Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/ppc/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/ppc/@/kern/kern_poll.c |
/*- * Copyright (c) 2001-2002 Luigi Rizzo * * Supported by: the Xorp Project (www.xorp.org) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_poll.c 196267 2009-08-15 23:07:43Z rwatson $"); #include "opt_device_polling.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/proc.h> #include <sys/eventhandler.h> #include <sys/resourcevar.h> #include <sys/socket.h> /* needed by net/if.h */ #include <sys/sockio.h> #include <sys/sysctl.h> #include <sys/syslog.h> #include <net/if.h> /* for IFF_* flags */ #include <net/netisr.h> /* for NETISR_POLL */ #include <net/vnet.h> void hardclock_device_poll(void); /* hook from hardclock */ static struct mtx poll_mtx; /* * Polling support for [network] device drivers. * * Drivers which support this feature can register with the * polling code. * * If registration is successful, the driver must disable interrupts, * and further I/O is performed through the handler, which is invoked * (at least once per clock tick) with 3 arguments: the "arg" passed at * register time (a struct ifnet pointer), a command, and a "count" limit. * * The command can be one of the following: * POLL_ONLY: quick move of "count" packets from input/output queues. * POLL_AND_CHECK_STATUS: as above, plus check status registers or do * other more expensive operations. This command is issued periodically * but less frequently than POLL_ONLY. * * The count limit specifies how much work the handler can do during the * call -- typically this is the number of packets to be received, or * transmitted, etc. (drivers are free to interpret this number, as long * as the max time spent in the function grows roughly linearly with the * count). * * Polling is enabled and disabled via setting IFCAP_POLLING flag on * the interface. The driver ioctl handler should register interface * with polling and disable interrupts, if registration was successful. * * A second variable controls the sharing of CPU between polling/kernel * network processing, and other activities (typically userlevel tasks): * kern.polling.user_frac (between 0 and 100, default 50) sets the share * of CPU allocated to user tasks. CPU is allocated proportionally to the * shares, by dynamically adjusting the "count" (poll_burst). * * Other parameters can should be left to their default values. * The following constraints hold * * 1 <= poll_each_burst <= poll_burst <= poll_burst_max * 0 <= poll_each_burst * MIN_POLL_BURST_MAX <= poll_burst_max <= MAX_POLL_BURST_MAX */ #define MIN_POLL_BURST_MAX 10 #define MAX_POLL_BURST_MAX 1000 static uint32_t poll_burst = 5; static uint32_t poll_burst_max = 150; /* good for 100Mbit net and HZ=1000 */ static uint32_t poll_each_burst = 5; SYSCTL_NODE(_kern, OID_AUTO, polling, CTLFLAG_RW, 0, "Device polling parameters"); SYSCTL_UINT(_kern_polling, OID_AUTO, burst, CTLFLAG_RD, &poll_burst, 0, "Current polling burst size"); static int netisr_poll_scheduled; static int netisr_pollmore_scheduled; static int poll_shutting_down; static int poll_burst_max_sysctl(SYSCTL_HANDLER_ARGS) { uint32_t val = poll_burst_max; int error; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); if (val < MIN_POLL_BURST_MAX || val > MAX_POLL_BURST_MAX) return (EINVAL); mtx_lock(&poll_mtx); poll_burst_max = val; if (poll_burst > poll_burst_max) poll_burst = poll_burst_max; if (poll_each_burst > poll_burst_max) poll_each_burst = MIN_POLL_BURST_MAX; mtx_unlock(&poll_mtx); return (0); } SYSCTL_PROC(_kern_polling, OID_AUTO, burst_max, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(uint32_t), poll_burst_max_sysctl, "I", "Max Polling burst size"); static int poll_each_burst_sysctl(SYSCTL_HANDLER_ARGS) { uint32_t val = poll_each_burst; int error; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); if (val < 1) return (EINVAL); mtx_lock(&poll_mtx); if (val > poll_burst_max) { mtx_unlock(&poll_mtx); return (EINVAL); } poll_each_burst = val; mtx_unlock(&poll_mtx); return (0); } SYSCTL_PROC(_kern_polling, OID_AUTO, each_burst, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(uint32_t), poll_each_burst_sysctl, "I", "Max size of each burst"); static uint32_t poll_in_idle_loop=0; /* do we poll in idle loop ? */ SYSCTL_UINT(_kern_polling, OID_AUTO, idle_poll, CTLFLAG_RW, &poll_in_idle_loop, 0, "Enable device polling in idle loop"); static uint32_t user_frac = 50; static int user_frac_sysctl(SYSCTL_HANDLER_ARGS) { uint32_t val = user_frac; int error; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); if (val < 0 || val > 99) return (EINVAL); mtx_lock(&poll_mtx); user_frac = val; mtx_unlock(&poll_mtx); return (0); } SYSCTL_PROC(_kern_polling, OID_AUTO, user_frac, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(uint32_t), user_frac_sysctl, "I", "Desired user fraction of cpu time"); static uint32_t reg_frac_count = 0; static uint32_t reg_frac = 20 ; static int reg_frac_sysctl(SYSCTL_HANDLER_ARGS) { uint32_t val = reg_frac; int error; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); if (val < 1 || val > hz) return (EINVAL); mtx_lock(&poll_mtx); reg_frac = val; if (reg_frac_count >= reg_frac) reg_frac_count = 0; mtx_unlock(&poll_mtx); return (0); } SYSCTL_PROC(_kern_polling, OID_AUTO, reg_frac, CTLTYPE_UINT | CTLFLAG_RW, 0, sizeof(uint32_t), reg_frac_sysctl, "I", "Every this many cycles check registers"); static uint32_t short_ticks; SYSCTL_UINT(_kern_polling, OID_AUTO, short_ticks, CTLFLAG_RD, &short_ticks, 0, "Hardclock ticks shorter than they should be"); static uint32_t lost_polls; SYSCTL_UINT(_kern_polling, OID_AUTO, lost_polls, CTLFLAG_RD, &lost_polls, 0, "How many times we would have lost a poll tick"); static uint32_t pending_polls; SYSCTL_UINT(_kern_polling, OID_AUTO, pending_polls, CTLFLAG_RD, &pending_polls, 0, "Do we need to poll again"); static int residual_burst = 0; SYSCTL_INT(_kern_polling, OID_AUTO, residual_burst, CTLFLAG_RD, &residual_burst, 0, "# of residual cycles in burst"); static uint32_t poll_handlers; /* next free entry in pr[]. */ SYSCTL_UINT(_kern_polling, OID_AUTO, handlers, CTLFLAG_RD, &poll_handlers, 0, "Number of registered poll handlers"); static uint32_t phase; SYSCTL_UINT(_kern_polling, OID_AUTO, phase, CTLFLAG_RD, &phase, 0, "Polling phase"); static uint32_t suspect; SYSCTL_UINT(_kern_polling, OID_AUTO, suspect, CTLFLAG_RD, &suspect, 0, "suspect event"); static uint32_t stalled; SYSCTL_UINT(_kern_polling, OID_AUTO, stalled, CTLFLAG_RD, &stalled, 0, "potential stalls"); static uint32_t idlepoll_sleeping; /* idlepoll is sleeping */ SYSCTL_UINT(_kern_polling, OID_AUTO, idlepoll_sleeping, CTLFLAG_RD, &idlepoll_sleeping, 0, "idlepoll is sleeping"); #define POLL_LIST_LEN 128 struct pollrec { poll_handler_t *handler; struct ifnet *ifp; }; static struct pollrec pr[POLL_LIST_LEN]; static void poll_shutdown(void *arg, int howto) { poll_shutting_down = 1; } static void init_device_poll(void) { mtx_init(&poll_mtx, "polling", NULL, MTX_DEF); EVENTHANDLER_REGISTER(shutdown_post_sync, poll_shutdown, NULL, SHUTDOWN_PRI_LAST); } SYSINIT(device_poll, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, init_device_poll, NULL); /* * Hook from hardclock. Tries to schedule a netisr, but keeps track * of lost ticks due to the previous handler taking too long. * Normally, this should not happen, because polling handler should * run for a short time. However, in some cases (e.g. when there are * changes in link status etc.) the drivers take a very long time * (even in the order of milliseconds) to reset and reconfigure the * device, causing apparent lost polls. * * The first part of the code is just for debugging purposes, and tries * to count how often hardclock ticks are shorter than they should, * meaning either stray interrupts or delayed events. */ void hardclock_device_poll(void) { static struct timeval prev_t, t; int delta; if (poll_handlers == 0 || poll_shutting_down) return; microuptime(&t); delta = (t.tv_usec - prev_t.tv_usec) + (t.tv_sec - prev_t.tv_sec)*1000000; if (delta * hz < 500000) short_ticks++; else prev_t = t; if (pending_polls > 100) { /* * Too much, assume it has stalled (not always true * see comment above). */ stalled++; pending_polls = 0; phase = 0; } if (phase <= 2) { if (phase != 0) suspect++; phase = 1; netisr_poll_scheduled = 1; netisr_pollmore_scheduled = 1; netisr_sched_poll(); phase = 2; } if (pending_polls++ > 0) lost_polls++; } /* * ether_poll is called from the idle loop. */ static void ether_poll(int count) { int i; mtx_lock(&poll_mtx); if (count > poll_each_burst) count = poll_each_burst; for (i = 0 ; i < poll_handlers ; i++) pr[i].handler(pr[i].ifp, POLL_ONLY, count); mtx_unlock(&poll_mtx); } /* * netisr_pollmore is called after other netisr's, possibly scheduling * another NETISR_POLL call, or adapting the burst size for the next cycle. * * It is very bad to fetch large bursts of packets from a single card at once, * because the burst could take a long time to be completely processed, or * could saturate the intermediate queue (ipintrq or similar) leading to * losses or unfairness. To reduce the problem, and also to account better for * time spent in network-related processing, we split the burst in smaller * chunks of fixed size, giving control to the other netisr's between chunks. * This helps in improving the fairness, reducing livelock (because we * emulate more closely the "process to completion" that we have with * fastforwarding) and accounting for the work performed in low level * handling and forwarding. */ static struct timeval poll_start_t; void netisr_pollmore() { struct timeval t; int kern_load; mtx_lock(&poll_mtx); if (!netisr_pollmore_scheduled) { mtx_unlock(&poll_mtx); return; } netisr_pollmore_scheduled = 0; phase = 5; if (residual_burst > 0) { netisr_poll_scheduled = 1; netisr_pollmore_scheduled = 1; netisr_sched_poll(); mtx_unlock(&poll_mtx); /* will run immediately on return, followed by netisrs */ return; } /* here we can account time spent in netisr's in this tick */ microuptime(&t); kern_load = (t.tv_usec - poll_start_t.tv_usec) + (t.tv_sec - poll_start_t.tv_sec)*1000000; /* us */ kern_load = (kern_load * hz) / 10000; /* 0..100 */ if (kern_load > (100 - user_frac)) { /* try decrease ticks */ if (poll_burst > 1) poll_burst--; } else { if (poll_burst < poll_burst_max) poll_burst++; } pending_polls--; if (pending_polls == 0) /* we are done */ phase = 0; else { /* * Last cycle was long and caused us to miss one or more * hardclock ticks. Restart processing again, but slightly * reduce the burst size to prevent that this happens again. */ poll_burst -= (poll_burst / 8); if (poll_burst < 1) poll_burst = 1; netisr_poll_scheduled = 1; netisr_pollmore_scheduled = 1; netisr_sched_poll(); phase = 6; } mtx_unlock(&poll_mtx); } /* * netisr_poll is typically scheduled once per tick. */ void netisr_poll(void) { int i, cycles; enum poll_cmd arg = POLL_ONLY; mtx_lock(&poll_mtx); if (!netisr_poll_scheduled) { mtx_unlock(&poll_mtx); return; } netisr_poll_scheduled = 0; phase = 3; if (residual_burst == 0) { /* first call in this tick */ microuptime(&poll_start_t); if (++reg_frac_count == reg_frac) { arg = POLL_AND_CHECK_STATUS; reg_frac_count = 0; } residual_burst = poll_burst; } cycles = (residual_burst < poll_each_burst) ? residual_burst : poll_each_burst; residual_burst -= cycles; for (i = 0 ; i < poll_handlers ; i++) pr[i].handler(pr[i].ifp, arg, cycles); phase = 4; mtx_unlock(&poll_mtx); } /* * Try to register routine for polling. Returns 0 if successful * (and polling should be enabled), error code otherwise. * A device is not supposed to register itself multiple times. * * This is called from within the *_ioctl() functions. */ int ether_poll_register(poll_handler_t *h, struct ifnet *ifp) { int i; KASSERT(h != NULL, ("%s: handler is NULL", __func__)); KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__)); mtx_lock(&poll_mtx); if (poll_handlers >= POLL_LIST_LEN) { /* * List full, cannot register more entries. * This should never happen; if it does, it is probably a * broken driver trying to register multiple times. Checking * this at runtime is expensive, and won't solve the problem * anyways, so just report a few times and then give up. */ static int verbose = 10 ; if (verbose >0) { log(LOG_ERR, "poll handlers list full, " "maybe a broken driver ?\n"); verbose--; } mtx_unlock(&poll_mtx); return (ENOMEM); /* no polling for you */ } for (i = 0 ; i < poll_handlers ; i++) if (pr[i].ifp == ifp && pr[i].handler != NULL) { mtx_unlock(&poll_mtx); log(LOG_DEBUG, "ether_poll_register: %s: handler" " already registered\n", ifp->if_xname); return (EEXIST); } pr[poll_handlers].handler = h; pr[poll_handlers].ifp = ifp; poll_handlers++; mtx_unlock(&poll_mtx); if (idlepoll_sleeping) wakeup(&idlepoll_sleeping); return (0); } /* * Remove interface from the polling list. Called from *_ioctl(), too. */ int ether_poll_deregister(struct ifnet *ifp) { int i; KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__)); mtx_lock(&poll_mtx); for (i = 0 ; i < poll_handlers ; i++) if (pr[i].ifp == ifp) /* found it */ break; if (i == poll_handlers) { log(LOG_DEBUG, "ether_poll_deregister: %s: not found!\n", ifp->if_xname); mtx_unlock(&poll_mtx); return (ENOENT); } poll_handlers--; if (i < poll_handlers) { /* Last entry replaces this one. */ pr[i].handler = pr[poll_handlers].handler; pr[i].ifp = pr[poll_handlers].ifp; } mtx_unlock(&poll_mtx); return (0); } static void poll_idle(void) { struct thread *td = curthread; struct rtprio rtp; rtp.prio = RTP_PRIO_MAX; /* lowest priority */ rtp.type = RTP_PRIO_IDLE; PROC_SLOCK(td->td_proc); rtp_to_pri(&rtp, td); PROC_SUNLOCK(td->td_proc); for (;;) { if (poll_in_idle_loop && poll_handlers > 0) { idlepoll_sleeping = 0; ether_poll(poll_each_burst); thread_lock(td); mi_switch(SW_VOL, NULL); thread_unlock(td); } else { idlepoll_sleeping = 1; tsleep(&idlepoll_sleeping, 0, "pollid", hz * 3); } } } static struct proc *idlepoll; static struct kproc_desc idlepoll_kp = { "idlepoll", poll_idle, &idlepoll }; SYSINIT(idlepoll, SI_SUB_KTHREAD_VM, SI_ORDER_ANY, kproc_start, &idlepoll_kp);