Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/random/@/dev/aic7xxx/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/urtw/@/amd64/compile/hs32/modules/usr/src/sys/modules/random/@/dev/aic7xxx/aic79xx_osm.c |
/*- * Bus independent FreeBSD shim for the aic79xx based Adaptec SCSI controllers * * Copyright (c) 1994-2002, 2004 Justin T. Gibbs. * Copyright (c) 2001-2002 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: //depot/aic7xxx/freebsd/dev/aic7xxx/aic79xx_osm.c#35 $ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/aic7xxx/aic79xx_osm.c 237825 2012-06-29 21:33:36Z ken $"); #include <dev/aic7xxx/aic79xx_osm.h> #include <dev/aic7xxx/aic79xx_inline.h> #include <sys/kthread.h> #include "opt_ddb.h" #ifdef DDB #include <ddb/ddb.h> #endif #ifndef AHD_TMODE_ENABLE #define AHD_TMODE_ENABLE 0 #endif #include <dev/aic7xxx/aic_osm_lib.c> #define ccb_scb_ptr spriv_ptr0 #if 0 static void ahd_dump_targcmd(struct target_cmd *cmd); #endif static int ahd_modevent(module_t mod, int type, void *data); static void ahd_action(struct cam_sim *sim, union ccb *ccb); static void ahd_set_tran_settings(struct ahd_softc *ahd, int our_id, char channel, struct ccb_trans_settings *cts); static void ahd_get_tran_settings(struct ahd_softc *ahd, int our_id, char channel, struct ccb_trans_settings *cts); static void ahd_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg); static void ahd_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments, int error); static void ahd_poll(struct cam_sim *sim); static void ahd_setup_data(struct ahd_softc *ahd, struct cam_sim *sim, struct ccb_scsiio *csio, struct scb *scb); static void ahd_abort_ccb(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb); static int ahd_create_path(struct ahd_softc *ahd, char channel, u_int target, u_int lun, struct cam_path **path); static const char *ahd_sysctl_node_elements[] = { "root", "summary", "debug" }; #ifndef NO_SYSCTL_DESCR static const char *ahd_sysctl_node_descriptions[] = { "root error collection for aic79xx controllers", "summary collection for aic79xx controllers", "debug collection for aic79xx controllers" }; #endif static const char *ahd_sysctl_errors_elements[] = { "Cerrors", "Uerrors", "Ferrors" }; #ifndef NO_SYSCTL_DESCR static const char *ahd_sysctl_errors_descriptions[] = { "Correctable errors", "Uncorrectable errors", "Fatal errors" }; #endif static int ahd_set_debugcounters(SYSCTL_HANDLER_ARGS) { struct ahd_softc *sc; int error, tmpv; tmpv = 0; sc = arg1; error = sysctl_handle_int(oidp, &tmpv, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (tmpv < 0 || tmpv >= AHD_ERRORS_NUMBER) return (EINVAL); sc->summerr[arg2] = tmpv; return (0); } static int ahd_clear_allcounters(SYSCTL_HANDLER_ARGS) { struct ahd_softc *sc; int error, tmpv; tmpv = 0; sc = arg1; error = sysctl_handle_int(oidp, &tmpv, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (tmpv != 0) bzero(sc->summerr, sizeof(sc->summerr)); return (0); } static int ahd_create_path(struct ahd_softc *ahd, char channel, u_int target, u_int lun, struct cam_path **path) { path_id_t path_id; path_id = cam_sim_path(ahd->platform_data->sim); return (xpt_create_path(path, /*periph*/NULL, path_id, target, lun)); } void ahd_sysctl(struct ahd_softc *ahd) { u_int i; for (i = 0; i < AHD_SYSCTL_NUMBER; i++) sysctl_ctx_init(&ahd->sysctl_ctx[i]); ahd->sysctl_tree[AHD_SYSCTL_ROOT] = SYSCTL_ADD_NODE(&ahd->sysctl_ctx[AHD_SYSCTL_ROOT], SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_nameunit(ahd->dev_softc), CTLFLAG_RD, 0, ahd_sysctl_node_descriptions[AHD_SYSCTL_ROOT]); SYSCTL_ADD_PROC(&ahd->sysctl_ctx[AHD_SYSCTL_ROOT], SYSCTL_CHILDREN(ahd->sysctl_tree[AHD_SYSCTL_ROOT]), OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW, ahd, 0, ahd_clear_allcounters, "IU", "Clear all counters"); for (i = AHD_SYSCTL_SUMMARY; i < AHD_SYSCTL_NUMBER; i++) ahd->sysctl_tree[i] = SYSCTL_ADD_NODE(&ahd->sysctl_ctx[i], SYSCTL_CHILDREN(ahd->sysctl_tree[AHD_SYSCTL_ROOT]), OID_AUTO, ahd_sysctl_node_elements[i], CTLFLAG_RD, 0, ahd_sysctl_node_descriptions[i]); for (i = AHD_ERRORS_CORRECTABLE; i < AHD_ERRORS_NUMBER; i++) { SYSCTL_ADD_UINT(&ahd->sysctl_ctx[AHD_SYSCTL_SUMMARY], SYSCTL_CHILDREN(ahd->sysctl_tree[AHD_SYSCTL_SUMMARY]), OID_AUTO, ahd_sysctl_errors_elements[i], CTLFLAG_RD, &ahd->summerr[i], i, ahd_sysctl_errors_descriptions[i]); SYSCTL_ADD_PROC(&ahd->sysctl_ctx[AHD_SYSCTL_DEBUG], SYSCTL_CHILDREN(ahd->sysctl_tree[AHD_SYSCTL_DEBUG]), OID_AUTO, ahd_sysctl_errors_elements[i], CTLFLAG_RW | CTLTYPE_UINT, ahd, i, ahd_set_debugcounters, "IU", ahd_sysctl_errors_descriptions[i]); } } int ahd_map_int(struct ahd_softc *ahd) { int error; /* Hook up our interrupt handler */ error = bus_setup_intr(ahd->dev_softc, ahd->platform_data->irq, INTR_TYPE_CAM|INTR_MPSAFE, NULL, ahd_platform_intr, ahd, &ahd->platform_data->ih); if (error != 0) device_printf(ahd->dev_softc, "bus_setup_intr() failed: %d\n", error); return (error); } /* * Attach all the sub-devices we can find */ int ahd_attach(struct ahd_softc *ahd) { char ahd_info[256]; struct ccb_setasync csa; struct cam_devq *devq; struct cam_sim *sim; struct cam_path *path; int count; count = 0; devq = NULL; sim = NULL; /* * Create a thread to perform all recovery. */ if (ahd_spawn_recovery_thread(ahd) != 0) goto fail; ahd_controller_info(ahd, ahd_info); printf("%s\n", ahd_info); ahd_lock(ahd); /* * Create the device queue for our SIM(s). */ devq = cam_simq_alloc(AHD_MAX_QUEUE); if (devq == NULL) goto fail; /* * Construct our SIM entry */ sim = cam_sim_alloc(ahd_action, ahd_poll, "ahd", ahd, device_get_unit(ahd->dev_softc), &ahd->platform_data->mtx, 1, /*XXX*/256, devq); if (sim == NULL) { cam_simq_free(devq); goto fail; } if (xpt_bus_register(sim, ahd->dev_softc, /*bus_id*/0) != CAM_SUCCESS) { cam_sim_free(sim, /*free_devq*/TRUE); sim = NULL; goto fail; } if (xpt_create_path(&path, /*periph*/NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, /*free_devq*/TRUE); sim = NULL; goto fail; } xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = ahd_async; csa.callback_arg = sim; xpt_action((union ccb *)&csa); count++; fail: ahd->platform_data->sim = sim; ahd->platform_data->path = path; ahd_unlock(ahd); if (count != 0) { /* We have to wait until after any system dumps... */ ahd->platform_data->eh = EVENTHANDLER_REGISTER(shutdown_final, ahd_shutdown, ahd, SHUTDOWN_PRI_DEFAULT); ahd_intr_enable(ahd, TRUE); } return (count); } /* * Catch an interrupt from the adapter */ void ahd_platform_intr(void *arg) { struct ahd_softc *ahd; ahd = (struct ahd_softc *)arg; ahd_lock(ahd); ahd_intr(ahd); ahd_unlock(ahd); } /* * We have an scb which has been processed by the * adaptor, now we look to see how the operation * went. */ void ahd_done(struct ahd_softc *ahd, struct scb *scb) { union ccb *ccb; CAM_DEBUG(scb->io_ctx->ccb_h.path, CAM_DEBUG_TRACE, ("ahd_done - scb %d\n", SCB_GET_TAG(scb))); ccb = scb->io_ctx; LIST_REMOVE(scb, pending_links); if ((scb->flags & SCB_TIMEDOUT) != 0) LIST_REMOVE(scb, timedout_links); callout_stop(&scb->io_timer); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmasync_op_t op; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_POSTREAD; else op = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(ahd->buffer_dmat, scb->dmamap, op); bus_dmamap_unload(ahd->buffer_dmat, scb->dmamap); } #ifdef AHD_TARGET_MODE if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { struct cam_path *ccb_path; /* * If we have finally disconnected, clean up our * pending device state. * XXX - There may be error states that cause where * we will remain connected. */ ccb_path = ccb->ccb_h.path; if (ahd->pending_device != NULL && xpt_path_comp(ahd->pending_device->path, ccb_path) == 0) { if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) { ahd->pending_device = NULL; } else { xpt_print_path(ccb->ccb_h.path); printf("Still disconnected\n"); ahd_freeze_ccb(ccb); } } if (aic_get_transaction_status(scb) == CAM_REQ_INPROG) ccb->ccb_h.status |= CAM_REQ_CMP; ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ahd_free_scb(ahd, scb); xpt_done(ccb); return; } #endif if ((scb->flags & SCB_RECOVERY_SCB) != 0) { struct scb *list_scb; ahd->scb_data.recovery_scbs--; if (aic_get_transaction_status(scb) == CAM_BDR_SENT || aic_get_transaction_status(scb) == CAM_REQ_ABORTED) aic_set_transaction_status(scb, CAM_CMD_TIMEOUT); if (ahd->scb_data.recovery_scbs == 0) { /* * All recovery actions have completed successfully, * so reinstate the timeouts for all other pending * commands. */ LIST_FOREACH(list_scb, &ahd->pending_scbs, pending_links) { aic_scb_timer_reset(list_scb, aic_get_timeout(scb)); } ahd_print_path(ahd, scb); printf("no longer in timeout, status = %x\n", ccb->ccb_h.status); } } /* Don't clobber any existing error state */ if (aic_get_transaction_status(scb) == CAM_REQ_INPROG) { ccb->ccb_h.status |= CAM_REQ_CMP; } else if ((scb->flags & SCB_SENSE) != 0) { /* * We performed autosense retrieval. * * Zero any sense not transferred by the * device. The SCSI spec mandates that any * untransfered data should be assumed to be * zero. Complete the 'bounce' of sense information * through buffers accessible via bus-space by * copying it into the clients csio. */ memset(&ccb->csio.sense_data, 0, sizeof(ccb->csio.sense_data)); memcpy(&ccb->csio.sense_data, ahd_get_sense_buf(ahd, scb), /* XXX What size do we want to use??? */ sizeof(ccb->csio.sense_data) - ccb->csio.sense_resid); scb->io_ctx->ccb_h.status |= CAM_AUTOSNS_VALID; } else if ((scb->flags & SCB_PKT_SENSE) != 0) { struct scsi_status_iu_header *siu; u_int sense_len; /* * Copy only the sense data into the provided buffer. */ siu = (struct scsi_status_iu_header *)scb->sense_data; sense_len = MIN(scsi_4btoul(siu->sense_length), sizeof(ccb->csio.sense_data)); memset(&ccb->csio.sense_data, 0, sizeof(ccb->csio.sense_data)); memcpy(&ccb->csio.sense_data, ahd_get_sense_buf(ahd, scb) + SIU_SENSE_OFFSET(siu), sense_len); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_SENSE) != 0) { uint8_t *sense_data = (uint8_t *)&ccb->csio.sense_data; u_int i; printf("Copied %d bytes of sense data offset %d:", sense_len, SIU_SENSE_OFFSET(siu)); for (i = 0; i < sense_len; i++) printf(" 0x%x", *sense_data++); printf("\n"); } #endif scb->io_ctx->ccb_h.status |= CAM_AUTOSNS_VALID; } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ahd_free_scb(ahd, scb); xpt_done(ccb); } static void ahd_action(struct cam_sim *sim, union ccb *ccb) { struct ahd_softc *ahd; #ifdef AHD_TARGET_MODE struct ahd_tmode_lstate *lstate; #endif u_int target_id; u_int our_id; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahd_action\n")); ahd = (struct ahd_softc *)cam_sim_softc(sim); target_id = ccb->ccb_h.target_id; our_id = SIM_SCSI_ID(ahd, sim); switch (ccb->ccb_h.func_code) { /* Common cases first */ #ifdef AHD_TARGET_MODE case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ case XPT_CONT_TARGET_IO:/* Continue Host Target I/O Connection*/ { struct ahd_tmode_tstate *tstate; cam_status status; status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate, TRUE); if (status != CAM_REQ_CMP) { if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { /* Response from the black hole device */ tstate = NULL; lstate = ahd->black_hole; } else { ccb->ccb_h.status = status; xpt_done(ccb); break; } } if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) { SLIST_INSERT_HEAD(&lstate->accept_tios, &ccb->ccb_h, sim_links.sle); ccb->ccb_h.status = CAM_REQ_INPROG; if ((ahd->flags & AHD_TQINFIFO_BLOCKED) != 0) ahd_run_tqinfifo(ahd, /*paused*/FALSE); break; } /* * The target_id represents the target we attempt to * select. In target mode, this is the initiator of * the original command. */ our_id = target_id; target_id = ccb->csio.init_id; /* FALLTHROUGH */ } #endif case XPT_SCSI_IO: /* Execute the requested I/O operation */ case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ { struct scb *scb; struct hardware_scb *hscb; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int col_idx; if ((ahd->flags & AHD_INITIATORROLE) == 0 && (ccb->ccb_h.func_code == XPT_SCSI_IO || ccb->ccb_h.func_code == XPT_RESET_DEV)) { ccb->ccb_h.status = CAM_PROVIDE_FAIL; xpt_done(ccb); return; } /* * get an scb to use. */ tinfo = ahd_fetch_transinfo(ahd, 'A', our_id, target_id, &tstate); if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) == 0 || (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0 || ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { col_idx = AHD_NEVER_COL_IDX; } else { col_idx = AHD_BUILD_COL_IDX(target_id, ccb->ccb_h.target_lun); } if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) { xpt_freeze_simq(sim, /*count*/1); ahd->flags |= AHD_RESOURCE_SHORTAGE; ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); return; } hscb = scb->hscb; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_SUBTRACE, ("start scb(%p)\n", scb)); scb->io_ctx = ccb; /* * So we can find the SCB when an abort is requested */ ccb->ccb_h.ccb_scb_ptr = scb; /* * Put all the arguments for the xfer in the scb */ hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahd, sim, target_id, our_id); hscb->lun = ccb->ccb_h.target_lun; if (ccb->ccb_h.func_code == XPT_RESET_DEV) { hscb->cdb_len = 0; scb->flags |= SCB_DEVICE_RESET; hscb->control |= MK_MESSAGE; hscb->task_management = SIU_TASKMGMT_LUN_RESET; ahd_execute_scb(scb, NULL, 0, 0); } else { #ifdef AHD_TARGET_MODE if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { struct target_data *tdata; tdata = &hscb->shared_data.tdata; if (ahd->pending_device == lstate) scb->flags |= SCB_TARGET_IMMEDIATE; hscb->control |= TARGET_SCB; tdata->target_phases = 0; if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) { tdata->target_phases |= SPHASE_PENDING; tdata->scsi_status = ccb->csio.scsi_status; } if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) tdata->target_phases |= NO_DISCONNECT; tdata->initiator_tag = ahd_htole16(ccb->csio.tag_id); } #endif hscb->task_management = 0; if (ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) hscb->control |= ccb->csio.tag_action; ahd_setup_data(ahd, sim, &ccb->csio, scb); } break; } #ifdef AHD_TARGET_MODE case XPT_NOTIFY_ACKNOWLEDGE: case XPT_IMMEDIATE_NOTIFY: { struct ahd_tmode_tstate *tstate; struct ahd_tmode_lstate *lstate; cam_status status; status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate, TRUE); if (status != CAM_REQ_CMP) { ccb->ccb_h.status = status; xpt_done(ccb); break; } SLIST_INSERT_HEAD(&lstate->immed_notifies, &ccb->ccb_h, sim_links.sle); ccb->ccb_h.status = CAM_REQ_INPROG; ahd_send_lstate_events(ahd, lstate); break; } case XPT_EN_LUN: /* Enable LUN as a target */ ahd_handle_en_lun(ahd, sim, ccb); xpt_done(ccb); break; #endif case XPT_ABORT: /* Abort the specified CCB */ { ahd_abort_ccb(ahd, sim, ccb); break; } case XPT_SET_TRAN_SETTINGS: { ahd_set_tran_settings(ahd, SIM_SCSI_ID(ahd, sim), SIM_CHANNEL(ahd, sim), &ccb->cts); xpt_done(ccb); break; } case XPT_GET_TRAN_SETTINGS: /* Get default/user set transfer settings for the target */ { ahd_get_tran_settings(ahd, SIM_SCSI_ID(ahd, sim), SIM_CHANNEL(ahd, sim), &ccb->cts); xpt_done(ccb); break; } case XPT_CALC_GEOMETRY: { aic_calc_geometry(&ccb->ccg, ahd->flags & AHD_EXTENDED_TRANS_A); xpt_done(ccb); break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ { int found; found = ahd_reset_channel(ahd, SIM_CHANNEL(ahd, sim), /*initiate reset*/TRUE); if (bootverbose) { xpt_print_path(SIM_PATH(ahd, sim)); printf("SCSI bus reset delivered. " "%d SCBs aborted.\n", found); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE; if ((ahd->features & AHD_WIDE) != 0) cpi->hba_inquiry |= PI_WIDE_16; if ((ahd->features & AHD_TARGETMODE) != 0) { cpi->target_sprt = PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO; } else { cpi->target_sprt = 0; } cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = (ahd->features & AHD_WIDE) ? 15 : 7; cpi->max_lun = AHD_NUM_LUNS_NONPKT - 1; cpi->initiator_id = ahd->our_id; if ((ahd->flags & AHD_RESET_BUS_A) == 0) { cpi->hba_misc |= PIM_NOBUSRESET; } cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; cpi->transport = XPORT_SPI; cpi->transport_version = 4; cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_DT_ST | SID_SPI_IUS | SID_SPI_QAS; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_PROVIDE_FAIL; xpt_done(ccb); break; } } static void ahd_set_tran_settings(struct ahd_softc *ahd, int our_id, char channel, struct ccb_trans_settings *cts) { struct ahd_devinfo devinfo; struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; uint16_t *discenable; uint16_t *tagenable; u_int update_type; scsi = &cts->proto_specific.scsi; spi = &cts->xport_specific.spi; ahd_compile_devinfo(&devinfo, SIM_SCSI_ID(ahd, sim), cts->ccb_h.target_id, cts->ccb_h.target_lun, SIM_CHANNEL(ahd, sim), ROLE_UNKNOWN); tinfo = ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); update_type = 0; if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { update_type |= AHD_TRANS_GOAL; discenable = &tstate->discenable; tagenable = &tstate->tagenable; tinfo->curr.protocol_version = cts->protocol_version; tinfo->curr.transport_version = cts->transport_version; tinfo->goal.protocol_version = cts->protocol_version; tinfo->goal.transport_version = cts->transport_version; } else if (cts->type == CTS_TYPE_USER_SETTINGS) { update_type |= AHD_TRANS_USER; discenable = &ahd->user_discenable; tagenable = &ahd->user_tagenable; tinfo->user.protocol_version = cts->protocol_version; tinfo->user.transport_version = cts->transport_version; } else { cts->ccb_h.status = CAM_REQ_INVALID; return; } if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) *discenable |= devinfo.target_mask; else *discenable &= ~devinfo.target_mask; } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) *tagenable |= devinfo.target_mask; else *tagenable &= ~devinfo.target_mask; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { ahd_validate_width(ahd, /*tinfo limit*/NULL, &spi->bus_width, ROLE_UNKNOWN); ahd_set_width(ahd, &devinfo, spi->bus_width, update_type, /*paused*/FALSE); } if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) { if (update_type == AHD_TRANS_USER) spi->ppr_options = tinfo->user.ppr_options; else spi->ppr_options = tinfo->goal.ppr_options; } if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) { if (update_type == AHD_TRANS_USER) spi->sync_offset = tinfo->user.offset; else spi->sync_offset = tinfo->goal.offset; } if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { if (update_type == AHD_TRANS_USER) spi->sync_period = tinfo->user.period; else spi->sync_period = tinfo->goal.period; } if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) { u_int maxsync; maxsync = AHD_SYNCRATE_MAX; if (spi->bus_width != MSG_EXT_WDTR_BUS_16_BIT) spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; if ((*discenable & devinfo.target_mask) == 0) spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; ahd_find_syncrate(ahd, &spi->sync_period, &spi->ppr_options, maxsync); ahd_validate_offset(ahd, /*tinfo limit*/NULL, spi->sync_period, &spi->sync_offset, spi->bus_width, ROLE_UNKNOWN); /* We use a period of 0 to represent async */ if (spi->sync_offset == 0) { spi->sync_period = 0; spi->ppr_options = 0; } ahd_set_syncrate(ahd, &devinfo, spi->sync_period, spi->sync_offset, spi->ppr_options, update_type, /*paused*/FALSE); } cts->ccb_h.status = CAM_REQ_CMP; } static void ahd_get_tran_settings(struct ahd_softc *ahd, int our_id, char channel, struct ccb_trans_settings *cts) { struct ahd_devinfo devinfo; struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; struct ahd_initiator_tinfo *targ_info; struct ahd_tmode_tstate *tstate; struct ahd_transinfo *tinfo; scsi = &cts->proto_specific.scsi; spi = &cts->xport_specific.spi; ahd_compile_devinfo(&devinfo, our_id, cts->ccb_h.target_id, cts->ccb_h.target_lun, channel, ROLE_UNKNOWN); targ_info = ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); if (cts->type == CTS_TYPE_CURRENT_SETTINGS) tinfo = &targ_info->curr; else tinfo = &targ_info->user; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; if (cts->type == CTS_TYPE_USER_SETTINGS) { if ((ahd->user_discenable & devinfo.target_mask) != 0) spi->flags |= CTS_SPI_FLAGS_DISC_ENB; if ((ahd->user_tagenable & devinfo.target_mask) != 0) scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } else { if ((tstate->discenable & devinfo.target_mask) != 0) spi->flags |= CTS_SPI_FLAGS_DISC_ENB; if ((tstate->tagenable & devinfo.target_mask) != 0) scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } cts->protocol_version = tinfo->protocol_version; cts->transport_version = tinfo->transport_version; spi->sync_period = tinfo->period; spi->sync_offset = tinfo->offset; spi->bus_width = tinfo->width; spi->ppr_options = tinfo->ppr_options; cts->protocol = PROTO_SCSI; cts->transport = XPORT_SPI; spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET | CTS_SPI_VALID_BUS_WIDTH | CTS_SPI_VALID_PPR_OPTIONS; if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) { scsi->valid = CTS_SCSI_VALID_TQ; spi->valid |= CTS_SPI_VALID_DISC; } else { scsi->valid = 0; } cts->ccb_h.status = CAM_REQ_CMP; } static void ahd_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg) { struct ahd_softc *ahd; struct cam_sim *sim; sim = (struct cam_sim *)callback_arg; ahd = (struct ahd_softc *)cam_sim_softc(sim); switch (code) { case AC_LOST_DEVICE: { struct ahd_devinfo devinfo; ahd_compile_devinfo(&devinfo, SIM_SCSI_ID(ahd, sim), xpt_path_target_id(path), xpt_path_lun_id(path), SIM_CHANNEL(ahd, sim), ROLE_UNKNOWN); /* * Revert to async/narrow transfers * for the next device. */ ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_GOAL|AHD_TRANS_CUR, /*paused*/FALSE); ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_GOAL|AHD_TRANS_CUR, /*paused*/FALSE); break; } default: break; } } static void ahd_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments, int error) { struct scb *scb; union ccb *ccb; struct ahd_softc *ahd; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int mask; scb = (struct scb *)arg; ccb = scb->io_ctx; ahd = scb->ahd_softc; if (error != 0) { if (error == EFBIG) aic_set_transaction_status(scb, CAM_REQ_TOO_BIG); else aic_set_transaction_status(scb, CAM_REQ_CMP_ERR); if (nsegments != 0) bus_dmamap_unload(ahd->buffer_dmat, scb->dmamap); ahd_free_scb(ahd, scb); xpt_done(ccb); return; } scb->sg_count = 0; if (nsegments != 0) { void *sg; bus_dmasync_op_t op; u_int i; /* Copy the segments into our SG list */ for (i = nsegments, sg = scb->sg_list; i > 0; i--) { sg = ahd_sg_setup(ahd, scb, sg, dm_segs->ds_addr, dm_segs->ds_len, /*last*/i == 1); dm_segs++; } if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; bus_dmamap_sync(ahd->buffer_dmat, scb->dmamap, op); if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) { struct target_data *tdata; tdata = &scb->hscb->shared_data.tdata; tdata->target_phases |= DPHASE_PENDING; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) tdata->data_phase = P_DATAOUT; else tdata->data_phase = P_DATAIN; } } /* * Last time we need to check if this SCB needs to * be aborted. */ if (aic_get_transaction_status(scb) != CAM_REQ_INPROG) { if (nsegments != 0) bus_dmamap_unload(ahd->buffer_dmat, scb->dmamap); ahd_free_scb(ahd, scb); xpt_done(ccb); return; } tinfo = ahd_fetch_transinfo(ahd, SCSIID_CHANNEL(ahd, scb->hscb->scsiid), SCSIID_OUR_ID(scb->hscb->scsiid), SCSIID_TARGET(ahd, scb->hscb->scsiid), &tstate); mask = SCB_GET_TARGET_MASK(ahd, scb); if ((tstate->discenable & mask) != 0 && (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0) scb->hscb->control |= DISCENB; if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { scb->flags |= SCB_PACKETIZED; if (scb->hscb->task_management != 0) scb->hscb->control &= ~MK_MESSAGE; } if ((ccb->ccb_h.flags & CAM_NEGOTIATE) != 0 && (tinfo->goal.width != 0 || tinfo->goal.period != 0 || tinfo->goal.ppr_options != 0)) { scb->flags |= SCB_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } else if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links); ccb->ccb_h.status |= CAM_SIM_QUEUED; aic_scb_timer_start(scb); if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) { /* Define a mapping from our tag to the SCB. */ ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb; ahd_pause(ahd); ahd_set_scbptr(ahd, SCB_GET_TAG(scb)); ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); ahd_unpause(ahd); } else { ahd_queue_scb(ahd, scb); } } static void ahd_poll(struct cam_sim *sim) { ahd_intr(cam_sim_softc(sim)); } static void ahd_setup_data(struct ahd_softc *ahd, struct cam_sim *sim, struct ccb_scsiio *csio, struct scb *scb) { struct hardware_scb *hscb; struct ccb_hdr *ccb_h; hscb = scb->hscb; ccb_h = &csio->ccb_h; csio->resid = 0; csio->sense_resid = 0; if (ccb_h->func_code == XPT_SCSI_IO) { hscb->cdb_len = csio->cdb_len; if ((ccb_h->flags & CAM_CDB_POINTER) != 0) { if (hscb->cdb_len > MAX_CDB_LEN && (ccb_h->flags & CAM_CDB_PHYS) == 0) { /* * Should CAM start to support CDB sizes * greater than 16 bytes, we could use * the sense buffer to store the CDB. */ aic_set_transaction_status(scb, CAM_REQ_INVALID); ahd_free_scb(ahd, scb); xpt_done((union ccb *)csio); return; } if ((ccb_h->flags & CAM_CDB_PHYS) != 0) { hscb->shared_data.idata.cdb_from_host.cdbptr = aic_htole64((uintptr_t)csio->cdb_io.cdb_ptr); hscb->shared_data.idata.cdb_from_host.cdblen = csio->cdb_len; hscb->cdb_len |= SCB_CDB_LEN_PTR; } else { memcpy(hscb->shared_data.idata.cdb, csio->cdb_io.cdb_ptr, hscb->cdb_len); } } else { if (hscb->cdb_len > MAX_CDB_LEN) { aic_set_transaction_status(scb, CAM_REQ_INVALID); ahd_free_scb(ahd, scb); xpt_done((union ccb *)csio); return; } memcpy(hscb->shared_data.idata.cdb, csio->cdb_io.cdb_bytes, hscb->cdb_len); } } /* Only use S/G if there is a transfer */ if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) { /* We've been given a pointer to a single buffer */ if ((ccb_h->flags & CAM_DATA_PHYS) == 0) { int s; int error; s = splsoftvm(); error = bus_dmamap_load(ahd->buffer_dmat, scb->dmamap, csio->data_ptr, csio->dxfer_len, ahd_execute_scb, scb, /*flags*/0); if (error == EINPROGRESS) { /* * So as to maintain ordering, * freeze the controller queue * until our mapping is * returned. */ xpt_freeze_simq(sim, /*count*/1); scb->io_ctx->ccb_h.status |= CAM_RELEASE_SIMQ; } splx(s); } else { struct bus_dma_segment seg; /* Pointer to physical buffer */ if (csio->dxfer_len > AHD_MAXTRANSFER_SIZE) panic("ahd_setup_data - Transfer size " "larger than can device max"); seg.ds_addr = (bus_addr_t)(vm_offset_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; ahd_execute_scb(scb, &seg, 1, 0); } } else { struct bus_dma_segment *segs; if ((ccb_h->flags & CAM_DATA_PHYS) != 0) panic("ahd_setup_data - Physical segment " "pointers unsupported"); if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0) panic("ahd_setup_data - Virtual segment " "addresses unsupported"); /* Just use the segments provided */ segs = (struct bus_dma_segment *)csio->data_ptr; ahd_execute_scb(scb, segs, csio->sglist_cnt, 0); } } else { ahd_execute_scb(scb, NULL, 0, 0); } } static void ahd_abort_ccb(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb) { union ccb *abort_ccb; abort_ccb = ccb->cab.abort_ccb; switch (abort_ccb->ccb_h.func_code) { #ifdef AHD_TARGET_MODE case XPT_ACCEPT_TARGET_IO: case XPT_IMMEDIATE_NOTIFY: case XPT_CONT_TARGET_IO: { struct ahd_tmode_tstate *tstate; struct ahd_tmode_lstate *lstate; struct ccb_hdr_slist *list; cam_status status; status = ahd_find_tmode_devs(ahd, sim, abort_ccb, &tstate, &lstate, TRUE); if (status != CAM_REQ_CMP) { ccb->ccb_h.status = status; break; } if (abort_ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) list = &lstate->accept_tios; else if (abort_ccb->ccb_h.func_code == XPT_IMMEDIATE_NOTIFY) list = &lstate->immed_notifies; else list = NULL; if (list != NULL) { struct ccb_hdr *curelm; int found; curelm = SLIST_FIRST(list); found = 0; if (curelm == &abort_ccb->ccb_h) { found = 1; SLIST_REMOVE_HEAD(list, sim_links.sle); } else { while(curelm != NULL) { struct ccb_hdr *nextelm; nextelm = SLIST_NEXT(curelm, sim_links.sle); if (nextelm == &abort_ccb->ccb_h) { found = 1; SLIST_NEXT(curelm, sim_links.sle) = SLIST_NEXT(nextelm, sim_links.sle); break; } curelm = nextelm; } } if (found) { abort_ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(abort_ccb); ccb->ccb_h.status = CAM_REQ_CMP; } else { xpt_print_path(abort_ccb->ccb_h.path); printf("Not found\n"); ccb->ccb_h.status = CAM_PATH_INVALID; } break; } /* FALLTHROUGH */ } #endif case XPT_SCSI_IO: /* XXX Fully implement the hard ones */ ccb->ccb_h.status = CAM_UA_ABORT; break; default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); } void ahd_send_async(struct ahd_softc *ahd, char channel, u_int target, u_int lun, ac_code code, void *opt_arg) { struct ccb_trans_settings cts; struct cam_path *path; void *arg; int error; arg = NULL; error = ahd_create_path(ahd, channel, target, lun, &path); if (error != CAM_REQ_CMP) return; switch (code) { case AC_TRANSFER_NEG: { struct ccb_trans_settings_scsi *scsi; cts.type = CTS_TYPE_CURRENT_SETTINGS; scsi = &cts.proto_specific.scsi; cts.ccb_h.path = path; cts.ccb_h.target_id = target; cts.ccb_h.target_lun = lun; ahd_get_tran_settings(ahd, ahd->our_id, channel, &cts); arg = &cts; scsi->valid &= ~CTS_SCSI_VALID_TQ; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; if (opt_arg == NULL) break; if (*((ahd_queue_alg *)opt_arg) == AHD_QUEUE_TAGGED) scsi->flags |= ~CTS_SCSI_FLAGS_TAG_ENB; scsi->valid |= CTS_SCSI_VALID_TQ; break; } case AC_SENT_BDR: case AC_BUS_RESET: break; default: panic("ahd_send_async: Unexpected async event"); } xpt_async(code, path, arg); xpt_free_path(path); } void ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, int enable) { } int ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg) { ahd->platform_data = malloc(sizeof(struct ahd_platform_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ahd->platform_data == NULL) return (ENOMEM); return (0); } void ahd_platform_free(struct ahd_softc *ahd) { struct ahd_platform_data *pdata; pdata = ahd->platform_data; if (pdata != NULL) { if (pdata->regs[0] != NULL) bus_release_resource(ahd->dev_softc, pdata->regs_res_type[0], pdata->regs_res_id[0], pdata->regs[0]); if (pdata->regs[1] != NULL) bus_release_resource(ahd->dev_softc, pdata->regs_res_type[1], pdata->regs_res_id[1], pdata->regs[1]); if (pdata->irq != NULL) bus_release_resource(ahd->dev_softc, pdata->irq_res_type, 0, pdata->irq); if (pdata->sim != NULL) { xpt_async(AC_LOST_DEVICE, pdata->path, NULL); xpt_free_path(pdata->path); xpt_bus_deregister(cam_sim_path(pdata->sim)); cam_sim_free(pdata->sim, /*free_devq*/TRUE); } if (pdata->eh != NULL) EVENTHANDLER_DEREGISTER(shutdown_final, pdata->eh); free(ahd->platform_data, M_DEVBUF); } } int ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd) { /* We don't sort softcs under FreeBSD so report equal always */ return (0); } int ahd_detach(device_t dev) { struct ahd_softc *ahd; device_printf(dev, "detaching device\n"); ahd = device_get_softc(dev); ahd_lock(ahd); TAILQ_REMOVE(&ahd_tailq, ahd, links); ahd_intr_enable(ahd, FALSE); bus_teardown_intr(dev, ahd->platform_data->irq, ahd->platform_data->ih); ahd_unlock(ahd); ahd_free(ahd); return (0); } #if 0 static void ahd_dump_targcmd(struct target_cmd *cmd) { uint8_t *byte; uint8_t *last_byte; int i; byte = &cmd->initiator_channel; /* Debugging info for received commands */ last_byte = &cmd[1].initiator_channel; i = 0; while (byte < last_byte) { if (i == 0) printf("\t"); printf("%#x", *byte++); i++; if (i == 8) { printf("\n"); i = 0; } else { printf(", "); } } } #endif static int ahd_modevent(module_t mod, int type, void *data) { /* XXX Deal with busy status on unload. */ /* XXX Deal with unknown events */ return 0; } static moduledata_t ahd_mod = { "ahd", ahd_modevent, NULL }; /********************************** DDB Hooks *********************************/ #ifdef DDB static struct ahd_softc *ahd_ddb_softc; static int ahd_ddb_paused; static int ahd_ddb_paused_on_entry; DB_COMMAND(ahd_sunit, ahd_ddb_sunit) { struct ahd_softc *list_ahd; ahd_ddb_softc = NULL; TAILQ_FOREACH(list_ahd, &ahd_tailq, links) { if (list_ahd->unit == addr) ahd_ddb_softc = list_ahd; } if (ahd_ddb_softc == NULL) db_error("No matching softc found!\n"); } DB_COMMAND(ahd_pause, ahd_ddb_pause) { if (ahd_ddb_softc == NULL) { db_error("Must set unit with ahd_sunit first!\n"); return; } if (ahd_ddb_paused == 0) { ahd_ddb_paused++; if (ahd_is_paused(ahd_ddb_softc)) { ahd_ddb_paused_on_entry++; return; } ahd_pause(ahd_ddb_softc); } } DB_COMMAND(ahd_unpause, ahd_ddb_unpause) { if (ahd_ddb_softc == NULL) { db_error("Must set unit with ahd_sunit first!\n"); return; } if (ahd_ddb_paused != 0) { ahd_ddb_paused = 0; if (ahd_ddb_paused_on_entry) return; ahd_unpause(ahd_ddb_softc); } else if (ahd_ddb_paused_on_entry != 0) { /* Two unpauses to clear a paused on entry. */ ahd_ddb_paused_on_entry = 0; ahd_unpause(ahd_ddb_softc); } } DB_COMMAND(ahd_in, ahd_ddb_in) { int c; int size; if (ahd_ddb_softc == NULL) { db_error("Must set unit with ahd_sunit first!\n"); return; } if (have_addr == 0) return; size = 1; while ((c = *modif++) != '\0') { switch (c) { case 'b': size = 1; break; case 'w': size = 2; break; case 'l': size = 4; break; } } if (count <= 0) count = 1; while (--count >= 0) { db_printf("%04lx (M)%x: \t", (u_long)addr, ahd_inb(ahd_ddb_softc, MODE_PTR)); switch (size) { case 1: db_printf("%02x\n", ahd_inb(ahd_ddb_softc, addr)); break; case 2: db_printf("%04x\n", ahd_inw(ahd_ddb_softc, addr)); break; case 4: db_printf("%08x\n", ahd_inl(ahd_ddb_softc, addr)); break; } } } DB_FUNC(ahd_out, ahd_ddb_out, db_cmd_table, CS_MORE, NULL) { db_expr_t old_value; db_expr_t new_value; int size; if (ahd_ddb_softc == NULL) { db_error("Must set unit with ahd_sunit first!\n"); return; } switch (modif[0]) { case '\0': case 'b': size = 1; break; case 'h': size = 2; break; case 'l': size = 4; break; default: db_error("Unknown size\n"); return; } while (db_expression(&new_value)) { switch (size) { default: case 1: old_value = ahd_inb(ahd_ddb_softc, addr); ahd_outb(ahd_ddb_softc, addr, new_value); break; case 2: old_value = ahd_inw(ahd_ddb_softc, addr); ahd_outw(ahd_ddb_softc, addr, new_value); break; case 4: old_value = ahd_inl(ahd_ddb_softc, addr); ahd_outl(ahd_ddb_softc, addr, new_value); break; } db_printf("%04lx (M)%x: \t0x%lx\t=\t0x%lx", (u_long)addr, ahd_inb(ahd_ddb_softc, MODE_PTR), (u_long)old_value, (u_long)new_value); addr += size; } db_skip_to_eol(); } DB_COMMAND(ahd_dump, ahd_ddb_dump) { if (ahd_ddb_softc == NULL) { db_error("Must set unit with ahd_sunit first!\n"); return; } ahd_dump_card_state(ahd_ddb_softc); } #endif DECLARE_MODULE(ahd, ahd_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE); MODULE_DEPEND(ahd, cam, 1, 1, 1); MODULE_VERSION(ahd, 1);