); list_del(&cma_dev->list); mutex_unlock(&lock); cma_process_remove(cma_dev); kfree(cma_dev); } static int cma_init(void) { int ret, low, high, remaining; get_random_bytes(&next_port, sizeof next_port); inet_get_local_port_range(&low, &high); remaining = (high - low) + 1; next_port = ((unsigned int) next_port % remaining) + low; cma_wq = create_singlethread_workqueue("rdma_cm"); if (!cma_wq) return -ENOMEM; ib_sa_register_client(&sa_client); rdma_addr_register_client(&addr_client); register_netdevice_notifier(&cma_nb); ret = ib_register_client(&cma_client); if (ret) goto err; return 0; err: unregister_netdevice_notifier(&cma_nb); rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); return ret; } static void cma_cleanup(void) { ib_unregister_client(&cma_client); unregister_netdevice_notifier(&cma_nb); rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); idr_destroy(&sdp_ps); idr_destroy(&tcp_ps); idr_destroy(&udp_ps); idr_destroy(&ipoib_ps); } module_init(cma_init); module_exit(cma_cleanup);