Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/usb/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/usb/usb_device.c |
/* $FreeBSD: release/9.1.0/sys/dev/usb/usb_device.c 236895 2012-06-11 17:18:31Z hselasky $ */ /*- * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/stdint.h> #include <sys/stddef.h> #include <sys/param.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/bus.h> #include <sys/module.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/condvar.h> #include <sys/sysctl.h> #include <sys/sx.h> #include <sys/unistd.h> #include <sys/callout.h> #include <sys/malloc.h> #include <sys/priv.h> #include <sys/conf.h> #include <sys/fcntl.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdi_util.h> #include <dev/usb/usb_ioctl.h> #if USB_HAVE_UGEN #include <sys/sbuf.h> #endif #include "usbdevs.h" #define USB_DEBUG_VAR usb_debug #include <dev/usb/usb_core.h> #include <dev/usb/usb_debug.h> #include <dev/usb/usb_process.h> #include <dev/usb/usb_device.h> #include <dev/usb/usb_busdma.h> #include <dev/usb/usb_transfer.h> #include <dev/usb/usb_request.h> #include <dev/usb/usb_dynamic.h> #include <dev/usb/usb_hub.h> #include <dev/usb/usb_util.h> #include <dev/usb/usb_msctest.h> #if USB_HAVE_UGEN #include <dev/usb/usb_dev.h> #include <dev/usb/usb_generic.h> #endif #include <dev/usb/quirk/usb_quirk.h> #include <dev/usb/usb_controller.h> #include <dev/usb/usb_bus.h> /* function prototypes */ static void usb_init_endpoint(struct usb_device *, uint8_t, struct usb_endpoint_descriptor *, struct usb_endpoint_ss_comp_descriptor *, struct usb_endpoint *); static void usb_unconfigure(struct usb_device *, uint8_t); static void usb_detach_device_sub(struct usb_device *, device_t *, char **, uint8_t); static uint8_t usb_probe_and_attach_sub(struct usb_device *, struct usb_attach_arg *); static void usb_init_attach_arg(struct usb_device *, struct usb_attach_arg *); static void usb_suspend_resume_sub(struct usb_device *, device_t, uint8_t); static void usbd_clear_stall_proc(struct usb_proc_msg *_pm); static usb_error_t usb_config_parse(struct usb_device *, uint8_t, uint8_t); static void usbd_set_device_strings(struct usb_device *); #if USB_HAVE_DEVCTL static void usb_notify_addq(const char *type, struct usb_device *); #endif #if USB_HAVE_UGEN static void usb_fifo_free_wrap(struct usb_device *, uint8_t, uint8_t); static void usb_cdev_create(struct usb_device *); static void usb_cdev_free(struct usb_device *); #endif /* This variable is global to allow easy access to it: */ int usb_template = 0; TUNABLE_INT("hw.usb.usb_template", &usb_template); SYSCTL_INT(_hw_usb, OID_AUTO, template, CTLFLAG_RW, &usb_template, 0, "Selected USB device side template"); /* English is default language */ static int usb_lang_id = 0x0009; static int usb_lang_mask = 0x00FF; TUNABLE_INT("hw.usb.usb_lang_id", &usb_lang_id); SYSCTL_INT(_hw_usb, OID_AUTO, usb_lang_id, CTLFLAG_RW, &usb_lang_id, 0, "Preferred USB language ID"); TUNABLE_INT("hw.usb.usb_lang_mask", &usb_lang_mask); SYSCTL_INT(_hw_usb, OID_AUTO, usb_lang_mask, CTLFLAG_RW, &usb_lang_mask, 0, "Preferred USB language mask"); static const char* statestr[USB_STATE_MAX] = { [USB_STATE_DETACHED] = "DETACHED", [USB_STATE_ATTACHED] = "ATTACHED", [USB_STATE_POWERED] = "POWERED", [USB_STATE_ADDRESSED] = "ADDRESSED", [USB_STATE_CONFIGURED] = "CONFIGURED", }; const char * usb_statestr(enum usb_dev_state state) { return ((state < USB_STATE_MAX) ? statestr[state] : "UNKNOWN"); } const char * usb_get_manufacturer(struct usb_device *udev) { return (udev->manufacturer ? udev->manufacturer : "Unknown"); } const char * usb_get_product(struct usb_device *udev) { return (udev->product ? udev->product : ""); } const char * usb_get_serial(struct usb_device *udev) { return (udev->serial ? udev->serial : ""); } /*------------------------------------------------------------------------* * usbd_get_ep_by_addr * * This function searches for an USB ep by endpoint address and * direction. * * Returns: * NULL: Failure * Else: Success *------------------------------------------------------------------------*/ struct usb_endpoint * usbd_get_ep_by_addr(struct usb_device *udev, uint8_t ea_val) { struct usb_endpoint *ep = udev->endpoints; struct usb_endpoint *ep_end = udev->endpoints + udev->endpoints_max; enum { EA_MASK = (UE_DIR_IN | UE_DIR_OUT | UE_ADDR), }; /* * According to the USB specification not all bits are used * for the endpoint address. Keep defined bits only: */ ea_val &= EA_MASK; /* * Iterate accross all the USB endpoints searching for a match * based on the endpoint address: */ for (; ep != ep_end; ep++) { if (ep->edesc == NULL) { continue; } /* do the mask and check the value */ if ((ep->edesc->bEndpointAddress & EA_MASK) == ea_val) { goto found; } } /* * The default endpoint is always present and is checked separately: */ if ((udev->ctrl_ep.edesc) && ((udev->ctrl_ep.edesc->bEndpointAddress & EA_MASK) == ea_val)) { ep = &udev->ctrl_ep; goto found; } return (NULL); found: return (ep); } /*------------------------------------------------------------------------* * usbd_get_endpoint * * This function searches for an USB endpoint based on the information * given by the passed "struct usb_config" pointer. * * Return values: * NULL: No match. * Else: Pointer to "struct usb_endpoint". *------------------------------------------------------------------------*/ struct usb_endpoint * usbd_get_endpoint(struct usb_device *udev, uint8_t iface_index, const struct usb_config *setup) { struct usb_endpoint *ep = udev->endpoints; struct usb_endpoint *ep_end = udev->endpoints + udev->endpoints_max; uint8_t index = setup->ep_index; uint8_t ea_mask; uint8_t ea_val; uint8_t type_mask; uint8_t type_val; DPRINTFN(10, "udev=%p iface_index=%d address=0x%x " "type=0x%x dir=0x%x index=%d\n", udev, iface_index, setup->endpoint, setup->type, setup->direction, setup->ep_index); /* check USB mode */ if (setup->usb_mode != USB_MODE_DUAL && udev->flags.usb_mode != setup->usb_mode) { /* wrong mode - no endpoint */ return (NULL); } /* setup expected endpoint direction mask and value */ if (setup->direction == UE_DIR_RX) { ea_mask = (UE_DIR_IN | UE_DIR_OUT); ea_val = (udev->flags.usb_mode == USB_MODE_DEVICE) ? UE_DIR_OUT : UE_DIR_IN; } else if (setup->direction == UE_DIR_TX) { ea_mask = (UE_DIR_IN | UE_DIR_OUT); ea_val = (udev->flags.usb_mode == USB_MODE_DEVICE) ? UE_DIR_IN : UE_DIR_OUT; } else if (setup->direction == UE_DIR_ANY) { /* match any endpoint direction */ ea_mask = 0; ea_val = 0; } else { /* match the given endpoint direction */ ea_mask = (UE_DIR_IN | UE_DIR_OUT); ea_val = (setup->direction & (UE_DIR_IN | UE_DIR_OUT)); } /* setup expected endpoint address */ if (setup->endpoint == UE_ADDR_ANY) { /* match any endpoint address */ } else { /* match the given endpoint address */ ea_mask |= UE_ADDR; ea_val |= (setup->endpoint & UE_ADDR); } /* setup expected endpoint type */ if (setup->type == UE_BULK_INTR) { /* this will match BULK and INTERRUPT endpoints */ type_mask = 2; type_val = 2; } else if (setup->type == UE_TYPE_ANY) { /* match any endpoint type */ type_mask = 0; type_val = 0; } else { /* match the given endpoint type */ type_mask = UE_XFERTYPE; type_val = (setup->type & UE_XFERTYPE); } /* * Iterate accross all the USB endpoints searching for a match * based on the endpoint address. Note that we are searching * the endpoints from the beginning of the "udev->endpoints" array. */ for (; ep != ep_end; ep++) { if ((ep->edesc == NULL) || (ep->iface_index != iface_index)) { continue; } /* do the masks and check the values */ if (((ep->edesc->bEndpointAddress & ea_mask) == ea_val) && ((ep->edesc->bmAttributes & type_mask) == type_val)) { if (!index--) { goto found; } } } /* * Match against default endpoint last, so that "any endpoint", "any * address" and "any direction" returns the first endpoint of the * interface. "iface_index" and "direction" is ignored: */ if ((udev->ctrl_ep.edesc) && ((udev->ctrl_ep.edesc->bEndpointAddress & ea_mask) == ea_val) && ((udev->ctrl_ep.edesc->bmAttributes & type_mask) == type_val) && (!index)) { ep = &udev->ctrl_ep; goto found; } return (NULL); found: return (ep); } /*------------------------------------------------------------------------* * usbd_interface_count * * This function stores the number of USB interfaces excluding * alternate settings, which the USB config descriptor reports into * the unsigned 8-bit integer pointed to by "count". * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usbd_interface_count(struct usb_device *udev, uint8_t *count) { if (udev->cdesc == NULL) { *count = 0; return (USB_ERR_NOT_CONFIGURED); } *count = udev->ifaces_max; return (USB_ERR_NORMAL_COMPLETION); } /*------------------------------------------------------------------------* * usb_init_endpoint * * This function will initialise the USB endpoint structure pointed to by * the "endpoint" argument. The structure pointed to by "endpoint" must be * zeroed before calling this function. *------------------------------------------------------------------------*/ static void usb_init_endpoint(struct usb_device *udev, uint8_t iface_index, struct usb_endpoint_descriptor *edesc, struct usb_endpoint_ss_comp_descriptor *ecomp, struct usb_endpoint *ep) { struct usb_bus_methods *methods; methods = udev->bus->methods; (methods->endpoint_init) (udev, edesc, ep); /* initialise USB endpoint structure */ ep->edesc = edesc; ep->ecomp = ecomp; ep->iface_index = iface_index; TAILQ_INIT(&ep->endpoint_q.head); ep->endpoint_q.command = &usbd_pipe_start; /* the pipe is not supported by the hardware */ if (ep->methods == NULL) return; /* clear stall, if any */ if (methods->clear_stall != NULL) { USB_BUS_LOCK(udev->bus); (methods->clear_stall) (udev, ep); USB_BUS_UNLOCK(udev->bus); } } /*-----------------------------------------------------------------------* * usb_endpoint_foreach * * This function will iterate all the USB endpoints except the control * endpoint. This function is NULL safe. * * Return values: * NULL: End of USB endpoints * Else: Pointer to next USB endpoint *------------------------------------------------------------------------*/ struct usb_endpoint * usb_endpoint_foreach(struct usb_device *udev, struct usb_endpoint *ep) { struct usb_endpoint *ep_end; /* be NULL safe */ if (udev == NULL) return (NULL); ep_end = udev->endpoints + udev->endpoints_max; /* get next endpoint */ if (ep == NULL) ep = udev->endpoints; else ep++; /* find next allocated ep */ while (ep != ep_end) { if (ep->edesc != NULL) return (ep); ep++; } return (NULL); } /*------------------------------------------------------------------------* * usb_unconfigure * * This function will free all USB interfaces and USB endpoints belonging * to an USB device. * * Flag values, see "USB_UNCFG_FLAG_XXX". *------------------------------------------------------------------------*/ static void usb_unconfigure(struct usb_device *udev, uint8_t flag) { uint8_t do_unlock; /* automatic locking */ if (usbd_enum_is_locked(udev)) { do_unlock = 0; } else { do_unlock = 1; usbd_enum_lock(udev); } /* detach all interface drivers */ usb_detach_device(udev, USB_IFACE_INDEX_ANY, flag); #if USB_HAVE_UGEN /* free all FIFOs except control endpoint FIFOs */ usb_fifo_free_wrap(udev, USB_IFACE_INDEX_ANY, flag); /* * Free all cdev's, if any. */ usb_cdev_free(udev); #endif #if USB_HAVE_COMPAT_LINUX /* free Linux compat device, if any */ if (udev->linux_endpoint_start) { usb_linux_free_device(udev); udev->linux_endpoint_start = NULL; } #endif usb_config_parse(udev, USB_IFACE_INDEX_ANY, USB_CFG_FREE); /* free "cdesc" after "ifaces" and "endpoints", if any */ if (udev->cdesc != NULL) { if (udev->flags.usb_mode != USB_MODE_DEVICE) free(udev->cdesc, M_USB); udev->cdesc = NULL; } /* set unconfigured state */ udev->curr_config_no = USB_UNCONFIG_NO; udev->curr_config_index = USB_UNCONFIG_INDEX; if (do_unlock) usbd_enum_unlock(udev); } /*------------------------------------------------------------------------* * usbd_set_config_index * * This function selects configuration by index, independent of the * actual configuration number. This function should not be used by * USB drivers. * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usbd_set_config_index(struct usb_device *udev, uint8_t index) { struct usb_status ds; struct usb_config_descriptor *cdp; uint16_t power; uint16_t max_power; uint8_t selfpowered; uint8_t do_unlock; usb_error_t err; DPRINTFN(6, "udev=%p index=%d\n", udev, index); /* automatic locking */ if (usbd_enum_is_locked(udev)) { do_unlock = 0; } else { do_unlock = 1; usbd_enum_lock(udev); } usb_unconfigure(udev, 0); if (index == USB_UNCONFIG_INDEX) { /* * Leave unallocated when unconfiguring the * device. "usb_unconfigure()" will also reset * the current config number and index. */ err = usbd_req_set_config(udev, NULL, USB_UNCONFIG_NO); if (udev->state == USB_STATE_CONFIGURED) usb_set_device_state(udev, USB_STATE_ADDRESSED); goto done; } /* get the full config descriptor */ if (udev->flags.usb_mode == USB_MODE_DEVICE) { /* save some memory */ err = usbd_req_get_descriptor_ptr(udev, &cdp, (UDESC_CONFIG << 8) | index); } else { /* normal request */ err = usbd_req_get_config_desc_full(udev, NULL, &cdp, M_USB, index); } if (err) { goto done; } /* set the new config descriptor */ udev->cdesc = cdp; /* Figure out if the device is self or bus powered. */ selfpowered = 0; if ((!udev->flags.uq_bus_powered) && (cdp->bmAttributes & UC_SELF_POWERED) && (udev->flags.usb_mode == USB_MODE_HOST)) { /* May be self powered. */ if (cdp->bmAttributes & UC_BUS_POWERED) { /* Must ask device. */ err = usbd_req_get_device_status(udev, NULL, &ds); if (err) { DPRINTFN(0, "could not read " "device status: %s\n", usbd_errstr(err)); } else if (UGETW(ds.wStatus) & UDS_SELF_POWERED) { selfpowered = 1; } DPRINTF("status=0x%04x \n", UGETW(ds.wStatus)); } else selfpowered = 1; } DPRINTF("udev=%p cdesc=%p (addr %d) cno=%d attr=0x%02x, " "selfpowered=%d, power=%d\n", udev, cdp, udev->address, cdp->bConfigurationValue, cdp->bmAttributes, selfpowered, cdp->bMaxPower * 2); /* Check if we have enough power. */ power = cdp->bMaxPower * 2; if (udev->parent_hub) { max_power = udev->parent_hub->hub->portpower; } else { max_power = USB_MAX_POWER; } if (power > max_power) { DPRINTFN(0, "power exceeded %d > %d\n", power, max_power); err = USB_ERR_NO_POWER; goto done; } /* Only update "self_powered" in USB Host Mode */ if (udev->flags.usb_mode == USB_MODE_HOST) { udev->flags.self_powered = selfpowered; } udev->power = power; udev->curr_config_no = cdp->bConfigurationValue; udev->curr_config_index = index; usb_set_device_state(udev, USB_STATE_CONFIGURED); /* Set the actual configuration value. */ err = usbd_req_set_config(udev, NULL, cdp->bConfigurationValue); if (err) { goto done; } err = usb_config_parse(udev, USB_IFACE_INDEX_ANY, USB_CFG_ALLOC); if (err) { goto done; } err = usb_config_parse(udev, USB_IFACE_INDEX_ANY, USB_CFG_INIT); if (err) { goto done; } #if USB_HAVE_UGEN /* create device nodes for each endpoint */ usb_cdev_create(udev); #endif done: DPRINTF("error=%s\n", usbd_errstr(err)); if (err) { usb_unconfigure(udev, 0); } if (do_unlock) usbd_enum_unlock(udev); return (err); } /*------------------------------------------------------------------------* * usb_config_parse * * This function will allocate and free USB interfaces and USB endpoints, * parse the USB configuration structure and initialise the USB endpoints * and interfaces. If "iface_index" is not equal to * "USB_IFACE_INDEX_ANY" then the "cmd" parameter is the * alternate_setting to be selected for the given interface. Else the * "cmd" parameter is defined by "USB_CFG_XXX". "iface_index" can be * "USB_IFACE_INDEX_ANY" or a valid USB interface index. This function * is typically called when setting the configuration or when setting * an alternate interface. * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ static usb_error_t usb_config_parse(struct usb_device *udev, uint8_t iface_index, uint8_t cmd) { struct usb_idesc_parse_state ips; struct usb_interface_descriptor *id; struct usb_endpoint_descriptor *ed; struct usb_interface *iface; struct usb_endpoint *ep; usb_error_t err; uint8_t ep_curr; uint8_t ep_max; uint8_t temp; uint8_t do_init; uint8_t alt_index; if (iface_index != USB_IFACE_INDEX_ANY) { /* parameter overload */ alt_index = cmd; cmd = USB_CFG_INIT; } else { /* not used */ alt_index = 0; } err = 0; DPRINTFN(5, "iface_index=%d cmd=%d\n", iface_index, cmd); if (cmd == USB_CFG_FREE) goto cleanup; if (cmd == USB_CFG_INIT) { sx_assert(&udev->enum_sx, SA_LOCKED); /* check for in-use endpoints */ ep = udev->endpoints; ep_max = udev->endpoints_max; while (ep_max--) { /* look for matching endpoints */ if ((iface_index == USB_IFACE_INDEX_ANY) || (iface_index == ep->iface_index)) { if (ep->refcount_alloc != 0) { /* * This typically indicates a * more serious error. */ err = USB_ERR_IN_USE; } else { /* reset endpoint */ memset(ep, 0, sizeof(*ep)); /* make sure we don't zero the endpoint again */ ep->iface_index = USB_IFACE_INDEX_ANY; } } ep++; } if (err) return (err); } memset(&ips, 0, sizeof(ips)); ep_curr = 0; ep_max = 0; while ((id = usb_idesc_foreach(udev->cdesc, &ips))) { /* check for interface overflow */ if (ips.iface_index == USB_IFACE_MAX) break; /* crazy */ iface = udev->ifaces + ips.iface_index; /* check for specific interface match */ if (cmd == USB_CFG_INIT) { if ((iface_index != USB_IFACE_INDEX_ANY) && (iface_index != ips.iface_index)) { /* wrong interface */ do_init = 0; } else if (alt_index != ips.iface_index_alt) { /* wrong alternate setting */ do_init = 0; } else { /* initialise interface */ do_init = 1; } } else do_init = 0; /* check for new interface */ if (ips.iface_index_alt == 0) { /* update current number of endpoints */ ep_curr = ep_max; } /* check for init */ if (do_init) { /* setup the USB interface structure */ iface->idesc = id; /* set alternate index */ iface->alt_index = alt_index; /* set default interface parent */ if (iface_index == USB_IFACE_INDEX_ANY) { iface->parent_iface_index = USB_IFACE_INDEX_ANY; } } DPRINTFN(5, "found idesc nendpt=%d\n", id->bNumEndpoints); ed = (struct usb_endpoint_descriptor *)id; temp = ep_curr; /* iterate all the endpoint descriptors */ while ((ed = usb_edesc_foreach(udev->cdesc, ed))) { if (temp == USB_EP_MAX) break; /* crazy */ ep = udev->endpoints + temp; if (do_init) { void *ecomp; ecomp = usb_ed_comp_foreach(udev->cdesc, (void *)ed); if (ecomp != NULL) DPRINTFN(5, "Found endpoint companion descriptor\n"); usb_init_endpoint(udev, ips.iface_index, ed, ecomp, ep); } temp ++; /* find maximum number of endpoints */ if (ep_max < temp) ep_max = temp; /* optimalisation */ id = (struct usb_interface_descriptor *)ed; } } /* NOTE: It is valid to have no interfaces and no endpoints! */ if (cmd == USB_CFG_ALLOC) { udev->ifaces_max = ips.iface_index; udev->ifaces = NULL; if (udev->ifaces_max != 0) { udev->ifaces = malloc(sizeof(*iface) * udev->ifaces_max, M_USB, M_WAITOK | M_ZERO); if (udev->ifaces == NULL) { err = USB_ERR_NOMEM; goto done; } } if (ep_max != 0) { udev->endpoints = malloc(sizeof(*ep) * ep_max, M_USB, M_WAITOK | M_ZERO); if (udev->endpoints == NULL) { err = USB_ERR_NOMEM; goto done; } } else { udev->endpoints = NULL; } USB_BUS_LOCK(udev->bus); udev->endpoints_max = ep_max; /* reset any ongoing clear-stall */ udev->ep_curr = NULL; USB_BUS_UNLOCK(udev->bus); } done: if (err) { if (cmd == USB_CFG_ALLOC) { cleanup: USB_BUS_LOCK(udev->bus); udev->endpoints_max = 0; /* reset any ongoing clear-stall */ udev->ep_curr = NULL; USB_BUS_UNLOCK(udev->bus); /* cleanup */ if (udev->ifaces != NULL) free(udev->ifaces, M_USB); if (udev->endpoints != NULL) free(udev->endpoints, M_USB); udev->ifaces = NULL; udev->endpoints = NULL; udev->ifaces_max = 0; } } return (err); } /*------------------------------------------------------------------------* * usbd_set_alt_interface_index * * This function will select an alternate interface index for the * given interface index. The interface should not be in use when this * function is called. That means there should not be any open USB * transfers. Else an error is returned. If the alternate setting is * already set this function will simply return success. This function * is called in Host mode and Device mode! * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usbd_set_alt_interface_index(struct usb_device *udev, uint8_t iface_index, uint8_t alt_index) { struct usb_interface *iface = usbd_get_iface(udev, iface_index); usb_error_t err; uint8_t do_unlock; /* automatic locking */ if (usbd_enum_is_locked(udev)) { do_unlock = 0; } else { do_unlock = 1; usbd_enum_lock(udev); } if (iface == NULL) { err = USB_ERR_INVAL; goto done; } if (iface->alt_index == alt_index) { /* * Optimise away duplicate setting of * alternate setting in USB Host Mode! */ err = 0; goto done; } #if USB_HAVE_UGEN /* * Free all generic FIFOs for this interface, except control * endpoint FIFOs: */ usb_fifo_free_wrap(udev, iface_index, 0); #endif err = usb_config_parse(udev, iface_index, alt_index); if (err) { goto done; } if (iface->alt_index != alt_index) { /* the alternate setting does not exist */ err = USB_ERR_INVAL; goto done; } err = usbd_req_set_alt_interface_no(udev, NULL, iface_index, iface->idesc->bAlternateSetting); done: if (do_unlock) usbd_enum_unlock(udev); return (err); } /*------------------------------------------------------------------------* * usbd_set_endpoint_stall * * This function is used to make a BULK or INTERRUPT endpoint send * STALL tokens in USB device mode. * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usbd_set_endpoint_stall(struct usb_device *udev, struct usb_endpoint *ep, uint8_t do_stall) { struct usb_xfer *xfer; uint8_t et; uint8_t was_stalled; if (ep == NULL) { /* nothing to do */ DPRINTF("Cannot find endpoint\n"); /* * Pretend that the clear or set stall request is * successful else some USB host stacks can do * strange things, especially when a control endpoint * stalls. */ return (0); } et = (ep->edesc->bmAttributes & UE_XFERTYPE); if ((et != UE_BULK) && (et != UE_INTERRUPT)) { /* * Should not stall control * nor isochronous endpoints. */ DPRINTF("Invalid endpoint\n"); return (0); } USB_BUS_LOCK(udev->bus); /* store current stall state */ was_stalled = ep->is_stalled; /* check for no change */ if (was_stalled && do_stall) { /* if the endpoint is already stalled do nothing */ USB_BUS_UNLOCK(udev->bus); DPRINTF("No change\n"); return (0); } /* set stalled state */ ep->is_stalled = 1; if (do_stall || (!was_stalled)) { if (!was_stalled) { /* lookup the current USB transfer, if any */ xfer = ep->endpoint_q.curr; } else { xfer = NULL; } /* * If "xfer" is non-NULL the "set_stall" method will * complete the USB transfer like in case of a timeout * setting the error code "USB_ERR_STALLED". */ (udev->bus->methods->set_stall) (udev, xfer, ep, &do_stall); } if (!do_stall) { ep->toggle_next = 0; /* reset data toggle */ ep->is_stalled = 0; /* clear stalled state */ (udev->bus->methods->clear_stall) (udev, ep); /* start up the current or next transfer, if any */ usb_command_wrapper(&ep->endpoint_q, ep->endpoint_q.curr); } USB_BUS_UNLOCK(udev->bus); return (0); } /*------------------------------------------------------------------------* * usb_reset_iface_endpoints - used in USB device side mode *------------------------------------------------------------------------*/ usb_error_t usb_reset_iface_endpoints(struct usb_device *udev, uint8_t iface_index) { struct usb_endpoint *ep; struct usb_endpoint *ep_end; ep = udev->endpoints; ep_end = udev->endpoints + udev->endpoints_max; for (; ep != ep_end; ep++) { if ((ep->edesc == NULL) || (ep->iface_index != iface_index)) { continue; } /* simulate a clear stall from the peer */ usbd_set_endpoint_stall(udev, ep, 0); } return (0); } /*------------------------------------------------------------------------* * usb_detach_device_sub * * This function will try to detach an USB device. If it fails a panic * will result. * * Flag values, see "USB_UNCFG_FLAG_XXX". *------------------------------------------------------------------------*/ static void usb_detach_device_sub(struct usb_device *udev, device_t *ppdev, char **ppnpinfo, uint8_t flag) { device_t dev; char *pnpinfo; int err; dev = *ppdev; if (dev) { /* * NOTE: It is important to clear "*ppdev" before deleting * the child due to some device methods being called late * during the delete process ! */ *ppdev = NULL; device_printf(dev, "at %s, port %d, addr %d " "(disconnected)\n", device_get_nameunit(udev->parent_dev), udev->port_no, udev->address); if (device_is_attached(dev)) { if (udev->flags.peer_suspended) { err = DEVICE_RESUME(dev); if (err) { device_printf(dev, "Resume failed\n"); } } if (device_detach(dev)) { goto error; } } if (device_delete_child(udev->parent_dev, dev)) { goto error; } } pnpinfo = *ppnpinfo; if (pnpinfo != NULL) { *ppnpinfo = NULL; free(pnpinfo, M_USBDEV); } return; error: /* Detach is not allowed to fail in the USB world */ panic("usb_detach_device_sub: A USB driver would not detach\n"); } /*------------------------------------------------------------------------* * usb_detach_device * * The following function will detach the matching interfaces. * This function is NULL safe. * * Flag values, see "USB_UNCFG_FLAG_XXX". *------------------------------------------------------------------------*/ void usb_detach_device(struct usb_device *udev, uint8_t iface_index, uint8_t flag) { struct usb_interface *iface; uint8_t i; if (udev == NULL) { /* nothing to do */ return; } DPRINTFN(4, "udev=%p\n", udev); sx_assert(&udev->enum_sx, SA_LOCKED); /* * First detach the child to give the child's detach routine a * chance to detach the sub-devices in the correct order. * Then delete the child using "device_delete_child()" which * will detach all sub-devices from the bottom and upwards! */ if (iface_index != USB_IFACE_INDEX_ANY) { i = iface_index; iface_index = i + 1; } else { i = 0; iface_index = USB_IFACE_MAX; } /* do the detach */ for (; i != iface_index; i++) { iface = usbd_get_iface(udev, i); if (iface == NULL) { /* looks like the end of the USB interfaces */ break; } usb_detach_device_sub(udev, &iface->subdev, &iface->pnpinfo, flag); } } /*------------------------------------------------------------------------* * usb_probe_and_attach_sub * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ static uint8_t usb_probe_and_attach_sub(struct usb_device *udev, struct usb_attach_arg *uaa) { struct usb_interface *iface; device_t dev; int err; iface = uaa->iface; if (iface->parent_iface_index != USB_IFACE_INDEX_ANY) { /* leave interface alone */ return (0); } dev = iface->subdev; if (dev) { /* clean up after module unload */ if (device_is_attached(dev)) { /* already a device there */ return (0); } /* clear "iface->subdev" as early as possible */ iface->subdev = NULL; if (device_delete_child(udev->parent_dev, dev)) { /* * Panic here, else one can get a double call * to device_detach(). USB devices should * never fail on detach! */ panic("device_delete_child() failed\n"); } } if (uaa->temp_dev == NULL) { /* create a new child */ uaa->temp_dev = device_add_child(udev->parent_dev, NULL, -1); if (uaa->temp_dev == NULL) { device_printf(udev->parent_dev, "Device creation failed\n"); return (1); /* failure */ } device_set_ivars(uaa->temp_dev, uaa); device_quiet(uaa->temp_dev); } /* * Set "subdev" before probe and attach so that "devd" gets * the information it needs. */ iface->subdev = uaa->temp_dev; if (device_probe_and_attach(iface->subdev) == 0) { /* * The USB attach arguments are only available during probe * and attach ! */ uaa->temp_dev = NULL; device_set_ivars(iface->subdev, NULL); if (udev->flags.peer_suspended) { err = DEVICE_SUSPEND(iface->subdev); if (err) device_printf(iface->subdev, "Suspend failed\n"); } return (0); /* success */ } else { /* No USB driver found */ iface->subdev = NULL; } return (1); /* failure */ } /*------------------------------------------------------------------------* * usbd_set_parent_iface * * Using this function will lock the alternate interface setting on an * interface. It is typically used for multi interface drivers. In USB * device side mode it is assumed that the alternate interfaces all * have the same endpoint descriptors. The default parent index value * is "USB_IFACE_INDEX_ANY". Then the alternate setting value is not * locked. *------------------------------------------------------------------------*/ void usbd_set_parent_iface(struct usb_device *udev, uint8_t iface_index, uint8_t parent_index) { struct usb_interface *iface; if (udev == NULL) { /* nothing to do */ return; } iface = usbd_get_iface(udev, iface_index); if (iface != NULL) iface->parent_iface_index = parent_index; } static void usb_init_attach_arg(struct usb_device *udev, struct usb_attach_arg *uaa) { memset(uaa, 0, sizeof(*uaa)); uaa->device = udev; uaa->usb_mode = udev->flags.usb_mode; uaa->port = udev->port_no; uaa->dev_state = UAA_DEV_READY; uaa->info.idVendor = UGETW(udev->ddesc.idVendor); uaa->info.idProduct = UGETW(udev->ddesc.idProduct); uaa->info.bcdDevice = UGETW(udev->ddesc.bcdDevice); uaa->info.bDeviceClass = udev->ddesc.bDeviceClass; uaa->info.bDeviceSubClass = udev->ddesc.bDeviceSubClass; uaa->info.bDeviceProtocol = udev->ddesc.bDeviceProtocol; uaa->info.bConfigIndex = udev->curr_config_index; uaa->info.bConfigNum = udev->curr_config_no; } /*------------------------------------------------------------------------* * usb_probe_and_attach * * This function is called from "uhub_explore_sub()", * "usb_handle_set_config()" and "usb_handle_request()". * * Returns: * 0: Success * Else: A control transfer failed *------------------------------------------------------------------------*/ usb_error_t usb_probe_and_attach(struct usb_device *udev, uint8_t iface_index) { struct usb_attach_arg uaa; struct usb_interface *iface; uint8_t i; uint8_t j; uint8_t do_unlock; if (udev == NULL) { DPRINTF("udev == NULL\n"); return (USB_ERR_INVAL); } /* automatic locking */ if (usbd_enum_is_locked(udev)) { do_unlock = 0; } else { do_unlock = 1; usbd_enum_lock(udev); } if (udev->curr_config_index == USB_UNCONFIG_INDEX) { /* do nothing - no configuration has been set */ goto done; } /* setup USB attach arguments */ usb_init_attach_arg(udev, &uaa); /* * If the whole USB device is targeted, invoke the USB event * handler(s): */ if (iface_index == USB_IFACE_INDEX_ANY) { EVENTHANDLER_INVOKE(usb_dev_configured, udev, &uaa); if (uaa.dev_state != UAA_DEV_READY) { /* leave device unconfigured */ usb_unconfigure(udev, 0); goto done; } } /* Check if only one interface should be probed: */ if (iface_index != USB_IFACE_INDEX_ANY) { i = iface_index; j = i + 1; } else { i = 0; j = USB_IFACE_MAX; } /* Do the probe and attach */ for (; i != j; i++) { iface = usbd_get_iface(udev, i); if (iface == NULL) { /* * Looks like the end of the USB * interfaces ! */ DPRINTFN(2, "end of interfaces " "at %u\n", i); break; } if (iface->idesc == NULL) { /* no interface descriptor */ continue; } uaa.iface = iface; uaa.info.bInterfaceClass = iface->idesc->bInterfaceClass; uaa.info.bInterfaceSubClass = iface->idesc->bInterfaceSubClass; uaa.info.bInterfaceProtocol = iface->idesc->bInterfaceProtocol; uaa.info.bIfaceIndex = i; uaa.info.bIfaceNum = iface->idesc->bInterfaceNumber; uaa.driver_info = 0; /* reset driver_info */ DPRINTFN(2, "iclass=%u/%u/%u iindex=%u/%u\n", uaa.info.bInterfaceClass, uaa.info.bInterfaceSubClass, uaa.info.bInterfaceProtocol, uaa.info.bIfaceIndex, uaa.info.bIfaceNum); usb_probe_and_attach_sub(udev, &uaa); /* * Remove the leftover child, if any, to enforce that * a new nomatch devd event is generated for the next * interface if no driver is found: */ if (uaa.temp_dev == NULL) continue; if (device_delete_child(udev->parent_dev, uaa.temp_dev)) DPRINTFN(0, "device delete child failed\n"); uaa.temp_dev = NULL; } done: if (do_unlock) usbd_enum_unlock(udev); return (0); } /*------------------------------------------------------------------------* * usb_suspend_resume_sub * * This function is called when the suspend or resume methods should * be executed on an USB device. *------------------------------------------------------------------------*/ static void usb_suspend_resume_sub(struct usb_device *udev, device_t dev, uint8_t do_suspend) { int err; if (dev == NULL) { return; } if (!device_is_attached(dev)) { return; } if (do_suspend) { err = DEVICE_SUSPEND(dev); } else { err = DEVICE_RESUME(dev); } if (err) { device_printf(dev, "%s failed\n", do_suspend ? "Suspend" : "Resume"); } } /*------------------------------------------------------------------------* * usb_suspend_resume * * The following function will suspend or resume the USB device. * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usb_suspend_resume(struct usb_device *udev, uint8_t do_suspend) { struct usb_interface *iface; uint8_t i; if (udev == NULL) { /* nothing to do */ return (0); } DPRINTFN(4, "udev=%p do_suspend=%d\n", udev, do_suspend); sx_assert(&udev->sr_sx, SA_LOCKED); USB_BUS_LOCK(udev->bus); /* filter the suspend events */ if (udev->flags.peer_suspended == do_suspend) { USB_BUS_UNLOCK(udev->bus); /* nothing to do */ return (0); } udev->flags.peer_suspended = do_suspend; USB_BUS_UNLOCK(udev->bus); /* do the suspend or resume */ for (i = 0; i != USB_IFACE_MAX; i++) { iface = usbd_get_iface(udev, i); if (iface == NULL) { /* looks like the end of the USB interfaces */ break; } usb_suspend_resume_sub(udev, iface->subdev, do_suspend); } return (0); } /*------------------------------------------------------------------------* * usbd_clear_stall_proc * * This function performs generic USB clear stall operations. *------------------------------------------------------------------------*/ static void usbd_clear_stall_proc(struct usb_proc_msg *_pm) { struct usb_clear_stall_msg *pm = (void *)_pm; struct usb_device *udev = pm->udev; /* Change lock */ USB_BUS_UNLOCK(udev->bus); mtx_lock(&udev->device_mtx); /* Start clear stall callback */ usbd_transfer_start(udev->ctrl_xfer[1]); /* Change lock */ mtx_unlock(&udev->device_mtx); USB_BUS_LOCK(udev->bus); } /*------------------------------------------------------------------------* * usb_alloc_device * * This function allocates a new USB device. This function is called * when a new device has been put in the powered state, but not yet in * the addressed state. Get initial descriptor, set the address, get * full descriptor and get strings. * * Return values: * 0: Failure * Else: Success *------------------------------------------------------------------------*/ struct usb_device * usb_alloc_device(device_t parent_dev, struct usb_bus *bus, struct usb_device *parent_hub, uint8_t depth, uint8_t port_index, uint8_t port_no, enum usb_dev_speed speed, enum usb_hc_mode mode) { struct usb_attach_arg uaa; struct usb_device *udev; struct usb_device *adev; struct usb_device *hub; uint8_t *scratch_ptr; usb_error_t err; uint8_t device_index; uint8_t config_index; uint8_t config_quirk; uint8_t set_config_failed; DPRINTF("parent_dev=%p, bus=%p, parent_hub=%p, depth=%u, " "port_index=%u, port_no=%u, speed=%u, usb_mode=%u\n", parent_dev, bus, parent_hub, depth, port_index, port_no, speed, mode); /* * Find an unused device index. In USB Host mode this is the * same as the device address. * * Device index zero is not used and device index 1 should * always be the root hub. */ for (device_index = USB_ROOT_HUB_ADDR; (device_index != bus->devices_max) && (bus->devices[device_index] != NULL); device_index++) /* nop */; if (device_index == bus->devices_max) { device_printf(bus->bdev, "No free USB device index for new device\n"); return (NULL); } if (depth > 0x10) { device_printf(bus->bdev, "Invalid device depth\n"); return (NULL); } udev = malloc(sizeof(*udev), M_USB, M_WAITOK | M_ZERO); if (udev == NULL) { return (NULL); } /* initialise our SX-lock */ sx_init_flags(&udev->ctrl_sx, "USB device SX lock", SX_DUPOK); /* initialise our SX-lock */ sx_init_flags(&udev->enum_sx, "USB config SX lock", SX_DUPOK); sx_init_flags(&udev->sr_sx, "USB suspend and resume SX lock", SX_NOWITNESS); cv_init(&udev->ctrlreq_cv, "WCTRL"); cv_init(&udev->ref_cv, "UGONE"); /* initialise our mutex */ mtx_init(&udev->device_mtx, "USB device mutex", NULL, MTX_DEF); /* initialise generic clear stall */ udev->cs_msg[0].hdr.pm_callback = &usbd_clear_stall_proc; udev->cs_msg[0].udev = udev; udev->cs_msg[1].hdr.pm_callback = &usbd_clear_stall_proc; udev->cs_msg[1].udev = udev; /* initialise some USB device fields */ udev->parent_hub = parent_hub; udev->parent_dev = parent_dev; udev->port_index = port_index; udev->port_no = port_no; udev->depth = depth; udev->bus = bus; udev->address = USB_START_ADDR; /* default value */ udev->plugtime = (usb_ticks_t)ticks; /* * We need to force the power mode to "on" because there are plenty * of USB devices out there that do not work very well with * automatic suspend and resume! */ udev->power_mode = usbd_filter_power_mode(udev, USB_POWER_MODE_ON); udev->pwr_save.last_xfer_time = ticks; /* we are not ready yet */ udev->refcount = 1; /* set up default endpoint descriptor */ udev->ctrl_ep_desc.bLength = sizeof(udev->ctrl_ep_desc); udev->ctrl_ep_desc.bDescriptorType = UDESC_ENDPOINT; udev->ctrl_ep_desc.bEndpointAddress = USB_CONTROL_ENDPOINT; udev->ctrl_ep_desc.bmAttributes = UE_CONTROL; udev->ctrl_ep_desc.wMaxPacketSize[0] = USB_MAX_IPACKET; udev->ctrl_ep_desc.wMaxPacketSize[1] = 0; udev->ctrl_ep_desc.bInterval = 0; /* set up default endpoint companion descriptor */ udev->ctrl_ep_comp_desc.bLength = sizeof(udev->ctrl_ep_comp_desc); udev->ctrl_ep_comp_desc.bDescriptorType = UDESC_ENDPOINT_SS_COMP; udev->ddesc.bMaxPacketSize = USB_MAX_IPACKET; udev->speed = speed; udev->flags.usb_mode = mode; /* search for our High Speed USB HUB, if any */ adev = udev; hub = udev->parent_hub; while (hub) { if (hub->speed == USB_SPEED_HIGH) { udev->hs_hub_addr = hub->address; udev->parent_hs_hub = hub; udev->hs_port_no = adev->port_no; break; } adev = hub; hub = hub->parent_hub; } /* init the default endpoint */ usb_init_endpoint(udev, 0, &udev->ctrl_ep_desc, &udev->ctrl_ep_comp_desc, &udev->ctrl_ep); /* set device index */ udev->device_index = device_index; #if USB_HAVE_UGEN /* Create ugen name */ snprintf(udev->ugen_name, sizeof(udev->ugen_name), USB_GENERIC_NAME "%u.%u", device_get_unit(bus->bdev), device_index); LIST_INIT(&udev->pd_list); /* Create the control endpoint device */ udev->ctrl_dev = usb_make_dev(udev, NULL, 0, 0, FREAD|FWRITE, UID_ROOT, GID_OPERATOR, 0600); /* Create a link from /dev/ugenX.X to the default endpoint */ if (udev->ctrl_dev != NULL) make_dev_alias(udev->ctrl_dev->cdev, "%s", udev->ugen_name); #endif /* Initialise device */ if (bus->methods->device_init != NULL) { err = (bus->methods->device_init) (udev); if (err != 0) { DPRINTFN(0, "device init %d failed " "(%s, ignored)\n", device_index, usbd_errstr(err)); goto done; } } /* set powered device state after device init is complete */ usb_set_device_state(udev, USB_STATE_POWERED); if (udev->flags.usb_mode == USB_MODE_HOST) { err = usbd_req_set_address(udev, NULL, device_index); /* * This is the new USB device address from now on, if * the set address request didn't set it already. */ if (udev->address == USB_START_ADDR) udev->address = device_index; /* * We ignore any set-address errors, hence there are * buggy USB devices out there that actually receive * the SETUP PID, but manage to set the address before * the STATUS stage is ACK'ed. If the device responds * to the subsequent get-descriptor at the new * address, then we know that the set-address command * was successful. */ if (err) { DPRINTFN(0, "set address %d failed " "(%s, ignored)\n", udev->address, usbd_errstr(err)); } } else { /* We are not self powered */ udev->flags.self_powered = 0; /* Set unconfigured state */ udev->curr_config_no = USB_UNCONFIG_NO; udev->curr_config_index = USB_UNCONFIG_INDEX; /* Setup USB descriptors */ err = (usb_temp_setup_by_index_p) (udev, usb_template); if (err) { DPRINTFN(0, "setting up USB template failed maybe the USB " "template module has not been loaded\n"); goto done; } } usb_set_device_state(udev, USB_STATE_ADDRESSED); /* setup the device descriptor and the initial "wMaxPacketSize" */ err = usbd_setup_device_desc(udev, NULL); if (err != 0) { /* XXX try to re-enumerate the device */ err = usbd_req_re_enumerate(udev, NULL); if (err) goto done; } /* * Setup temporary USB attach args so that we can figure out some * basic quirks for this device. */ usb_init_attach_arg(udev, &uaa); if (usb_test_quirk(&uaa, UQ_BUS_POWERED)) { udev->flags.uq_bus_powered = 1; } if (usb_test_quirk(&uaa, UQ_NO_STRINGS)) { udev->flags.no_strings = 1; } /* * Workaround for buggy USB devices. * * It appears that some string-less USB chips will crash and * disappear if any attempts are made to read any string * descriptors. * * Try to detect such chips by checking the strings in the USB * device descriptor. If no strings are present there we * simply disable all USB strings. */ scratch_ptr = udev->bus->scratch[0].data; if (udev->ddesc.iManufacturer || udev->ddesc.iProduct || udev->ddesc.iSerialNumber) { /* read out the language ID string */ err = usbd_req_get_string_desc(udev, NULL, (char *)scratch_ptr, 4, 0, USB_LANGUAGE_TABLE); } else { err = USB_ERR_INVAL; } if (err || (scratch_ptr[0] < 4)) { udev->flags.no_strings = 1; } else { uint16_t langid; uint16_t pref; uint16_t mask; uint8_t x; /* load preferred value and mask */ pref = usb_lang_id; mask = usb_lang_mask; /* align length correctly */ scratch_ptr[0] &= ~1; /* fix compiler warning */ langid = 0; /* search for preferred language */ for (x = 2; (x < scratch_ptr[0]); x += 2) { langid = UGETW(scratch_ptr + x); if ((langid & mask) == pref) break; } if (x >= scratch_ptr[0]) { /* pick the first language as the default */ DPRINTFN(1, "Using first language\n"); langid = UGETW(scratch_ptr + 2); } DPRINTFN(1, "Language selected: 0x%04x\n", langid); udev->langid = langid; } /* assume 100mA bus powered for now. Changed when configured. */ udev->power = USB_MIN_POWER; /* fetch the vendor and product strings from the device */ usbd_set_device_strings(udev); if (udev->flags.usb_mode == USB_MODE_DEVICE) { /* USB device mode setup is complete */ err = 0; goto config_done; } /* * Most USB devices should attach to config index 0 by * default */ if (usb_test_quirk(&uaa, UQ_CFG_INDEX_0)) { config_index = 0; config_quirk = 1; } else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_1)) { config_index = 1; config_quirk = 1; } else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_2)) { config_index = 2; config_quirk = 1; } else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_3)) { config_index = 3; config_quirk = 1; } else if (usb_test_quirk(&uaa, UQ_CFG_INDEX_4)) { config_index = 4; config_quirk = 1; } else { config_index = 0; config_quirk = 0; } set_config_failed = 0; repeat_set_config: DPRINTF("setting config %u\n", config_index); /* get the USB device configured */ err = usbd_set_config_index(udev, config_index); if (err) { if (udev->ddesc.bNumConfigurations != 0) { if (!set_config_failed) { set_config_failed = 1; /* XXX try to re-enumerate the device */ err = usbd_req_re_enumerate(udev, NULL); if (err == 0) goto repeat_set_config; } DPRINTFN(0, "Failure selecting configuration index %u:" "%s, port %u, addr %u (ignored)\n", config_index, usbd_errstr(err), udev->port_no, udev->address); } /* * Some USB devices do not have any configurations. Ignore any * set config failures! */ err = 0; goto config_done; } if (!config_quirk && config_index + 1 < udev->ddesc.bNumConfigurations) { if ((udev->cdesc->bNumInterface < 2) && usbd_get_no_descriptors(udev->cdesc, UDESC_ENDPOINT) == 0) { DPRINTFN(0, "Found no endpoints, trying next config\n"); config_index++; goto repeat_set_config; } if (config_index == 0) { /* * Try to figure out if we have an * auto-install disk there: */ if (usb_iface_is_cdrom(udev, 0)) { DPRINTFN(0, "Found possible auto-install " "disk (trying next config)\n"); config_index++; goto repeat_set_config; } } } if (set_config_failed == 0 && config_index == 0 && usb_test_quirk(&uaa, UQ_MSC_NO_SYNC_CACHE) == 0 && usb_test_quirk(&uaa, UQ_MSC_NO_GETMAXLUN) == 0) { /* * Try to figure out if there are any MSC quirks we * should apply automatically: */ err = usb_msc_auto_quirk(udev, 0); if (err != 0) { set_config_failed = 1; goto repeat_set_config; } } config_done: DPRINTF("new dev (addr %d), udev=%p, parent_hub=%p\n", udev->address, udev, udev->parent_hub); /* register our device - we are ready */ usb_bus_port_set_device(bus, parent_hub ? parent_hub->hub->ports + port_index : NULL, udev, device_index); #if USB_HAVE_UGEN /* Symlink the ugen device name */ udev->ugen_symlink = usb_alloc_symlink(udev->ugen_name); /* Announce device */ printf("%s: <%s> at %s\n", udev->ugen_name, usb_get_manufacturer(udev), device_get_nameunit(udev->bus->bdev)); #endif #if USB_HAVE_DEVCTL usb_notify_addq("ATTACH", udev); #endif done: if (err) { /* * Free USB device and all subdevices, if any. */ usb_free_device(udev, 0); udev = NULL; } return (udev); } #if USB_HAVE_UGEN struct usb_fs_privdata * usb_make_dev(struct usb_device *udev, const char *devname, int ep, int fi, int rwmode, uid_t uid, gid_t gid, int mode) { struct usb_fs_privdata* pd; char buffer[32]; /* Store information to locate ourselves again later */ pd = malloc(sizeof(struct usb_fs_privdata), M_USBDEV, M_WAITOK | M_ZERO); pd->bus_index = device_get_unit(udev->bus->bdev); pd->dev_index = udev->device_index; pd->ep_addr = ep; pd->fifo_index = fi; pd->mode = rwmode; /* Now, create the device itself */ if (devname == NULL) { devname = buffer; snprintf(buffer, sizeof(buffer), USB_DEVICE_DIR "/%u.%u.%u", pd->bus_index, pd->dev_index, pd->ep_addr); } pd->cdev = make_dev(&usb_devsw, 0, uid, gid, mode, "%s", devname); if (pd->cdev == NULL) { DPRINTFN(0, "Failed to create device %s\n", devname); free(pd, M_USBDEV); return (NULL); } /* XXX setting si_drv1 and creating the device is not atomic! */ pd->cdev->si_drv1 = pd; return (pd); } void usb_destroy_dev(struct usb_fs_privdata *pd) { if (pd == NULL) return; destroy_dev(pd->cdev); free(pd, M_USBDEV); } static void usb_cdev_create(struct usb_device *udev) { struct usb_config_descriptor *cd; struct usb_endpoint_descriptor *ed; struct usb_descriptor *desc; struct usb_fs_privdata* pd; int inmode, outmode, inmask, outmask, mode; uint8_t ep; KASSERT(LIST_FIRST(&udev->pd_list) == NULL, ("stale cdev entries")); DPRINTFN(2, "Creating device nodes\n"); if (usbd_get_mode(udev) == USB_MODE_DEVICE) { inmode = FWRITE; outmode = FREAD; } else { /* USB_MODE_HOST */ inmode = FREAD; outmode = FWRITE; } inmask = 0; outmask = 0; desc = NULL; /* * Collect all used endpoint numbers instead of just * generating 16 static endpoints. */ cd = usbd_get_config_descriptor(udev); while ((desc = usb_desc_foreach(cd, desc))) { /* filter out all endpoint descriptors */ if ((desc->bDescriptorType == UDESC_ENDPOINT) && (desc->bLength >= sizeof(*ed))) { ed = (struct usb_endpoint_descriptor *)desc; /* update masks */ ep = ed->bEndpointAddress; if (UE_GET_DIR(ep) == UE_DIR_OUT) outmask |= 1 << UE_GET_ADDR(ep); else inmask |= 1 << UE_GET_ADDR(ep); } } /* Create all available endpoints except EP0 */ for (ep = 1; ep < 16; ep++) { mode = (inmask & (1 << ep)) ? inmode : 0; mode |= (outmask & (1 << ep)) ? outmode : 0; if (mode == 0) continue; /* no IN or OUT endpoint */ pd = usb_make_dev(udev, NULL, ep, 0, mode, UID_ROOT, GID_OPERATOR, 0600); if (pd != NULL) LIST_INSERT_HEAD(&udev->pd_list, pd, pd_next); } } static void usb_cdev_free(struct usb_device *udev) { struct usb_fs_privdata* pd; DPRINTFN(2, "Freeing device nodes\n"); while ((pd = LIST_FIRST(&udev->pd_list)) != NULL) { KASSERT(pd->cdev->si_drv1 == pd, ("privdata corrupt")); LIST_REMOVE(pd, pd_next); usb_destroy_dev(pd); } } #endif /*------------------------------------------------------------------------* * usb_free_device * * This function is NULL safe and will free an USB device and its * children devices, if any. * * Flag values: Reserved, set to zero. *------------------------------------------------------------------------*/ void usb_free_device(struct usb_device *udev, uint8_t flag) { struct usb_bus *bus; if (udev == NULL) return; /* already freed */ DPRINTFN(4, "udev=%p port=%d\n", udev, udev->port_no); bus = udev->bus; usb_set_device_state(udev, USB_STATE_DETACHED); #if USB_HAVE_DEVCTL usb_notify_addq("DETACH", udev); #endif #if USB_HAVE_UGEN printf("%s: <%s> at %s (disconnected)\n", udev->ugen_name, usb_get_manufacturer(udev), device_get_nameunit(bus->bdev)); /* Destroy UGEN symlink, if any */ if (udev->ugen_symlink) { usb_free_symlink(udev->ugen_symlink); udev->ugen_symlink = NULL; } #endif /* * Unregister our device first which will prevent any further * references: */ usb_bus_port_set_device(bus, udev->parent_hub ? udev->parent_hub->hub->ports + udev->port_index : NULL, NULL, USB_ROOT_HUB_ADDR); #if USB_HAVE_UGEN /* wait for all pending references to go away: */ mtx_lock(&usb_ref_lock); udev->refcount--; while (udev->refcount != 0) { cv_wait(&udev->ref_cv, &usb_ref_lock); } mtx_unlock(&usb_ref_lock); usb_destroy_dev(udev->ctrl_dev); #endif if (udev->flags.usb_mode == USB_MODE_DEVICE) { /* stop receiving any control transfers (Device Side Mode) */ usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); } /* the following will get the device unconfigured in software */ usb_unconfigure(udev, USB_UNCFG_FLAG_FREE_EP0); /* unsetup any leftover default USB transfers */ usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); /* template unsetup, if any */ (usb_temp_unsetup_p) (udev); /* * Make sure that our clear-stall messages are not queued * anywhere: */ USB_BUS_LOCK(udev->bus); usb_proc_mwait(&udev->bus->non_giant_callback_proc, &udev->cs_msg[0], &udev->cs_msg[1]); USB_BUS_UNLOCK(udev->bus); sx_destroy(&udev->ctrl_sx); sx_destroy(&udev->enum_sx); sx_destroy(&udev->sr_sx); cv_destroy(&udev->ctrlreq_cv); cv_destroy(&udev->ref_cv); mtx_destroy(&udev->device_mtx); #if USB_HAVE_UGEN KASSERT(LIST_FIRST(&udev->pd_list) == NULL, ("leaked cdev entries")); #endif /* Uninitialise device */ if (bus->methods->device_uninit != NULL) (bus->methods->device_uninit) (udev); /* free device */ free(udev->serial, M_USB); free(udev->manufacturer, M_USB); free(udev->product, M_USB); free(udev, M_USB); } /*------------------------------------------------------------------------* * usbd_get_iface * * This function is the safe way to get the USB interface structure * pointer by interface index. * * Return values: * NULL: Interface not present. * Else: Pointer to USB interface structure. *------------------------------------------------------------------------*/ struct usb_interface * usbd_get_iface(struct usb_device *udev, uint8_t iface_index) { struct usb_interface *iface = udev->ifaces + iface_index; if (iface_index >= udev->ifaces_max) return (NULL); return (iface); } /*------------------------------------------------------------------------* * usbd_find_descriptor * * This function will lookup the first descriptor that matches the * criteria given by the arguments "type" and "subtype". Descriptors * will only be searched within the interface having the index * "iface_index". If the "id" argument points to an USB descriptor, * it will be skipped before the search is started. This allows * searching for multiple descriptors using the same criteria. Else * the search is started after the interface descriptor. * * Return values: * NULL: End of descriptors * Else: A descriptor matching the criteria *------------------------------------------------------------------------*/ void * usbd_find_descriptor(struct usb_device *udev, void *id, uint8_t iface_index, uint8_t type, uint8_t type_mask, uint8_t subtype, uint8_t subtype_mask) { struct usb_descriptor *desc; struct usb_config_descriptor *cd; struct usb_interface *iface; cd = usbd_get_config_descriptor(udev); if (cd == NULL) { return (NULL); } if (id == NULL) { iface = usbd_get_iface(udev, iface_index); if (iface == NULL) { return (NULL); } id = usbd_get_interface_descriptor(iface); if (id == NULL) { return (NULL); } } desc = (void *)id; while ((desc = usb_desc_foreach(cd, desc))) { if (desc->bDescriptorType == UDESC_INTERFACE) { break; } if (((desc->bDescriptorType & type_mask) == type) && ((desc->bDescriptorSubtype & subtype_mask) == subtype)) { return (desc); } } return (NULL); } /*------------------------------------------------------------------------* * usb_devinfo * * This function will dump information from the device descriptor * belonging to the USB device pointed to by "udev", to the string * pointed to by "dst_ptr" having a maximum length of "dst_len" bytes * including the terminating zero. *------------------------------------------------------------------------*/ void usb_devinfo(struct usb_device *udev, char *dst_ptr, uint16_t dst_len) { struct usb_device_descriptor *udd = &udev->ddesc; uint16_t bcdDevice; uint16_t bcdUSB; bcdUSB = UGETW(udd->bcdUSB); bcdDevice = UGETW(udd->bcdDevice); if (udd->bDeviceClass != 0xFF) { snprintf(dst_ptr, dst_len, "%s %s, class %d/%d, rev %x.%02x/" "%x.%02x, addr %d", usb_get_manufacturer(udev), usb_get_product(udev), udd->bDeviceClass, udd->bDeviceSubClass, (bcdUSB >> 8), bcdUSB & 0xFF, (bcdDevice >> 8), bcdDevice & 0xFF, udev->address); } else { snprintf(dst_ptr, dst_len, "%s %s, rev %x.%02x/" "%x.%02x, addr %d", usb_get_manufacturer(udev), usb_get_product(udev), (bcdUSB >> 8), bcdUSB & 0xFF, (bcdDevice >> 8), bcdDevice & 0xFF, udev->address); } } #ifdef USB_VERBOSE /* * Descriptions of of known vendors and devices ("products"). */ struct usb_knowndev { uint16_t vendor; uint16_t product; uint32_t flags; const char *vendorname; const char *productname; }; #define USB_KNOWNDEV_NOPROD 0x01 /* match on vendor only */ #include "usbdevs.h" #include "usbdevs_data.h" #endif /* USB_VERBOSE */ static void usbd_set_device_strings(struct usb_device *udev) { struct usb_device_descriptor *udd = &udev->ddesc; #ifdef USB_VERBOSE const struct usb_knowndev *kdp; #endif char *temp_ptr; size_t temp_size; uint16_t vendor_id; uint16_t product_id; temp_ptr = (char *)udev->bus->scratch[0].data; temp_size = sizeof(udev->bus->scratch[0].data); vendor_id = UGETW(udd->idVendor); product_id = UGETW(udd->idProduct); /* get serial number string */ usbd_req_get_string_any(udev, NULL, temp_ptr, temp_size, udev->ddesc.iSerialNumber); udev->serial = strdup(temp_ptr, M_USB); /* get manufacturer string */ usbd_req_get_string_any(udev, NULL, temp_ptr, temp_size, udev->ddesc.iManufacturer); usb_trim_spaces(temp_ptr); if (temp_ptr[0] != '\0') udev->manufacturer = strdup(temp_ptr, M_USB); /* get product string */ usbd_req_get_string_any(udev, NULL, temp_ptr, temp_size, udev->ddesc.iProduct); usb_trim_spaces(temp_ptr); if (temp_ptr[0] != '\0') udev->product = strdup(temp_ptr, M_USB); #ifdef USB_VERBOSE if (udev->manufacturer == NULL || udev->product == NULL) { for (kdp = usb_knowndevs; kdp->vendorname != NULL; kdp++) { if (kdp->vendor == vendor_id && (kdp->product == product_id || (kdp->flags & USB_KNOWNDEV_NOPROD) != 0)) break; } if (kdp->vendorname != NULL) { /* XXX should use pointer to knowndevs string */ if (udev->manufacturer == NULL) { udev->manufacturer = strdup(kdp->vendorname, M_USB); } if (udev->product == NULL && (kdp->flags & USB_KNOWNDEV_NOPROD) == 0) { udev->product = strdup(kdp->productname, M_USB); } } } #endif /* Provide default strings if none were found */ if (udev->manufacturer == NULL) { snprintf(temp_ptr, temp_size, "vendor 0x%04x", vendor_id); udev->manufacturer = strdup(temp_ptr, M_USB); } if (udev->product == NULL) { snprintf(temp_ptr, temp_size, "product 0x%04x", product_id); udev->product = strdup(temp_ptr, M_USB); } } /* * Returns: * See: USB_MODE_XXX */ enum usb_hc_mode usbd_get_mode(struct usb_device *udev) { return (udev->flags.usb_mode); } /* * Returns: * See: USB_SPEED_XXX */ enum usb_dev_speed usbd_get_speed(struct usb_device *udev) { return (udev->speed); } uint32_t usbd_get_isoc_fps(struct usb_device *udev) { ; /* indent fix */ switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: return (1000); default: return (8000); } } struct usb_device_descriptor * usbd_get_device_descriptor(struct usb_device *udev) { if (udev == NULL) return (NULL); /* be NULL safe */ return (&udev->ddesc); } struct usb_config_descriptor * usbd_get_config_descriptor(struct usb_device *udev) { if (udev == NULL) return (NULL); /* be NULL safe */ return (udev->cdesc); } /*------------------------------------------------------------------------* * usb_test_quirk - test a device for a given quirk * * Return values: * 0: The USB device does not have the given quirk. * Else: The USB device has the given quirk. *------------------------------------------------------------------------*/ uint8_t usb_test_quirk(const struct usb_attach_arg *uaa, uint16_t quirk) { uint8_t found; uint8_t x; if (quirk == UQ_NONE) return (0); /* search the automatic per device quirks first */ for (x = 0; x != USB_MAX_AUTO_QUIRK; x++) { if (uaa->device->autoQuirk[x] == quirk) return (1); } /* search global quirk table, if any */ found = (usb_test_quirk_p) (&uaa->info, quirk); return (found); } struct usb_interface_descriptor * usbd_get_interface_descriptor(struct usb_interface *iface) { if (iface == NULL) return (NULL); /* be NULL safe */ return (iface->idesc); } uint8_t usbd_get_interface_altindex(struct usb_interface *iface) { return (iface->alt_index); } uint8_t usbd_get_bus_index(struct usb_device *udev) { return ((uint8_t)device_get_unit(udev->bus->bdev)); } uint8_t usbd_get_device_index(struct usb_device *udev) { return (udev->device_index); } #if USB_HAVE_DEVCTL static void usb_notify_addq(const char *type, struct usb_device *udev) { struct usb_interface *iface; struct sbuf *sb; int i; /* announce the device */ sb = sbuf_new_auto(); sbuf_printf(sb, #if USB_HAVE_UGEN "ugen=%s " "cdev=%s " #endif "vendor=0x%04x " "product=0x%04x " "devclass=0x%02x " "devsubclass=0x%02x " "sernum=\"%s\" " "release=0x%04x " "mode=%s " "port=%u " #if USB_HAVE_UGEN "parent=%s" #endif "", #if USB_HAVE_UGEN udev->ugen_name, udev->ugen_name, #endif UGETW(udev->ddesc.idVendor), UGETW(udev->ddesc.idProduct), udev->ddesc.bDeviceClass, udev->ddesc.bDeviceSubClass, usb_get_serial(udev), UGETW(udev->ddesc.bcdDevice), (udev->flags.usb_mode == USB_MODE_HOST) ? "host" : "device", udev->port_no #if USB_HAVE_UGEN , udev->parent_hub != NULL ? udev->parent_hub->ugen_name : device_get_nameunit(device_get_parent(udev->bus->bdev)) #endif ); sbuf_finish(sb); devctl_notify("USB", "DEVICE", type, sbuf_data(sb)); sbuf_delete(sb); /* announce each interface */ for (i = 0; i < USB_IFACE_MAX; i++) { iface = usbd_get_iface(udev, i); if (iface == NULL) break; /* end of interfaces */ if (iface->idesc == NULL) continue; /* no interface descriptor */ sb = sbuf_new_auto(); sbuf_printf(sb, #if USB_HAVE_UGEN "ugen=%s " "cdev=%s " #endif "vendor=0x%04x " "product=0x%04x " "devclass=0x%02x " "devsubclass=0x%02x " "sernum=\"%s\" " "release=0x%04x " "mode=%s " "interface=%d " "endpoints=%d " "intclass=0x%02x " "intsubclass=0x%02x " "intprotocol=0x%02x", #if USB_HAVE_UGEN udev->ugen_name, udev->ugen_name, #endif UGETW(udev->ddesc.idVendor), UGETW(udev->ddesc.idProduct), udev->ddesc.bDeviceClass, udev->ddesc.bDeviceSubClass, usb_get_serial(udev), UGETW(udev->ddesc.bcdDevice), (udev->flags.usb_mode == USB_MODE_HOST) ? "host" : "device", iface->idesc->bInterfaceNumber, iface->idesc->bNumEndpoints, iface->idesc->bInterfaceClass, iface->idesc->bInterfaceSubClass, iface->idesc->bInterfaceProtocol); sbuf_finish(sb); devctl_notify("USB", "INTERFACE", type, sbuf_data(sb)); sbuf_delete(sb); } } #endif #if USB_HAVE_UGEN /*------------------------------------------------------------------------* * usb_fifo_free_wrap * * This function will free the FIFOs. * * Description of "flag" argument: If the USB_UNCFG_FLAG_FREE_EP0 flag * is set and "iface_index" is set to "USB_IFACE_INDEX_ANY", we free * all FIFOs. If the USB_UNCFG_FLAG_FREE_EP0 flag is not set and * "iface_index" is set to "USB_IFACE_INDEX_ANY", we free all non * control endpoint FIFOs. If "iface_index" is not set to * "USB_IFACE_INDEX_ANY" the flag has no effect. *------------------------------------------------------------------------*/ static void usb_fifo_free_wrap(struct usb_device *udev, uint8_t iface_index, uint8_t flag) { struct usb_fifo *f; uint16_t i; /* * Free any USB FIFOs on the given interface: */ for (i = 0; i != USB_FIFO_MAX; i++) { f = udev->fifo[i]; if (f == NULL) { continue; } /* Check if the interface index matches */ if (iface_index == f->iface_index) { if (f->methods != &usb_ugen_methods) { /* * Don't free any non-generic FIFOs in * this case. */ continue; } if ((f->dev_ep_index == 0) && (f->fs_xfer == NULL)) { /* no need to free this FIFO */ continue; } } else if (iface_index == USB_IFACE_INDEX_ANY) { if ((f->methods == &usb_ugen_methods) && (f->dev_ep_index == 0) && (!(flag & USB_UNCFG_FLAG_FREE_EP0)) && (f->fs_xfer == NULL)) { /* no need to free this FIFO */ continue; } } else { /* no need to free this FIFO */ continue; } /* free this FIFO */ usb_fifo_free(f); } } #endif /*------------------------------------------------------------------------* * usb_peer_can_wakeup * * Return values: * 0: Peer cannot do resume signalling. * Else: Peer can do resume signalling. *------------------------------------------------------------------------*/ uint8_t usb_peer_can_wakeup(struct usb_device *udev) { const struct usb_config_descriptor *cdp; cdp = udev->cdesc; if ((cdp != NULL) && (udev->flags.usb_mode == USB_MODE_HOST)) { return (cdp->bmAttributes & UC_REMOTE_WAKEUP); } return (0); /* not supported */ } void usb_set_device_state(struct usb_device *udev, enum usb_dev_state state) { KASSERT(state < USB_STATE_MAX, ("invalid udev state")); DPRINTF("udev %p state %s -> %s\n", udev, usb_statestr(udev->state), usb_statestr(state)); udev->state = state; if (udev->bus->methods->device_state_change != NULL) (udev->bus->methods->device_state_change) (udev); } enum usb_dev_state usb_get_device_state(struct usb_device *udev) { if (udev == NULL) return (USB_STATE_DETACHED); return (udev->state); } uint8_t usbd_device_attached(struct usb_device *udev) { return (udev->state > USB_STATE_DETACHED); } /* The following function locks enumerating the given USB device. */ void usbd_enum_lock(struct usb_device *udev) { sx_xlock(&udev->enum_sx); sx_xlock(&udev->sr_sx); /* * NEWBUS LOCK NOTE: We should check if any parent SX locks * are locked before locking Giant. Else the lock can be * locked multiple times. */ mtx_lock(&Giant); } /* The following function unlocks enumerating the given USB device. */ void usbd_enum_unlock(struct usb_device *udev) { mtx_unlock(&Giant); sx_xunlock(&udev->enum_sx); sx_xunlock(&udev->sr_sx); } /* The following function locks suspend and resume. */ void usbd_sr_lock(struct usb_device *udev) { sx_xlock(&udev->sr_sx); /* * NEWBUS LOCK NOTE: We should check if any parent SX locks * are locked before locking Giant. Else the lock can be * locked multiple times. */ mtx_lock(&Giant); } /* The following function unlocks suspend and resume. */ void usbd_sr_unlock(struct usb_device *udev) { mtx_unlock(&Giant); sx_xunlock(&udev->sr_sx); } /* * The following function checks the enumerating lock for the given * USB device. */ uint8_t usbd_enum_is_locked(struct usb_device *udev) { return (sx_xlocked(&udev->enum_sx)); } /* * The following function is used to set the per-interface specific * plug and play information. The string referred to by the pnpinfo * argument can safely be freed after calling this function. The * pnpinfo of an interface will be reset at device detach or when * passing a NULL argument to this function. This function * returns zero on success, else a USB_ERR_XXX failure code. */ usb_error_t usbd_set_pnpinfo(struct usb_device *udev, uint8_t iface_index, const char *pnpinfo) { struct usb_interface *iface; iface = usbd_get_iface(udev, iface_index); if (iface == NULL) return (USB_ERR_INVAL); if (iface->pnpinfo != NULL) { free(iface->pnpinfo, M_USBDEV); iface->pnpinfo = NULL; } if (pnpinfo == NULL || pnpinfo[0] == 0) return (0); /* success */ iface->pnpinfo = strdup(pnpinfo, M_USBDEV); if (iface->pnpinfo == NULL) return (USB_ERR_NOMEM); return (0); /* success */ } usb_error_t usbd_add_dynamic_quirk(struct usb_device *udev, uint16_t quirk) { uint8_t x; for (x = 0; x != USB_MAX_AUTO_QUIRK; x++) { if (udev->autoQuirk[x] == 0 || udev->autoQuirk[x] == quirk) { udev->autoQuirk[x] = quirk; return (0); /* success */ } } return (USB_ERR_NOMEM); }