Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/ath/ath_hal/ar5212/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/ath/ath_hal/ar5212/ar5212_xmit.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5212/ar5212_xmit.c 223459 2011-06-23 02:38:36Z adrian $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ar5212/ar5212.h" #include "ar5212/ar5212reg.h" #include "ar5212/ar5212desc.h" #include "ar5212/ar5212phy.h" #ifdef AH_SUPPORT_5311 #include "ar5212/ar5311reg.h" #endif #ifdef AH_NEED_DESC_SWAP static void ar5212SwapTxDesc(struct ath_desc *ds); #endif /* * Update Tx FIFO trigger level. * * Set bIncTrigLevel to TRUE to increase the trigger level. * Set bIncTrigLevel to FALSE to decrease the trigger level. * * Returns TRUE if the trigger level was updated */ HAL_BOOL ar5212UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel) { struct ath_hal_5212 *ahp = AH5212(ah); uint32_t txcfg, curLevel, newLevel; HAL_INT omask; if (ahp->ah_txTrigLev >= ahp->ah_maxTxTrigLev) return AH_FALSE; /* * Disable interrupts while futzing with the fifo level. */ omask = ath_hal_setInterrupts(ah, ahp->ah_maskReg &~ HAL_INT_GLOBAL); txcfg = OS_REG_READ(ah, AR_TXCFG); curLevel = MS(txcfg, AR_FTRIG); newLevel = curLevel; if (bIncTrigLevel) { /* increase the trigger level */ if (curLevel < ahp->ah_maxTxTrigLev) newLevel++; } else if (curLevel > MIN_TX_FIFO_THRESHOLD) newLevel--; if (newLevel != curLevel) /* Update the trigger level */ OS_REG_WRITE(ah, AR_TXCFG, (txcfg &~ AR_FTRIG) | SM(newLevel, AR_FTRIG)); ahp->ah_txTrigLev = newLevel; /* re-enable chip interrupts */ ath_hal_setInterrupts(ah, omask); return (newLevel != curLevel); } /* * Set the properties of the tx queue with the parameters * from qInfo. */ HAL_BOOL ar5212SetTxQueueProps(struct ath_hal *ah, int q, const HAL_TXQ_INFO *qInfo) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; if (q >= pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], qInfo); } /* * Return the properties for the specified tx queue. */ HAL_BOOL ar5212GetTxQueueProps(struct ath_hal *ah, int q, HAL_TXQ_INFO *qInfo) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; if (q >= pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } return ath_hal_getTxQProps(ah, qInfo, &ahp->ah_txq[q]); } /* * Allocate and initialize a tx DCU/QCU combination. */ int ar5212SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type, const HAL_TXQ_INFO *qInfo) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_TX_QUEUE_INFO *qi; HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; int q, defqflags; /* by default enable OK+ERR+DESC+URN interrupts */ defqflags = HAL_TXQ_TXOKINT_ENABLE | HAL_TXQ_TXERRINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE | HAL_TXQ_TXURNINT_ENABLE; /* XXX move queue assignment to driver */ switch (type) { case HAL_TX_QUEUE_BEACON: q = pCap->halTotalQueues-1; /* highest priority */ defqflags |= HAL_TXQ_DBA_GATED | HAL_TXQ_CBR_DIS_QEMPTY | HAL_TXQ_ARB_LOCKOUT_GLOBAL | HAL_TXQ_BACKOFF_DISABLE; break; case HAL_TX_QUEUE_CAB: q = pCap->halTotalQueues-2; /* next highest priority */ defqflags |= HAL_TXQ_DBA_GATED | HAL_TXQ_CBR_DIS_QEMPTY | HAL_TXQ_CBR_DIS_BEMPTY | HAL_TXQ_ARB_LOCKOUT_GLOBAL | HAL_TXQ_BACKOFF_DISABLE; break; case HAL_TX_QUEUE_UAPSD: q = pCap->halTotalQueues-3; /* nextest highest priority */ if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no available UAPSD tx queue\n", __func__); return -1; } break; case HAL_TX_QUEUE_DATA: for (q = 0; q < pCap->halTotalQueues; q++) if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) break; if (q == pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no available tx queue\n", __func__); return -1; } break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad tx queue type %u\n", __func__, type); return -1; } HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); qi = &ahp->ah_txq[q]; if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n", __func__, q); return -1; } OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); qi->tqi_type = type; if (qInfo == AH_NULL) { qi->tqi_qflags = defqflags; qi->tqi_aifs = INIT_AIFS; qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ qi->tqi_cwmax = INIT_CWMAX; qi->tqi_shretry = INIT_SH_RETRY; qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_physCompBuf = 0; } else { qi->tqi_physCompBuf = qInfo->tqi_compBuf; (void) ar5212SetTxQueueProps(ah, q, qInfo); } /* NB: must be followed by ar5212ResetTxQueue */ return q; } /* * Update the h/w interrupt registers to reflect a tx q's configuration. */ static void setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) { struct ath_hal_5212 *ahp = AH5212(ah); HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask); OS_REG_WRITE(ah, AR_IMR_S0, SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC) ); OS_REG_WRITE(ah, AR_IMR_S1, SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL) ); OS_REG_RMW_FIELD(ah, AR_IMR_S2, AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); } /* * Free a tx DCU/QCU combination. */ HAL_BOOL ar5212ReleaseTxQueue(struct ath_hal *ah, u_int q) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; HAL_TX_QUEUE_INFO *qi; if (q >= pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", __func__, q); return AH_FALSE; } HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: release queue %u\n", __func__, q); qi->tqi_type = HAL_TX_QUEUE_INACTIVE; ahp->ah_txOkInterruptMask &= ~(1 << q); ahp->ah_txErrInterruptMask &= ~(1 << q); ahp->ah_txDescInterruptMask &= ~(1 << q); ahp->ah_txEolInterruptMask &= ~(1 << q); ahp->ah_txUrnInterruptMask &= ~(1 << q); setTxQInterrupts(ah, qi); return AH_TRUE; } /* * Set the retry, aifs, cwmin/max, readyTime regs for specified queue * Assumes: * phwChannel has been set to point to the current channel */ HAL_BOOL ar5212ResetTxQueue(struct ath_hal *ah, u_int q) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; HAL_TX_QUEUE_INFO *qi; uint32_t cwMin, chanCwMin, value, qmisc, dmisc; if (q >= pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", __func__, q); return AH_TRUE; /* XXX??? */ } HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q); if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { /* * Select cwmin according to channel type. * NB: chan can be NULL during attach */ if (chan && IEEE80211_IS_CHAN_B(chan)) chanCwMin = INIT_CWMIN_11B; else chanCwMin = INIT_CWMIN; /* make sure that the CWmin is of the form (2^n - 1) */ for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1) ; } else cwMin = qi->tqi_cwmin; /* set cwMin/Max and AIFS values */ OS_REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); /* Set retry limit values */ OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH) ); /* NB: always enable early termination on the QCU */ qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP); /* NB: always enable DCU to wait for next fragment from QCU */ dmisc = AR_D_MISC_FRAG_WAIT_EN; #ifdef AH_SUPPORT_5311 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { /* Configure DCU to use the global sequence count */ dmisc |= AR5311_D_MISC_SEQ_NUM_CONTROL; } #endif /* multiqueue support */ if (qi->tqi_cbrPeriod) { OS_REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH)); qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR; if (qi->tqi_cbrOverflowLimit) qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT; } if (qi->tqi_readyTime) { OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | AR_Q_RDYTIMECFG_ENA); } OS_REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_readyTime && (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY; if (qi->tqi_qflags & HAL_TXQ_DBA_GATED) qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED; if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) { /* * These are meangingful only when not scheduled asap. */ if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY) qmisc |= AR_Q_MISC_CBR_INCR_DIS0; else qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0; if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY) qmisc |= AR_Q_MISC_CBR_INCR_DIS1; else qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1; } if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) dmisc |= AR_D_MISC_FRAG_BKOFF_EN; if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL) dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL); else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA) dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR, AR_D_MISC_ARB_LOCKOUT_CNTRL); if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL) dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE, AR_D_MISC_VIR_COL_HANDLING); if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS) dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS; /* * Fillin type-dependent bits. Most of this can be * removed by specifying the queue parameters in the * driver; it's here for backwards compatibility. */ switch (qi->tqi_type) { case HAL_TX_QUEUE_BEACON: /* beacon frames */ qmisc |= AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1; dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS; break; case HAL_TX_QUEUE_CAB: /* CAB frames */ /* * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, * There is an issue with the CAB Queue * not properly refreshing the Tx descriptor if * the TXE clear setting is used. */ qmisc |= AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0; if (!qi->tqi_readyTime) { /* * NB: don't set default ready time if driver * has explicitly specified something. This is * here solely for backwards compatibility. */ value = (ahp->ah_beaconInterval - (ah->ah_config.ah_sw_beacon_response_time - ah->ah_config.ah_dma_beacon_response_time) - ah->ah_config.ah_additional_swba_backoff) * 1024; OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_ENA); } dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL); break; default: /* NB: silence compiler */ break; } OS_REG_WRITE(ah, AR_QMISC(q), qmisc); OS_REG_WRITE(ah, AR_DMISC(q), dmisc); /* Setup compression scratchpad buffer */ /* * XXX: calling this asynchronously to queue operation can * cause unexpected behavior!!! */ if (qi->tqi_physCompBuf) { HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA || qi->tqi_type == HAL_TX_QUEUE_UAPSD); OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q)); OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf); OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024); OS_REG_WRITE(ah, AR_Q0_MISC + 4*q, OS_REG_READ(ah, AR_Q0_MISC + 4*q) | AR_Q_MISC_QCU_COMP_EN); } /* * Always update the secondary interrupt mask registers - this * could be a new queue getting enabled in a running system or * hw getting re-initialized during a reset! * * Since we don't differentiate between tx interrupts corresponding * to individual queues - secondary tx mask regs are always unmasked; * tx interrupts are enabled/disabled for all queues collectively * using the primary mask reg */ if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) ahp->ah_txOkInterruptMask |= 1 << q; else ahp->ah_txOkInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) ahp->ah_txErrInterruptMask |= 1 << q; else ahp->ah_txErrInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE) ahp->ah_txDescInterruptMask |= 1 << q; else ahp->ah_txDescInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) ahp->ah_txEolInterruptMask |= 1 << q; else ahp->ah_txEolInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) ahp->ah_txUrnInterruptMask |= 1 << q; else ahp->ah_txUrnInterruptMask &= ~(1 << q); setTxQInterrupts(ah, qi); return AH_TRUE; } /* * Get the TXDP for the specified queue */ uint32_t ar5212GetTxDP(struct ath_hal *ah, u_int q) { HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); return OS_REG_READ(ah, AR_QTXDP(q)); } /* * Set the TxDP for the specified queue */ HAL_BOOL ar5212SetTxDP(struct ath_hal *ah, u_int q, uint32_t txdp) { HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); /* * Make sure that TXE is deasserted before setting the TXDP. If TXE * is still asserted, setting TXDP will have no effect. */ HALASSERT((OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) == 0); OS_REG_WRITE(ah, AR_QTXDP(q), txdp); return AH_TRUE; } /* * Set Transmit Enable bits for the specified queue */ HAL_BOOL ar5212StartTxDma(struct ath_hal *ah, u_int q) { HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); /* Check to be sure we're not enabling a q that has its TXD bit set. */ HALASSERT((OS_REG_READ(ah, AR_Q_TXD) & (1 << q)) == 0); OS_REG_WRITE(ah, AR_Q_TXE, 1 << q); return AH_TRUE; } /* * Return the number of pending frames or 0 if the specified * queue is stopped. */ uint32_t ar5212NumTxPending(struct ath_hal *ah, u_int q) { uint32_t npend; HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT; if (npend == 0) { /* * Pending frame count (PFC) can momentarily go to zero * while TXE remains asserted. In other words a PFC of * zero is not sufficient to say that the queue has stopped. */ if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) npend = 1; /* arbitrarily return 1 */ } return npend; } /* * Stop transmit on the specified queue */ HAL_BOOL ar5212StopTxDma(struct ath_hal *ah, u_int q) { u_int i; u_int wait; HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); for (i = 1000; i != 0; i--) { if (ar5212NumTxPending(ah, q) == 0) break; OS_DELAY(100); /* XXX get actual value */ } #ifdef AH_DEBUG if (i == 0) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: queue %u DMA did not stop in 100 msec\n", __func__, q); HALDEBUG(ah, HAL_DEBUG_ANY, "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", __func__, OS_REG_READ(ah, AR_QMISC(q)), OS_REG_READ(ah, AR_QRDYTIMECFG(q)), OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); } #endif /* AH_DEBUG */ /* 2413+ and up can kill packets at the PCU level */ if (ar5212NumTxPending(ah, q) && (IS_2413(ah) || IS_5413(ah) || IS_2425(ah) || IS_2417(ah))) { uint32_t tsfLow, j; HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: Num of pending TX Frames %d on Q %d\n", __func__, ar5212NumTxPending(ah, q), q); /* Kill last PCU Tx Frame */ /* TODO - save off and restore current values of Q1/Q2? */ for (j = 0; j < 2; j++) { tsfLow = OS_REG_READ(ah, AR_TSF_L32); OS_REG_WRITE(ah, AR_QUIET2, SM(100, AR_QUIET2_QUIET_PER) | SM(10, AR_QUIET2_QUIET_DUR)); OS_REG_WRITE(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE | SM(tsfLow >> 10, AR_QUIET1_NEXT_QUIET)); if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) { break; } HALDEBUG(ah, HAL_DEBUG_ANY, "%s: TSF moved while trying to set quiet time " "TSF: 0x%08x\n", __func__, tsfLow); HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */ } OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); /* Allow the quiet mechanism to do its work */ OS_DELAY(200); OS_REG_CLR_BIT(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE); /* Give at least 1 millisec more to wait */ wait = 100; /* Verify all transmit is dead */ while (ar5212NumTxPending(ah, q)) { if ((--wait) == 0) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Failed to stop Tx DMA in %d msec after killing last frame\n", __func__, wait); break; } OS_DELAY(10); } OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); } OS_REG_WRITE(ah, AR_Q_TXD, 0); return (i != 0); } /* * Descriptor Access Functions */ #define VALID_PKT_TYPES \ ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\ (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\ (1<<HAL_PKT_TYPE_BEACON)) #define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES) #define VALID_TX_RATES \ ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\ (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\ (1<<0x1d)|(1<<0x18)|(1<<0x1c)) #define isValidTxRate(_r) ((1<<(_r)) & VALID_TX_RATES) HAL_BOOL ar5212SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds, u_int pktLen, u_int hdrLen, HAL_PKT_TYPE type, u_int txPower, u_int txRate0, u_int txTries0, u_int keyIx, u_int antMode, u_int flags, u_int rtsctsRate, u_int rtsctsDuration, u_int compicvLen, u_int compivLen, u_int comp) { #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) struct ar5212_desc *ads = AR5212DESC(ds); struct ath_hal_5212 *ahp = AH5212(ah); (void) hdrLen; HALASSERT(txTries0 != 0); HALASSERT(isValidPktType(type)); HALASSERT(isValidTxRate(txRate0)); HALASSERT((flags & RTSCTS) != RTSCTS); /* XXX validate antMode */ txPower = (txPower + ahp->ah_txPowerIndexOffset ); if(txPower > 63) txPower=63; ads->ds_ctl0 = (pktLen & AR_FrameLen) | (txPower << AR_XmitPower_S) | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) | (flags & HAL_TXDESC_CLRDMASK ? AR_ClearDestMask : 0) | SM(antMode, AR_AntModeXmit) | (flags & HAL_TXDESC_INTREQ ? AR_TxInterReq : 0) ; ads->ds_ctl1 = (type << AR_FrmType_S) | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0) | (comp << AR_CompProc_S) | (compicvLen << AR_CompICVLen_S) | (compivLen << AR_CompIVLen_S) ; ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0) | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEna : 0) ; ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S) ; if (keyIx != HAL_TXKEYIX_INVALID) { /* XXX validate key index */ ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); ads->ds_ctl0 |= AR_DestIdxValid; } if (flags & RTSCTS) { if (!isValidTxRate(rtsctsRate)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid rts/cts rate 0x%x\n", __func__, rtsctsRate); return AH_FALSE; } /* XXX validate rtsctsDuration */ ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) | (flags & HAL_TXDESC_RTSENA ? AR_RTSCTSEnable : 0) ; ads->ds_ctl2 |= SM(rtsctsDuration, AR_RTSCTSDuration); ads->ds_ctl3 |= (rtsctsRate << AR_RTSCTSRate_S); } return AH_TRUE; #undef RTSCTS } HAL_BOOL ar5212SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds, u_int txRate1, u_int txTries1, u_int txRate2, u_int txTries2, u_int txRate3, u_int txTries3) { struct ar5212_desc *ads = AR5212DESC(ds); if (txTries1) { HALASSERT(isValidTxRate(txRate1)); ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1) | AR_DurUpdateEna ; ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S); } if (txTries2) { HALASSERT(isValidTxRate(txRate2)); ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2) | AR_DurUpdateEna ; ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S); } if (txTries3) { HALASSERT(isValidTxRate(txRate3)); ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3) | AR_DurUpdateEna ; ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S); } return AH_TRUE; } void ar5212IntrReqTxDesc(struct ath_hal *ah, struct ath_desc *ds) { struct ar5212_desc *ads = AR5212DESC(ds); #ifdef AH_NEED_DESC_SWAP ads->ds_ctl0 |= __bswap32(AR_TxInterReq); #else ads->ds_ctl0 |= AR_TxInterReq; #endif } HAL_BOOL ar5212FillTxDesc(struct ath_hal *ah, struct ath_desc *ds, u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg, const struct ath_desc *ds0) { struct ar5212_desc *ads = AR5212DESC(ds); HALASSERT((segLen &~ AR_BufLen) == 0); if (firstSeg) { /* * First descriptor, don't clobber xmit control data * setup by ar5212SetupTxDesc. */ ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_More); } else if (lastSeg) { /* !firstSeg && lastSeg */ /* * Last descriptor in a multi-descriptor frame, * copy the multi-rate transmit parameters from * the first frame for processing on completion. */ ads->ds_ctl0 = 0; ads->ds_ctl1 = segLen; #ifdef AH_NEED_DESC_SWAP ads->ds_ctl2 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl2); ads->ds_ctl3 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl3); #else ads->ds_ctl2 = AR5212DESC_CONST(ds0)->ds_ctl2; ads->ds_ctl3 = AR5212DESC_CONST(ds0)->ds_ctl3; #endif } else { /* !firstSeg && !lastSeg */ /* * Intermediate descriptor in a multi-descriptor frame. */ ads->ds_ctl0 = 0; ads->ds_ctl1 = segLen | AR_More; ads->ds_ctl2 = 0; ads->ds_ctl3 = 0; } ads->ds_txstatus0 = ads->ds_txstatus1 = 0; return AH_TRUE; } #ifdef AH_NEED_DESC_SWAP /* Swap transmit descriptor */ static __inline void ar5212SwapTxDesc(struct ath_desc *ds) { ds->ds_data = __bswap32(ds->ds_data); ds->ds_ctl0 = __bswap32(ds->ds_ctl0); ds->ds_ctl1 = __bswap32(ds->ds_ctl1); ds->ds_hw[0] = __bswap32(ds->ds_hw[0]); ds->ds_hw[1] = __bswap32(ds->ds_hw[1]); ds->ds_hw[2] = __bswap32(ds->ds_hw[2]); ds->ds_hw[3] = __bswap32(ds->ds_hw[3]); } #endif /* * Processing of HW TX descriptor. */ HAL_STATUS ar5212ProcTxDesc(struct ath_hal *ah, struct ath_desc *ds, struct ath_tx_status *ts) { struct ar5212_desc *ads = AR5212DESC(ds); #ifdef AH_NEED_DESC_SWAP if ((ads->ds_txstatus1 & __bswap32(AR_Done)) == 0) return HAL_EINPROGRESS; ar5212SwapTxDesc(ds); #else if ((ads->ds_txstatus1 & AR_Done) == 0) return HAL_EINPROGRESS; #endif /* Update software copies of the HW status */ ts->ts_seqnum = MS(ads->ds_txstatus1, AR_SeqNum); ts->ts_tstamp = MS(ads->ds_txstatus0, AR_SendTimestamp); ts->ts_status = 0; if ((ads->ds_txstatus0 & AR_FrmXmitOK) == 0) { if (ads->ds_txstatus0 & AR_ExcessiveRetries) ts->ts_status |= HAL_TXERR_XRETRY; if (ads->ds_txstatus0 & AR_Filtered) ts->ts_status |= HAL_TXERR_FILT; if (ads->ds_txstatus0 & AR_FIFOUnderrun) ts->ts_status |= HAL_TXERR_FIFO; } /* * Extract the transmit rate used and mark the rate as * ``alternate'' if it wasn't the series 0 rate. */ ts->ts_finaltsi = MS(ads->ds_txstatus1, AR_FinalTSIndex); switch (ts->ts_finaltsi) { case 0: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0); break; case 1: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1); break; case 2: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2); break; case 3: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3); break; } ts->ts_rssi = MS(ads->ds_txstatus1, AR_AckSigStrength); ts->ts_shortretry = MS(ads->ds_txstatus0, AR_RTSFailCnt); ts->ts_longretry = MS(ads->ds_txstatus0, AR_DataFailCnt); /* * The retry count has the number of un-acked tries for the * final series used. When doing multi-rate retry we must * fixup the retry count by adding in the try counts for * each series that was fully-processed. Beware that this * takes values from the try counts in the final descriptor. * These are not required by the hardware. We assume they * are placed there by the driver as otherwise we have no * access and the driver can't do the calculation because it * doesn't know the descriptor format. */ switch (ts->ts_finaltsi) { case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2); case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1); case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0); } ts->ts_virtcol = MS(ads->ds_txstatus0, AR_VirtCollCnt); ts->ts_antenna = (ads->ds_txstatus1 & AR_XmitAtenna ? 2 : 1); return HAL_OK; } /* * Determine which tx queues need interrupt servicing. */ void ar5212GetTxIntrQueue(struct ath_hal *ah, uint32_t *txqs) { struct ath_hal_5212 *ahp = AH5212(ah); *txqs &= ahp->ah_intrTxqs; ahp->ah_intrTxqs &= ~(*txqs); } /* * Retrieve the rate table from the given TX completion descriptor */ HAL_BOOL ar5212GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries) { const struct ar5212_desc *ads = AR5212DESC_CONST(ds0); rates[0] = MS(ads->ds_ctl3, AR_XmitRate0); rates[1] = MS(ads->ds_ctl3, AR_XmitRate1); rates[2] = MS(ads->ds_ctl3, AR_XmitRate2); rates[3] = MS(ads->ds_ctl3, AR_XmitRate3); tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0); tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1); tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2); tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3); return AH_TRUE; }