Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/viawd/@/netinet/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/viawd/@/netinet/sctp_pcb.c |
/*- * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/netinet/sctp_pcb.c 239452 2012-08-20 17:36:10Z tuexen $"); #include <netinet/sctp_os.h> #include <sys/proc.h> #include <netinet/sctp_var.h> #include <netinet/sctp_sysctl.h> #include <netinet/sctp_pcb.h> #include <netinet/sctputil.h> #include <netinet/sctp.h> #include <netinet/sctp_header.h> #include <netinet/sctp_asconf.h> #include <netinet/sctp_output.h> #include <netinet/sctp_timer.h> #include <netinet/sctp_bsd_addr.h> #include <netinet/sctp_dtrace_define.h> #include <netinet/udp.h> #ifdef INET6 #include <netinet6/ip6_var.h> #endif #include <sys/sched.h> #include <sys/smp.h> #include <sys/unistd.h> VNET_DEFINE(struct sctp_base_info, system_base_info); /* FIX: we don't handle multiple link local scopes */ /* "scopeless" replacement IN6_ARE_ADDR_EQUAL */ #ifdef INET6 int SCTP6_ARE_ADDR_EQUAL(struct sockaddr_in6 *a, struct sockaddr_in6 *b) { struct sockaddr_in6 tmp_a, tmp_b; memcpy(&tmp_a, a, sizeof(struct sockaddr_in6)); if (sa6_embedscope(&tmp_a, MODULE_GLOBAL(ip6_use_defzone)) != 0) { return (0); } memcpy(&tmp_b, b, sizeof(struct sockaddr_in6)); if (sa6_embedscope(&tmp_b, MODULE_GLOBAL(ip6_use_defzone)) != 0) { return (0); } return (IN6_ARE_ADDR_EQUAL(&tmp_a.sin6_addr, &tmp_b.sin6_addr)); } #endif void sctp_fill_pcbinfo(struct sctp_pcbinfo *spcb) { /* * We really don't need to lock this, but I will just because it * does not hurt. */ SCTP_INP_INFO_RLOCK(); spcb->ep_count = SCTP_BASE_INFO(ipi_count_ep); spcb->asoc_count = SCTP_BASE_INFO(ipi_count_asoc); spcb->laddr_count = SCTP_BASE_INFO(ipi_count_laddr); spcb->raddr_count = SCTP_BASE_INFO(ipi_count_raddr); spcb->chk_count = SCTP_BASE_INFO(ipi_count_chunk); spcb->readq_count = SCTP_BASE_INFO(ipi_count_readq); spcb->stream_oque = SCTP_BASE_INFO(ipi_count_strmoq); spcb->free_chunks = SCTP_BASE_INFO(ipi_free_chunks); SCTP_INP_INFO_RUNLOCK(); } /* * Addresses are added to VRF's (Virtual Router's). For BSD we * have only the default VRF 0. We maintain a hash list of * VRF's. Each VRF has its own list of sctp_ifn's. Each of * these has a list of addresses. When we add a new address * to a VRF we lookup the ifn/ifn_index, if the ifn does * not exist we create it and add it to the list of IFN's * within the VRF. Once we have the sctp_ifn, we add the * address to the list. So we look something like: * * hash-vrf-table * vrf-> ifn-> ifn -> ifn * vrf | * ... +--ifa-> ifa -> ifa * vrf * * We keep these separate lists since the SCTP subsystem will * point to these from its source address selection nets structure. * When an address is deleted it does not happen right away on * the SCTP side, it gets scheduled. What we do when a * delete happens is immediately remove the address from * the master list and decrement the refcount. As our * addip iterator works through and frees the src address * selection pointing to the sctp_ifa, eventually the refcount * will reach 0 and we will delete it. Note that it is assumed * that any locking on system level ifn/ifa is done at the * caller of these functions and these routines will only * lock the SCTP structures as they add or delete things. * * Other notes on VRF concepts. * - An endpoint can be in multiple VRF's * - An association lives within a VRF and only one VRF. * - Any incoming packet we can deduce the VRF for by * looking at the mbuf/pak inbound (for BSD its VRF=0 :D) * - Any downward send call or connect call must supply the * VRF via ancillary data or via some sort of set default * VRF socket option call (again for BSD no brainer since * the VRF is always 0). * - An endpoint may add multiple VRF's to it. * - Listening sockets can accept associations in any * of the VRF's they are in but the assoc will end up * in only one VRF (gotten from the packet or connect/send). * */ struct sctp_vrf * sctp_allocate_vrf(int vrf_id) { struct sctp_vrf *vrf = NULL; struct sctp_vrflist *bucket; /* First allocate the VRF structure */ vrf = sctp_find_vrf(vrf_id); if (vrf) { /* Already allocated */ return (vrf); } SCTP_MALLOC(vrf, struct sctp_vrf *, sizeof(struct sctp_vrf), SCTP_M_VRF); if (vrf == NULL) { /* No memory */ #ifdef INVARIANTS panic("No memory for VRF:%d", vrf_id); #endif return (NULL); } /* setup the VRF */ memset(vrf, 0, sizeof(struct sctp_vrf)); vrf->vrf_id = vrf_id; LIST_INIT(&vrf->ifnlist); vrf->total_ifa_count = 0; vrf->refcount = 0; /* now also setup table ids */ SCTP_INIT_VRF_TABLEID(vrf); /* Init the HASH of addresses */ vrf->vrf_addr_hash = SCTP_HASH_INIT(SCTP_VRF_ADDR_HASH_SIZE, &vrf->vrf_addr_hashmark); if (vrf->vrf_addr_hash == NULL) { /* No memory */ #ifdef INVARIANTS panic("No memory for VRF:%d", vrf_id); #endif SCTP_FREE(vrf, SCTP_M_VRF); return (NULL); } /* Add it to the hash table */ bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(vrf_id & SCTP_BASE_INFO(hashvrfmark))]; LIST_INSERT_HEAD(bucket, vrf, next_vrf); atomic_add_int(&SCTP_BASE_INFO(ipi_count_vrfs), 1); return (vrf); } struct sctp_ifn * sctp_find_ifn(void *ifn, uint32_t ifn_index) { struct sctp_ifn *sctp_ifnp; struct sctp_ifnlist *hash_ifn_head; /* * We assume the lock is held for the addresses if that's wrong * problems could occur :-) */ hash_ifn_head = &SCTP_BASE_INFO(vrf_ifn_hash)[(ifn_index & SCTP_BASE_INFO(vrf_ifn_hashmark))]; LIST_FOREACH(sctp_ifnp, hash_ifn_head, next_bucket) { if (sctp_ifnp->ifn_index == ifn_index) { return (sctp_ifnp); } if (sctp_ifnp->ifn_p && ifn && (sctp_ifnp->ifn_p == ifn)) { return (sctp_ifnp); } } return (NULL); } struct sctp_vrf * sctp_find_vrf(uint32_t vrf_id) { struct sctp_vrflist *bucket; struct sctp_vrf *liste; bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(vrf_id & SCTP_BASE_INFO(hashvrfmark))]; LIST_FOREACH(liste, bucket, next_vrf) { if (vrf_id == liste->vrf_id) { return (liste); } } return (NULL); } void sctp_free_vrf(struct sctp_vrf *vrf) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&vrf->refcount)) { if (vrf->vrf_addr_hash) { SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark); vrf->vrf_addr_hash = NULL; } /* We zero'd the count */ LIST_REMOVE(vrf, next_vrf); SCTP_FREE(vrf, SCTP_M_VRF); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_vrfs), 1); } } void sctp_free_ifn(struct sctp_ifn *sctp_ifnp) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&sctp_ifnp->refcount)) { /* We zero'd the count */ if (sctp_ifnp->vrf) { sctp_free_vrf(sctp_ifnp->vrf); } SCTP_FREE(sctp_ifnp, SCTP_M_IFN); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ifns), 1); } } void sctp_update_ifn_mtu(uint32_t ifn_index, uint32_t mtu) { struct sctp_ifn *sctp_ifnp; sctp_ifnp = sctp_find_ifn((void *)NULL, ifn_index); if (sctp_ifnp != NULL) { sctp_ifnp->ifn_mtu = mtu; } } void sctp_free_ifa(struct sctp_ifa *sctp_ifap) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&sctp_ifap->refcount)) { /* We zero'd the count */ if (sctp_ifap->ifn_p) { sctp_free_ifn(sctp_ifap->ifn_p); } SCTP_FREE(sctp_ifap, SCTP_M_IFA); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ifas), 1); } } static void sctp_delete_ifn(struct sctp_ifn *sctp_ifnp, int hold_addr_lock) { struct sctp_ifn *found; found = sctp_find_ifn(sctp_ifnp->ifn_p, sctp_ifnp->ifn_index); if (found == NULL) { /* Not in the list.. sorry */ return; } if (hold_addr_lock == 0) SCTP_IPI_ADDR_WLOCK(); LIST_REMOVE(sctp_ifnp, next_bucket); LIST_REMOVE(sctp_ifnp, next_ifn); SCTP_DEREGISTER_INTERFACE(sctp_ifnp->ifn_index, sctp_ifnp->registered_af); if (hold_addr_lock == 0) SCTP_IPI_ADDR_WUNLOCK(); /* Take away the reference, and possibly free it */ sctp_free_ifn(sctp_ifnp); } void sctp_mark_ifa_addr_down(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap = NULL; SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find sctp_ifap for address\n"); goto out; } if (sctp_ifap->ifn_p == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA has no IFN - can't mark unuseable\n"); goto out; } if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) != 0) { SCTPDBG(SCTP_DEBUG_PCB4, "IFN %s of IFA not the same as %s\n", sctp_ifap->ifn_p->ifn_name, if_name); goto out; } } else { if (sctp_ifap->ifn_p->ifn_index != ifn_index) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA owned by ifn_index:%d down command for ifn_index:%d - ignored\n", sctp_ifap->ifn_p->ifn_index, ifn_index); goto out; } } sctp_ifap->localifa_flags &= (~SCTP_ADDR_VALID); sctp_ifap->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE; out: SCTP_IPI_ADDR_RUNLOCK(); } void sctp_mark_ifa_addr_up(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap = NULL; SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find sctp_ifap for address\n"); goto out; } if (sctp_ifap->ifn_p == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA has no IFN - can't mark unuseable\n"); goto out; } if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) != 0) { SCTPDBG(SCTP_DEBUG_PCB4, "IFN %s of IFA not the same as %s\n", sctp_ifap->ifn_p->ifn_name, if_name); goto out; } } else { if (sctp_ifap->ifn_p->ifn_index != ifn_index) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA owned by ifn_index:%d down command for ifn_index:%d - ignored\n", sctp_ifap->ifn_p->ifn_index, ifn_index); goto out; } } sctp_ifap->localifa_flags &= (~SCTP_ADDR_IFA_UNUSEABLE); sctp_ifap->localifa_flags |= SCTP_ADDR_VALID; out: SCTP_IPI_ADDR_RUNLOCK(); } /*- * Add an ifa to an ifn. * Register the interface as necessary. * NOTE: ADDR write lock MUST be held. */ static void sctp_add_ifa_to_ifn(struct sctp_ifn *sctp_ifnp, struct sctp_ifa *sctp_ifap) { int ifa_af; LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa); sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifap->ifn_p->refcount, 1); /* update address counts */ sctp_ifnp->ifa_count++; ifa_af = sctp_ifap->address.sa.sa_family; switch (ifa_af) { #ifdef INET case AF_INET: sctp_ifnp->num_v4++; break; #endif #ifdef INET6 case AF_INET6: sctp_ifnp->num_v6++; break; #endif default: break; } if (sctp_ifnp->ifa_count == 1) { /* register the new interface */ SCTP_REGISTER_INTERFACE(sctp_ifnp->ifn_index, ifa_af); sctp_ifnp->registered_af = ifa_af; } } /*- * Remove an ifa from its ifn. * If no more addresses exist, remove the ifn too. Otherwise, re-register * the interface based on the remaining address families left. * NOTE: ADDR write lock MUST be held. */ static void sctp_remove_ifa_from_ifn(struct sctp_ifa *sctp_ifap) { LIST_REMOVE(sctp_ifap, next_ifa); if (sctp_ifap->ifn_p) { /* update address counts */ sctp_ifap->ifn_p->ifa_count--; switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: sctp_ifap->ifn_p->num_v4--; break; #endif #ifdef INET6 case AF_INET6: sctp_ifap->ifn_p->num_v6--; break; #endif default: break; } if (LIST_EMPTY(&sctp_ifap->ifn_p->ifalist)) { /* remove the ifn, possibly freeing it */ sctp_delete_ifn(sctp_ifap->ifn_p, SCTP_ADDR_LOCKED); } else { /* re-register address family type, if needed */ if ((sctp_ifap->ifn_p->num_v6 == 0) && (sctp_ifap->ifn_p->registered_af == AF_INET6)) { SCTP_DEREGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET6); SCTP_REGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET); sctp_ifap->ifn_p->registered_af = AF_INET; } else if ((sctp_ifap->ifn_p->num_v4 == 0) && (sctp_ifap->ifn_p->registered_af == AF_INET)) { SCTP_DEREGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET); SCTP_REGISTER_INTERFACE(sctp_ifap->ifn_p->ifn_index, AF_INET6); sctp_ifap->ifn_p->registered_af = AF_INET6; } /* free the ifn refcount */ sctp_free_ifn(sctp_ifap->ifn_p); } sctp_ifap->ifn_p = NULL; } } struct sctp_ifa * sctp_add_addr_to_vrf(uint32_t vrf_id, void *ifn, uint32_t ifn_index, uint32_t ifn_type, const char *if_name, void *ifa, struct sockaddr *addr, uint32_t ifa_flags, int dynamic_add) { struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifnp = NULL; struct sctp_ifa *sctp_ifap = NULL; struct sctp_ifalist *hash_addr_head; struct sctp_ifnlist *hash_ifn_head; uint32_t hash_of_addr; int new_ifn_af = 0; #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB4, "vrf_id 0x%x: adding address: ", vrf_id); SCTPDBG_ADDR(SCTP_DEBUG_PCB4, addr); #endif SCTP_IPI_ADDR_WLOCK(); sctp_ifnp = sctp_find_ifn(ifn, ifn_index); if (sctp_ifnp) { vrf = sctp_ifnp->vrf; } else { vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { vrf = sctp_allocate_vrf(vrf_id); if (vrf == NULL) { SCTP_IPI_ADDR_WUNLOCK(); return (NULL); } } } if (sctp_ifnp == NULL) { /* * build one and add it, can't hold lock until after malloc * done though. */ SCTP_IPI_ADDR_WUNLOCK(); SCTP_MALLOC(sctp_ifnp, struct sctp_ifn *, sizeof(struct sctp_ifn), SCTP_M_IFN); if (sctp_ifnp == NULL) { #ifdef INVARIANTS panic("No memory for IFN"); #endif return (NULL); } memset(sctp_ifnp, 0, sizeof(struct sctp_ifn)); sctp_ifnp->ifn_index = ifn_index; sctp_ifnp->ifn_p = ifn; sctp_ifnp->ifn_type = ifn_type; sctp_ifnp->refcount = 0; sctp_ifnp->vrf = vrf; atomic_add_int(&vrf->refcount, 1); sctp_ifnp->ifn_mtu = SCTP_GATHER_MTU_FROM_IFN_INFO(ifn, ifn_index, addr->sa_family); if (if_name != NULL) { snprintf(sctp_ifnp->ifn_name, SCTP_IFNAMSIZ, "%s", if_name); } else { snprintf(sctp_ifnp->ifn_name, SCTP_IFNAMSIZ, "%s", "unknown"); } hash_ifn_head = &SCTP_BASE_INFO(vrf_ifn_hash)[(ifn_index & SCTP_BASE_INFO(vrf_ifn_hashmark))]; LIST_INIT(&sctp_ifnp->ifalist); SCTP_IPI_ADDR_WLOCK(); LIST_INSERT_HEAD(hash_ifn_head, sctp_ifnp, next_bucket); LIST_INSERT_HEAD(&vrf->ifnlist, sctp_ifnp, next_ifn); atomic_add_int(&SCTP_BASE_INFO(ipi_count_ifns), 1); new_ifn_af = 1; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap) { /* Hmm, it already exists? */ if ((sctp_ifap->ifn_p) && (sctp_ifap->ifn_p->ifn_index == ifn_index)) { SCTPDBG(SCTP_DEBUG_PCB4, "Using existing ifn %s (0x%x) for ifa %p\n", sctp_ifap->ifn_p->ifn_name, ifn_index, sctp_ifap); if (new_ifn_af) { /* Remove the created one that we don't want */ sctp_delete_ifn(sctp_ifnp, SCTP_ADDR_LOCKED); } if (sctp_ifap->localifa_flags & SCTP_BEING_DELETED) { /* easy to solve, just switch back to active */ SCTPDBG(SCTP_DEBUG_PCB4, "Clearing deleted ifa flag\n"); sctp_ifap->localifa_flags = SCTP_ADDR_VALID; sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifap->ifn_p->refcount, 1); } exit_stage_left: SCTP_IPI_ADDR_WUNLOCK(); return (sctp_ifap); } else { if (sctp_ifap->ifn_p) { /* * The last IFN gets the address, remove the * old one */ SCTPDBG(SCTP_DEBUG_PCB4, "Moving ifa %p from %s (0x%x) to %s (0x%x)\n", sctp_ifap, sctp_ifap->ifn_p->ifn_name, sctp_ifap->ifn_p->ifn_index, if_name, ifn_index); /* remove the address from the old ifn */ sctp_remove_ifa_from_ifn(sctp_ifap); /* move the address over to the new ifn */ sctp_add_ifa_to_ifn(sctp_ifnp, sctp_ifap); goto exit_stage_left; } else { /* repair ifnp which was NULL ? */ sctp_ifap->localifa_flags = SCTP_ADDR_VALID; SCTPDBG(SCTP_DEBUG_PCB4, "Repairing ifn %p for ifa %p\n", sctp_ifnp, sctp_ifap); sctp_add_ifa_to_ifn(sctp_ifnp, sctp_ifap); } goto exit_stage_left; } } SCTP_IPI_ADDR_WUNLOCK(); SCTP_MALLOC(sctp_ifap, struct sctp_ifa *, sizeof(struct sctp_ifa), SCTP_M_IFA); if (sctp_ifap == NULL) { #ifdef INVARIANTS panic("No memory for IFA"); #endif return (NULL); } memset(sctp_ifap, 0, sizeof(struct sctp_ifa)); sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifnp->refcount, 1); sctp_ifap->vrf_id = vrf_id; sctp_ifap->ifa = ifa; memcpy(&sctp_ifap->address, addr, addr->sa_len); sctp_ifap->localifa_flags = SCTP_ADDR_VALID | SCTP_ADDR_DEFER_USE; sctp_ifap->flags = ifa_flags; /* Set scope */ switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)&sctp_ifap->address.sin; if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) || (IN4_ISLOOPBACK_ADDRESS(&sin->sin_addr))) { sctp_ifap->src_is_loop = 1; } if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { sctp_ifap->src_is_priv = 1; } sctp_ifnp->num_v4++; if (new_ifn_af) new_ifn_af = AF_INET; break; } #endif #ifdef INET6 case AF_INET6: { /* ok to use deprecated addresses? */ struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&sctp_ifap->address.sin6; if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) || (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))) { sctp_ifap->src_is_loop = 1; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { sctp_ifap->src_is_priv = 1; } sctp_ifnp->num_v6++; if (new_ifn_af) new_ifn_af = AF_INET6; break; } #endif default: new_ifn_af = 0; break; } hash_of_addr = sctp_get_ifa_hash_val(&sctp_ifap->address.sa); if ((sctp_ifap->src_is_priv == 0) && (sctp_ifap->src_is_loop == 0)) { sctp_ifap->src_is_glob = 1; } SCTP_IPI_ADDR_WLOCK(); hash_addr_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)]; LIST_INSERT_HEAD(hash_addr_head, sctp_ifap, next_bucket); sctp_ifap->refcount = 1; LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa); sctp_ifnp->ifa_count++; vrf->total_ifa_count++; atomic_add_int(&SCTP_BASE_INFO(ipi_count_ifas), 1); if (new_ifn_af) { SCTP_REGISTER_INTERFACE(ifn_index, new_ifn_af); sctp_ifnp->registered_af = new_ifn_af; } SCTP_IPI_ADDR_WUNLOCK(); if (dynamic_add) { /* * Bump up the refcount so that when the timer completes it * will drop back down. */ struct sctp_laddr *wi; atomic_add_int(&sctp_ifap->refcount, 1); wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { /* * Gak, what can we do? We have lost an address * change can you say HOSED? */ SCTPDBG(SCTP_DEBUG_PCB4, "Lost an address change?\n"); /* Opps, must decrement the count */ sctp_del_addr_from_vrf(vrf_id, addr, ifn_index, if_name); return (NULL); } SCTP_INCR_LADDR_COUNT(); bzero(wi, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = sctp_ifap; wi->action = SCTP_ADD_IP_ADDRESS; SCTP_WQ_ADDR_LOCK(); LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); SCTP_WQ_ADDR_UNLOCK(); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); } else { /* it's ready for use */ sctp_ifap->localifa_flags &= ~SCTP_ADDR_DEFER_USE; } return (sctp_ifap); } void sctp_del_addr_from_vrf(uint32_t vrf_id, struct sockaddr *addr, uint32_t ifn_index, const char *if_name) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap = NULL; SCTP_IPI_ADDR_WLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out_now; } #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB4, "vrf_id 0x%x: deleting address:", vrf_id); SCTPDBG_ADDR(SCTP_DEBUG_PCB4, addr); #endif sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap) { /* Validate the delete */ if (sctp_ifap->ifn_p) { int valid = 0; /*- * The name has priority over the ifn_index * if its given. We do this especially for * panda who might recycle indexes fast. */ if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) == 0) { /* They match its a correct delete */ valid = 1; } } if (!valid) { /* last ditch check ifn_index */ if (ifn_index == sctp_ifap->ifn_p->ifn_index) { valid = 1; } } if (!valid) { SCTPDBG(SCTP_DEBUG_PCB4, "ifn:%d ifname:%s does not match addresses\n", ifn_index, ((if_name == NULL) ? "NULL" : if_name)); SCTPDBG(SCTP_DEBUG_PCB4, "ifn:%d ifname:%s - ignoring delete\n", sctp_ifap->ifn_p->ifn_index, sctp_ifap->ifn_p->ifn_name); SCTP_IPI_ADDR_WUNLOCK(); return; } } SCTPDBG(SCTP_DEBUG_PCB4, "Deleting ifa %p\n", sctp_ifap); sctp_ifap->localifa_flags &= SCTP_ADDR_VALID; sctp_ifap->localifa_flags |= SCTP_BEING_DELETED; vrf->total_ifa_count--; LIST_REMOVE(sctp_ifap, next_bucket); sctp_remove_ifa_from_ifn(sctp_ifap); } #ifdef SCTP_DEBUG else { SCTPDBG(SCTP_DEBUG_PCB4, "Del Addr-ifn:%d Could not find address:", ifn_index); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr); } #endif out_now: SCTP_IPI_ADDR_WUNLOCK(); if (sctp_ifap) { struct sctp_laddr *wi; wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { /* * Gak, what can we do? We have lost an address * change can you say HOSED? */ SCTPDBG(SCTP_DEBUG_PCB4, "Lost an address change?\n"); /* Oops, must decrement the count */ sctp_free_ifa(sctp_ifap); return; } SCTP_INCR_LADDR_COUNT(); bzero(wi, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = sctp_ifap; wi->action = SCTP_DEL_IP_ADDRESS; SCTP_WQ_ADDR_LOCK(); /* * Should this really be a tailq? As it is we will process * the newest first :-0 */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); SCTP_WQ_ADDR_UNLOCK(); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); } return; } static struct sctp_tcb * sctp_tcb_special_locate(struct sctp_inpcb **inp_p, struct sockaddr *from, struct sockaddr *to, struct sctp_nets **netp, uint32_t vrf_id) { /**** ASSUMES THE CALLER holds the INP_INFO_RLOCK */ /* * If we support the TCP model, then we must now dig through to see * if we can find our endpoint in the list of tcp ep's. */ uint16_t lport, rport; struct sctppcbhead *ephead; struct sctp_inpcb *inp; struct sctp_laddr *laddr; struct sctp_tcb *stcb; struct sctp_nets *net; if ((to == NULL) || (from == NULL)) { return (NULL); } switch (to->sa_family) { #ifdef INET case AF_INET: if (from->sa_family == AF_INET) { lport = ((struct sockaddr_in *)to)->sin_port; rport = ((struct sockaddr_in *)from)->sin_port; } else { return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (from->sa_family == AF_INET6) { lport = ((struct sockaddr_in6 *)to)->sin6_port; rport = ((struct sockaddr_in6 *)from)->sin6_port; } else { return (NULL); } break; #endif default: return (NULL); } ephead = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR((lport | rport), SCTP_BASE_INFO(hashtcpmark))]; /* * Ok now for each of the guys in this bucket we must look and see: * - Does the remote port match. - Does there single association's * addresses match this address (to). If so we update p_ep to point * to this ep and return the tcb from it. */ LIST_FOREACH(inp, ephead, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if (lport != inp->sctp_lport) { SCTP_INP_RUNLOCK(inp); continue; } if (inp->def_vrf_id != vrf_id) { SCTP_INP_RUNLOCK(inp); continue; } /* check to see if the ep has one of the addresses */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* We are NOT bound all, so look further */ int match = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __FUNCTION__); continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "ifa being deleted\n"); continue; } if (laddr->ifa->address.sa.sa_family == to->sa_family) { /* see if it matches */ #ifdef INET if (from->sa_family == AF_INET) { struct sockaddr_in *intf_addr, *sin; intf_addr = &laddr->ifa->address.sin; sin = (struct sockaddr_in *)to; if (sin->sin_addr.s_addr == intf_addr->sin_addr.s_addr) { match = 1; break; } } #endif #ifdef INET6 if (from->sa_family == AF_INET6) { struct sockaddr_in6 *intf_addr6; struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *) to; intf_addr6 = &laddr->ifa->address.sin6; if (SCTP6_ARE_ADDR_EQUAL(sin6, intf_addr6)) { match = 1; break; } } #endif } } if (match == 0) { /* This endpoint does not have this address */ SCTP_INP_RUNLOCK(inp); continue; } } /* * Ok if we hit here the ep has the address, does it hold * the tcb? */ stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); continue; } SCTP_TCB_LOCK(stcb); if (stcb->rport != rport) { /* remote port does not match. */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } /* Does this TCB have a matching address? */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._l_addr.sa.sa_family != from->sa_family) { /* not the same family, can't be a match */ continue; } switch (from->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *)&net->ro._l_addr; rsin = (struct sockaddr_in *)from; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } /* * Update the endpoint * pointer */ *inp_p = inp; SCTP_INP_RUNLOCK(inp); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)from; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } /* * Update the endpoint * pointer */ *inp_p = inp; SCTP_INP_RUNLOCK(inp); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); } return (NULL); } static int sctp_does_stcb_own_this_addr(struct sctp_tcb *stcb, struct sockaddr *to) { int loopback_scope, ipv4_local_scope, local_scope, site_scope; int ipv4_addr_legal, ipv6_addr_legal; struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; loopback_scope = stcb->asoc.loopback_scope; ipv4_local_scope = stcb->asoc.ipv4_local_scope; local_scope = stcb->asoc.local_scope; site_scope = stcb->asoc.site_scope; ipv4_addr_legal = ipv6_addr_legal = 0; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ipv6_addr_legal = 1; if (SCTP_IPV6_V6ONLY(stcb->sctp_ep) == 0) { ipv4_addr_legal = 1; } } else { ipv4_addr_legal = 1; } SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { /* no vrf, no addresses */ SCTP_IPI_ADDR_RUNLOCK(); return (0); } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if ((loopback_scope == 0) && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) { /* * We allow pending addresses, where * we have sent an asconf-add to be * considered valid. */ continue; } switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (ipv4_addr_legal) { struct sockaddr_in *sin, *rsin; sin = &sctp_ifa->address.sin; rsin = (struct sockaddr_in *)to; if ((ipv4_local_scope == 0) && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { continue; } if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } } break; #endif #ifdef INET6 case AF_INET6: if (ipv6_addr_legal) { struct sockaddr_in6 *sin6, *rsin6; sin6 = &sctp_ifa->address.sin6; rsin6 = (struct sockaddr_in6 *)to; if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } } break; #endif default: /* TSNH */ break; } } } } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (sctp_is_addr_restricted(stcb, laddr->ifa) && (!sctp_is_addr_pending(stcb, laddr->ifa))) { /* * We allow pending addresses, where we have * sent an asconf-add to be considered * valid. */ continue; } if (laddr->ifa->address.sa.sa_family != to->sa_family) { continue; } switch (to->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *)&laddr->ifa->address.sin; rsin = (struct sockaddr_in *)to; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&laddr->ifa->address.sin6; rsin6 = (struct sockaddr_in6 *)to; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } break; } #endif default: /* TSNH */ break; } } } SCTP_IPI_ADDR_RUNLOCK(); return (0); } /* * rules for use * * 1) If I return a NULL you must decrement any INP ref cnt. 2) If I find an * stcb, both will be locked (locked_tcb and stcb) but decrement will be done * (if locked == NULL). 3) Decrement happens on return ONLY if locked == * NULL. */ struct sctp_tcb * sctp_findassociation_ep_addr(struct sctp_inpcb **inp_p, struct sockaddr *remote, struct sctp_nets **netp, struct sockaddr *local, struct sctp_tcb *locked_tcb) { struct sctpasochead *head; struct sctp_inpcb *inp; struct sctp_tcb *stcb = NULL; struct sctp_nets *net; uint16_t rport; inp = *inp_p; if (remote->sa_family == AF_INET) { rport = (((struct sockaddr_in *)remote)->sin_port); } else if (remote->sa_family == AF_INET6) { rport = (((struct sockaddr_in6 *)remote)->sin6_port); } else { return (NULL); } if (locked_tcb) { /* * UN-lock so we can do proper locking here this occurs when * called from load_addresses_from_init. */ atomic_add_int(&locked_tcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(locked_tcb); } SCTP_INP_INFO_RLOCK(); if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { /*- * Now either this guy is our listener or it's the * connector. If it is the one that issued the connect, then * it's only chance is to be the first TCB in the list. If * it is the acceptor, then do the special_lookup to hash * and find the real inp. */ if ((inp->sctp_socket) && (inp->sctp_socket->so_qlimit)) { /* to is peer addr, from is my addr */ stcb = sctp_tcb_special_locate(inp_p, remote, local, netp, inp->def_vrf_id); if ((stcb != NULL) && (locked_tcb == NULL)) { /* we have a locked tcb, lower refcount */ SCTP_INP_DECR_REF(inp); } if ((locked_tcb != NULL) && (locked_tcb != stcb)) { SCTP_INP_RLOCK(locked_tcb->sctp_ep); SCTP_TCB_LOCK(locked_tcb); atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); SCTP_INP_RUNLOCK(locked_tcb->sctp_ep); } SCTP_INP_INFO_RUNLOCK(); return (stcb); } else { SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { goto null_return; } stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { goto null_return; } SCTP_TCB_LOCK(stcb); if (stcb->rport != rport) { /* remote port does not match. */ SCTP_TCB_UNLOCK(stcb); goto null_return; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); goto null_return; } if (local && !sctp_does_stcb_own_this_addr(stcb, local)) { SCTP_TCB_UNLOCK(stcb); goto null_return; } /* now look at the list of remote addresses */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { #ifdef INVARIANTS if (net == (TAILQ_NEXT(net, sctp_next))) { panic("Corrupt net list"); } #endif if (net->ro._l_addr.sa.sa_family != remote->sa_family) { /* not the same family */ continue; } switch (remote->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *) &net->ro._l_addr; rsin = (struct sockaddr_in *)remote; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)remote; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); } } else { SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { goto null_return; } head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(rport, inp->sctp_hashmark)]; if (head == NULL) { goto null_return; } LIST_FOREACH(stcb, head, sctp_tcbhash) { if (stcb->rport != rport) { /* remote port does not match */ continue; } SCTP_TCB_LOCK(stcb); if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); continue; } if (local && !sctp_does_stcb_own_this_addr(stcb, local)) { SCTP_TCB_UNLOCK(stcb); continue; } /* now look at the list of remote addresses */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { #ifdef INVARIANTS if (net == (TAILQ_NEXT(net, sctp_next))) { panic("Corrupt net list"); } #endif if (net->ro._l_addr.sa.sa_family != remote->sa_family) { /* not the same family */ continue; } switch (remote->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *) &net->ro._l_addr; rsin = (struct sockaddr_in *)remote; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *) &net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)remote; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); } } null_return: /* clean up for returning null */ if (locked_tcb) { SCTP_TCB_LOCK(locked_tcb); atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); /* not found */ return (NULL); } /* * Find an association for a specific endpoint using the association id given * out in the COMM_UP notification */ struct sctp_tcb * sctp_findasoc_ep_asocid_locked(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock) { /* * Use my the assoc_id to find a endpoint */ struct sctpasochead *head; struct sctp_tcb *stcb; uint32_t id; if (inp == NULL) { SCTP_PRINTF("TSNH ep_associd\n"); return (NULL); } if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_PRINTF("TSNH ep_associd0\n"); return (NULL); } id = (uint32_t) asoc_id; head = &inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(id, inp->hashasocidmark)]; if (head == NULL) { /* invalid id TSNH */ SCTP_PRINTF("TSNH ep_associd1\n"); return (NULL); } LIST_FOREACH(stcb, head, sctp_tcbasocidhash) { if (stcb->asoc.assoc_id == id) { if (inp != stcb->sctp_ep) { /* * some other guy has the same id active (id * collision ??). */ SCTP_PRINTF("TSNH ep_associd2\n"); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { continue; } if (want_lock) { SCTP_TCB_LOCK(stcb); } return (stcb); } } return (NULL); } struct sctp_tcb * sctp_findassociation_ep_asocid(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock) { struct sctp_tcb *stcb; SCTP_INP_RLOCK(inp); stcb = sctp_findasoc_ep_asocid_locked(inp, asoc_id, want_lock); SCTP_INP_RUNLOCK(inp); return (stcb); } static struct sctp_inpcb * sctp_endpoint_probe(struct sockaddr *nam, struct sctppcbhead *head, uint16_t lport, uint32_t vrf_id) { struct sctp_inpcb *inp; struct sctp_laddr *laddr; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sockaddr_in6 *intf_addr6; #endif int fnd; /* * Endpoint probe expects that the INP_INFO is locked. */ #ifdef INET sin = NULL; #endif #ifdef INET6 sin6 = NULL; #endif switch (nam->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)nam; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; break; #endif default: /* unsupported family */ return (NULL); } if (head == NULL) return (NULL); LIST_FOREACH(inp, head, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) && (inp->sctp_lport == lport)) { /* got it */ #ifdef INET if ((nam->sa_family == AF_INET) && (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* IPv4 on a IPv6 socket with ONLY IPv6 set */ SCTP_INP_RUNLOCK(inp); continue; } #endif #ifdef INET6 /* A V6 address and the endpoint is NOT bound V6 */ if (nam->sa_family == AF_INET6 && (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { SCTP_INP_RUNLOCK(inp); continue; } #endif /* does a VRF id match? */ fnd = 0; if (inp->def_vrf_id == vrf_id) fnd = 1; SCTP_INP_RUNLOCK(inp); if (!fnd) continue; return (inp); } SCTP_INP_RUNLOCK(inp); } switch (nam->sa_family) { #ifdef INET case AF_INET: if (sin->sin_addr.s_addr == INADDR_ANY) { /* Can't hunt for one that has no address specified */ return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* Can't hunt for one that has no address specified */ return (NULL); } break; #endif default: break; } /* * ok, not bound to all so see if we can find a EP bound to this * address. */ LIST_FOREACH(inp, head, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL)) { SCTP_INP_RUNLOCK(inp); continue; } /* * Ok this could be a likely candidate, look at all of its * addresses */ if (inp->sctp_lport != lport) { SCTP_INP_RUNLOCK(inp); continue; } /* does a VRF id match? */ fnd = 0; if (inp->def_vrf_id == vrf_id) fnd = 1; if (!fnd) { SCTP_INP_RUNLOCK(inp); continue; } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __FUNCTION__); continue; } SCTPDBG(SCTP_DEBUG_PCB1, "Ok laddr->ifa:%p is possible, ", laddr->ifa); if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "Huh IFA being deleted\n"); continue; } if (laddr->ifa->address.sa.sa_family == nam->sa_family) { /* possible, see if it matches */ switch (nam->sa_family) { #ifdef INET case AF_INET: if (sin->sin_addr.s_addr == laddr->ifa->address.sin.sin_addr.s_addr) { SCTP_INP_RUNLOCK(inp); return (inp); } break; #endif #ifdef INET6 case AF_INET6: intf_addr6 = &laddr->ifa->address.sin6; if (SCTP6_ARE_ADDR_EQUAL(sin6, intf_addr6)) { SCTP_INP_RUNLOCK(inp); return (inp); } break; #endif } } } SCTP_INP_RUNLOCK(inp); } return (NULL); } static struct sctp_inpcb * sctp_isport_inuse(struct sctp_inpcb *inp, uint16_t lport, uint32_t vrf_id) { struct sctppcbhead *head; struct sctp_inpcb *t_inp; int fnd; head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; LIST_FOREACH(t_inp, head, sctp_hash) { if (t_inp->sctp_lport != lport) { continue; } /* is it in the VRF in question */ fnd = 0; if (t_inp->def_vrf_id == vrf_id) fnd = 1; if (!fnd) continue; /* This one is in use. */ /* check the v6/v4 binding issue */ if ((t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(t_inp)) { if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { /* collision in V6 space */ return (t_inp); } else { /* inp is BOUND_V4 no conflict */ continue; } } else if (t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { /* t_inp is bound v4 and v6, conflict always */ return (t_inp); } else { /* t_inp is bound only V4 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* no conflict */ continue; } /* else fall through to conflict */ } return (t_inp); } return (NULL); } int sctp_swap_inpcb_for_listen(struct sctp_inpcb *inp) { /* For 1-2-1 with port reuse */ struct sctppcbhead *head; struct sctp_inpcb *tinp; if (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE)) { /* only works with port reuse on */ return (-1); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) { return (0); } SCTP_INP_RUNLOCK(inp); head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(inp->sctp_lport, SCTP_BASE_INFO(hashmark))]; /* Kick out all non-listeners to the TCP hash */ LIST_FOREACH(tinp, head, sctp_hash) { if (tinp->sctp_lport != inp->sctp_lport) { continue; } if (tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { continue; } if (tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { continue; } if (tinp->sctp_socket->so_qlimit) { continue; } SCTP_INP_WLOCK(tinp); LIST_REMOVE(tinp, sctp_hash); head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR(tinp->sctp_lport, SCTP_BASE_INFO(hashtcpmark))]; tinp->sctp_flags |= SCTP_PCB_FLAGS_IN_TCPPOOL; LIST_INSERT_HEAD(head, tinp, sctp_hash); SCTP_INP_WUNLOCK(tinp); } SCTP_INP_WLOCK(inp); /* Pull from where he was */ LIST_REMOVE(inp, sctp_hash); inp->sctp_flags &= ~SCTP_PCB_FLAGS_IN_TCPPOOL; head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(inp->sctp_lport, SCTP_BASE_INFO(hashmark))]; LIST_INSERT_HEAD(head, inp, sctp_hash); SCTP_INP_WUNLOCK(inp); SCTP_INP_RLOCK(inp); return (0); } struct sctp_inpcb * sctp_pcb_findep(struct sockaddr *nam, int find_tcp_pool, int have_lock, uint32_t vrf_id) { /* * First we check the hash table to see if someone has this port * bound with just the port. */ struct sctp_inpcb *inp; struct sctppcbhead *head; int lport; unsigned int i; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif switch (nam->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)nam; lport = sin->sin_port; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; lport = sin6->sin6_port; break; #endif default: return (NULL); } /* * I could cheat here and just cast to one of the types but we will * do it right. It also provides the check against an Unsupported * type too. */ /* Find the head of the ALLADDR chain */ if (have_lock == 0) { SCTP_INP_INFO_RLOCK(); } head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; inp = sctp_endpoint_probe(nam, head, lport, vrf_id); /* * If the TCP model exists it could be that the main listening * endpoint is gone but there still exists a connected socket for * this guy. If so we can return the first one that we find. This * may NOT be the correct one so the caller should be wary on the * returned INP. Currently the only caller that sets find_tcp_pool * is in bindx where we are verifying that a user CAN bind the * address. He either has bound it already, or someone else has, or * its open to bind, so this is good enough. */ if (inp == NULL && find_tcp_pool) { for (i = 0; i < SCTP_BASE_INFO(hashtcpmark) + 1; i++) { head = &SCTP_BASE_INFO(sctp_tcpephash)[i]; inp = sctp_endpoint_probe(nam, head, lport, vrf_id); if (inp) { break; } } } if (inp) { SCTP_INP_INCR_REF(inp); } if (have_lock == 0) { SCTP_INP_INFO_RUNLOCK(); } return (inp); } /* * Find an association for an endpoint with the pointer to whom you want to * send to and the endpoint pointer. The address can be IPv4 or IPv6. We may * need to change the *to to some other struct like a mbuf... */ struct sctp_tcb * sctp_findassociation_addr_sa(struct sockaddr *to, struct sockaddr *from, struct sctp_inpcb **inp_p, struct sctp_nets **netp, int find_tcp_pool, uint32_t vrf_id) { struct sctp_inpcb *inp = NULL; struct sctp_tcb *retval; SCTP_INP_INFO_RLOCK(); if (find_tcp_pool) { if (inp_p != NULL) { retval = sctp_tcb_special_locate(inp_p, from, to, netp, vrf_id); } else { retval = sctp_tcb_special_locate(&inp, from, to, netp, vrf_id); } if (retval != NULL) { SCTP_INP_INFO_RUNLOCK(); return (retval); } } inp = sctp_pcb_findep(to, 0, 1, vrf_id); if (inp_p != NULL) { *inp_p = inp; } SCTP_INP_INFO_RUNLOCK(); if (inp == NULL) { return (NULL); } /* * ok, we have an endpoint, now lets find the assoc for it (if any) * we now place the source address or from in the to of the find * endpoint call. Since in reality this chain is used from the * inbound packet side. */ if (inp_p != NULL) { retval = sctp_findassociation_ep_addr(inp_p, from, netp, to, NULL); } else { retval = sctp_findassociation_ep_addr(&inp, from, netp, to, NULL); } return retval; } /* * This routine will grub through the mbuf that is a INIT or INIT-ACK and * find all addresses that the sender has specified in any address list. Each * address will be used to lookup the TCB and see if one exits. */ static struct sctp_tcb * sctp_findassociation_special_addr(struct mbuf *m, int offset, struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp, struct sockaddr *dest) { struct sctp_paramhdr *phdr, parm_buf; struct sctp_tcb *retval; uint32_t ptype, plen; #ifdef INET struct sockaddr_in sin4; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif #ifdef INET memset(&sin4, 0, sizeof(sin4)); sin4.sin_len = sizeof(sin4); sin4.sin_family = AF_INET; sin4.sin_port = sh->src_port; #endif #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; sin6.sin6_port = sh->src_port; #endif retval = NULL; offset += sizeof(struct sctp_init_chunk); phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); while (phdr != NULL) { /* now we must see if we want the parameter */ ptype = ntohs(phdr->param_type); plen = ntohs(phdr->param_length); if (plen == 0) { break; } #ifdef INET if (ptype == SCTP_IPV4_ADDRESS && plen == sizeof(struct sctp_ipv4addr_param)) { /* Get the rest of the address */ struct sctp_ipv4addr_param ip4_parm, *p4; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ip4_parm, min(plen, sizeof(ip4_parm))); if (phdr == NULL) { return (NULL); } p4 = (struct sctp_ipv4addr_param *)phdr; memcpy(&sin4.sin_addr, &p4->addr, sizeof(p4->addr)); /* look it up */ retval = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&sin4, netp, dest, NULL); if (retval != NULL) { return (retval); } } #endif #ifdef INET6 if (ptype == SCTP_IPV6_ADDRESS && plen == sizeof(struct sctp_ipv6addr_param)) { /* Get the rest of the address */ struct sctp_ipv6addr_param ip6_parm, *p6; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ip6_parm, min(plen, sizeof(ip6_parm))); if (phdr == NULL) { return (NULL); } p6 = (struct sctp_ipv6addr_param *)phdr; memcpy(&sin6.sin6_addr, &p6->addr, sizeof(p6->addr)); /* look it up */ retval = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&sin6, netp, dest, NULL); if (retval != NULL) { return (retval); } } #endif offset += SCTP_SIZE32(plen); phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); } return (NULL); } static struct sctp_tcb * sctp_findassoc_by_vtag(struct sockaddr *from, struct sockaddr *to, uint32_t vtag, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint16_t rport, uint16_t lport, int skip_src_check, uint32_t vrf_id, uint32_t remote_tag) { /* * Use my vtag to hash. If we find it we then verify the source addr * is in the assoc. If all goes well we save a bit on rec of a * packet. */ struct sctpasochead *head; struct sctp_nets *net; struct sctp_tcb *stcb; SCTP_INP_INFO_RLOCK(); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(vtag, SCTP_BASE_INFO(hashasocmark))]; if (head == NULL) { /* invalid vtag */ SCTP_INP_INFO_RUNLOCK(); return (NULL); } LIST_FOREACH(stcb, head, sctp_asocs) { SCTP_INP_RLOCK(stcb->sctp_ep); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(stcb->sctp_ep); continue; } if (stcb->sctp_ep->def_vrf_id != vrf_id) { SCTP_INP_RUNLOCK(stcb->sctp_ep); continue; } SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(stcb->sctp_ep); if (stcb->asoc.my_vtag == vtag) { /* candidate */ if (stcb->rport != rport) { SCTP_TCB_UNLOCK(stcb); continue; } if (stcb->sctp_ep->sctp_lport != lport) { SCTP_TCB_UNLOCK(stcb); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); continue; } /* RRS:Need toaddr check here */ if (sctp_does_stcb_own_this_addr(stcb, to) == 0) { /* Endpoint does not own this address */ SCTP_TCB_UNLOCK(stcb); continue; } if (remote_tag) { /* * If we have both vtags that's all we match * on */ if (stcb->asoc.peer_vtag == remote_tag) { /* * If both tags match we consider it * conclusive and check NO * source/destination addresses */ goto conclusive; } } if (skip_src_check) { conclusive: if (from) { *netp = sctp_findnet(stcb, from); } else { *netp = NULL; /* unknown */ } if (inp_p) *inp_p = stcb->sctp_ep; SCTP_INP_INFO_RUNLOCK(); return (stcb); } net = sctp_findnet(stcb, from); if (net) { /* yep its him. */ *netp = net; SCTP_STAT_INCR(sctps_vtagexpress); *inp_p = stcb->sctp_ep; SCTP_INP_INFO_RUNLOCK(); return (stcb); } else { /* * not him, this should only happen in rare * cases so I peg it. */ SCTP_STAT_INCR(sctps_vtagbogus); } } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_INFO_RUNLOCK(); return (NULL); } /* * Find an association with the pointer to the inbound IP packet. This can be * a IPv4 or IPv6 packet. */ struct sctp_tcb * sctp_findassociation_addr(struct mbuf *m, int offset, struct sctphdr *sh, struct sctp_chunkhdr *ch, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id) { int find_tcp_pool; struct ip *iph; struct sctp_tcb *retval; struct sockaddr_storage to_store, from_store; struct sockaddr *to = (struct sockaddr *)&to_store; struct sockaddr *from = (struct sockaddr *)&from_store; struct sctp_inpcb *inp; iph = mtod(m, struct ip *); switch (iph->ip_v) { #ifdef INET case IPVERSION: { /* its IPv4 */ struct sockaddr_in *from4; from4 = (struct sockaddr_in *)&from_store; bzero(from4, sizeof(*from4)); from4->sin_family = AF_INET; from4->sin_len = sizeof(struct sockaddr_in); from4->sin_addr.s_addr = iph->ip_src.s_addr; from4->sin_port = sh->src_port; break; } #endif #ifdef INET6 case IPV6_VERSION >> 4: { /* its IPv6 */ struct ip6_hdr *ip6; struct sockaddr_in6 *from6; ip6 = mtod(m, struct ip6_hdr *); from6 = (struct sockaddr_in6 *)&from_store; bzero(from6, sizeof(*from6)); from6->sin6_family = AF_INET6; from6->sin6_len = sizeof(struct sockaddr_in6); from6->sin6_addr = ip6->ip6_src; from6->sin6_port = sh->src_port; /* Get the scopes in properly to the sin6 addr's */ sa6_embedscope(from6, MODULE_GLOBAL(ip6_use_defzone)); break; } #endif default: /* Currently not supported. */ return (NULL); } switch (iph->ip_v) { #ifdef INET case IPVERSION: { /* its IPv4 */ struct sockaddr_in *to4; to4 = (struct sockaddr_in *)&to_store; bzero(to4, sizeof(*to4)); to4->sin_family = AF_INET; to4->sin_len = sizeof(struct sockaddr_in); to4->sin_addr.s_addr = iph->ip_dst.s_addr; to4->sin_port = sh->dest_port; break; } #endif #ifdef INET6 case IPV6_VERSION >> 4: { /* its IPv6 */ struct ip6_hdr *ip6; struct sockaddr_in6 *to6; ip6 = mtod(m, struct ip6_hdr *); to6 = (struct sockaddr_in6 *)&to_store; bzero(to6, sizeof(*to6)); to6->sin6_family = AF_INET6; to6->sin6_len = sizeof(struct sockaddr_in6); to6->sin6_addr = ip6->ip6_dst; to6->sin6_port = sh->dest_port; /* Get the scopes in properly to the sin6 addr's */ sa6_embedscope(to6, MODULE_GLOBAL(ip6_use_defzone)); break; } #endif default: /* TSNH */ break; } if (sh->v_tag) { /* we only go down this path if vtag is non-zero */ retval = sctp_findassoc_by_vtag(from, to, ntohl(sh->v_tag), inp_p, netp, sh->src_port, sh->dest_port, 0, vrf_id, 0); if (retval) { return (retval); } } find_tcp_pool = 0; if ((ch->chunk_type != SCTP_INITIATION) && (ch->chunk_type != SCTP_INITIATION_ACK) && (ch->chunk_type != SCTP_COOKIE_ACK) && (ch->chunk_type != SCTP_COOKIE_ECHO)) { /* Other chunk types go to the tcp pool. */ find_tcp_pool = 1; } if (inp_p) { retval = sctp_findassociation_addr_sa(to, from, inp_p, netp, find_tcp_pool, vrf_id); inp = *inp_p; } else { retval = sctp_findassociation_addr_sa(to, from, &inp, netp, find_tcp_pool, vrf_id); } SCTPDBG(SCTP_DEBUG_PCB1, "retval:%p inp:%p\n", retval, inp); if (retval == NULL && inp) { /* Found a EP but not this address */ if ((ch->chunk_type == SCTP_INITIATION) || (ch->chunk_type == SCTP_INITIATION_ACK)) { /*- * special hook, we do NOT return linp or an * association that is linked to an existing * association that is under the TCP pool (i.e. no * listener exists). The endpoint finding routine * will always find a listener before examining the * TCP pool. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) { if (inp_p) { *inp_p = NULL; } return (NULL); } retval = sctp_findassociation_special_addr(m, offset, sh, &inp, netp, to); if (inp_p != NULL) { *inp_p = inp; } } } SCTPDBG(SCTP_DEBUG_PCB1, "retval is %p\n", retval); return (retval); } /* * lookup an association by an ASCONF lookup address. * if the lookup address is 0.0.0.0 or ::0, use the vtag to do the lookup */ struct sctp_tcb * sctp_findassociation_ep_asconf(struct mbuf *m, int offset, struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id) { struct sctp_tcb *stcb; struct sockaddr_storage local_store, remote_store; struct sockaddr *to; struct ip *iph; struct sctp_paramhdr parm_buf, *phdr; int ptype; int zero_address = 0; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct ip6_hdr *ip6; struct sockaddr_in6 *sin6; #endif memset(&local_store, 0, sizeof(local_store)); memset(&remote_store, 0, sizeof(remote_store)); to = (struct sockaddr *)&local_store; /* First get the destination address setup too. */ iph = mtod(m, struct ip *); switch (iph->ip_v) { #ifdef INET case IPVERSION: /* its IPv4 */ sin = (struct sockaddr_in *)&local_store; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = sh->dest_port; sin->sin_addr.s_addr = iph->ip_dst.s_addr; break; #endif #ifdef INET6 case IPV6_VERSION >> 4: /* its IPv6 */ ip6 = mtod(m, struct ip6_hdr *); sin6 = (struct sockaddr_in6 *)&local_store; sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = sh->dest_port; sin6->sin6_addr = ip6->ip6_dst; break; #endif default: return NULL; } phdr = sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &parm_buf, sizeof(struct sctp_paramhdr)); if (phdr == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf lookup addr\n", __FUNCTION__); return NULL; } ptype = (int)((uint32_t) ntohs(phdr->param_type)); /* get the correlation address */ switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: { /* ipv6 address param */ struct sctp_ipv6addr_param *p6, p6_buf; if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv6addr_param)) { return NULL; } p6 = (struct sctp_ipv6addr_param *)sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &p6_buf.ph, sizeof(*p6)); if (p6 == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v6 lookup addr\n", __FUNCTION__); return (NULL); } sin6 = (struct sockaddr_in6 *)&remote_store; sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = sh->src_port; memcpy(&sin6->sin6_addr, &p6->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; break; } #endif #ifdef INET case SCTP_IPV4_ADDRESS: { /* ipv4 address param */ struct sctp_ipv4addr_param *p4, p4_buf; if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv4addr_param)) { return NULL; } p4 = (struct sctp_ipv4addr_param *)sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &p4_buf.ph, sizeof(*p4)); if (p4 == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v4 lookup addr\n", __FUNCTION__); return (NULL); } sin = (struct sockaddr_in *)&remote_store; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = sh->src_port; memcpy(&sin->sin_addr, &p4->addr, sizeof(struct in_addr)); if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; break; } #endif default: /* invalid address param type */ return NULL; } if (zero_address) { stcb = sctp_findassoc_by_vtag(NULL, to, ntohl(sh->v_tag), inp_p, netp, sh->src_port, sh->dest_port, 1, vrf_id, 0); if (stcb != NULL) { SCTP_INP_DECR_REF(*inp_p); } } else { stcb = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&remote_store, netp, to, NULL); } return (stcb); } /* * allocate a sctp_inpcb and setup a temporary binding to a port/all * addresses. This way if we don't get a bind we by default pick a ephemeral * port with all addresses bound. */ int sctp_inpcb_alloc(struct socket *so, uint32_t vrf_id) { /* * we get called when a new endpoint starts up. We need to allocate * the sctp_inpcb structure from the zone and init it. Mark it as * unbound and find a port that we can use as an ephemeral with * INADDR_ANY. If the user binds later no problem we can then add in * the specific addresses. And setup the default parameters for the * EP. */ int i, error; struct sctp_inpcb *inp; struct sctp_pcb *m; struct timeval time; sctp_sharedkey_t *null_key; error = 0; SCTP_INP_INFO_WLOCK(); inp = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_ep), struct sctp_inpcb); if (inp == NULL) { SCTP_PRINTF("Out of SCTP-INPCB structures - no resources\n"); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); return (ENOBUFS); } /* zap it */ bzero(inp, sizeof(*inp)); /* bump generations */ /* setup socket pointers */ inp->sctp_socket = so; inp->ip_inp.inp.inp_socket = so; #ifdef INET6 if (MODULE_GLOBAL(ip6_auto_flowlabel)) { inp->ip_inp.inp.inp_flags |= IN6P_AUTOFLOWLABEL; } #endif inp->sctp_associd_counter = 1; inp->partial_delivery_point = SCTP_SB_LIMIT_RCV(so) >> SCTP_PARTIAL_DELIVERY_SHIFT; inp->sctp_frag_point = SCTP_DEFAULT_MAXSEGMENT; inp->sctp_cmt_on_off = SCTP_BASE_SYSCTL(sctp_cmt_on_off); inp->sctp_ecn_enable = SCTP_BASE_SYSCTL(sctp_ecn_enable); /* init the small hash table we use to track asocid <-> tcb */ inp->sctp_asocidhash = SCTP_HASH_INIT(SCTP_STACK_VTAG_HASH_SIZE, &inp->hashasocidmark); if (inp->sctp_asocidhash == NULL) { SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_INP_INFO_WUNLOCK(); return (ENOBUFS); } #ifdef IPSEC { struct inpcbpolicy *pcb_sp = NULL; error = ipsec_init_policy(so, &pcb_sp); /* Arrange to share the policy */ inp->ip_inp.inp.inp_sp = pcb_sp; ((struct in6pcb *)(&inp->ip_inp.inp))->in6p_sp = pcb_sp; } if (error != 0) { SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_INP_INFO_WUNLOCK(); return error; } #endif /* IPSEC */ SCTP_INCR_EP_COUNT(); inp->ip_inp.inp.inp_ip_ttl = MODULE_GLOBAL(ip_defttl); SCTP_INP_INFO_WUNLOCK(); so->so_pcb = (caddr_t)inp; if (SCTP_SO_TYPE(so) == SOCK_SEQPACKET) { /* UDP style socket */ inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE | SCTP_PCB_FLAGS_UNBOUND); /* Be sure it is NON-BLOCKING IO for UDP */ /* SCTP_SET_SO_NBIO(so); */ } else if (SCTP_SO_TYPE(so) == SOCK_STREAM) { /* TCP style socket */ inp->sctp_flags = (SCTP_PCB_FLAGS_TCPTYPE | SCTP_PCB_FLAGS_UNBOUND); /* Be sure we have blocking IO by default */ SCTP_CLEAR_SO_NBIO(so); } else { /* * unsupported socket type (RAW, etc)- in case we missed it * in protosw */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EOPNOTSUPP); so->so_pcb = NULL; SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); return (EOPNOTSUPP); } if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_1) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_2) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } inp->sctp_tcbhash = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_pcbtblsize), &inp->sctp_hashmark); if (inp->sctp_tcbhash == NULL) { SCTP_PRINTF("Out of SCTP-INPCB->hashinit - no resources\n"); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); so->so_pcb = NULL; SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); return (ENOBUFS); } inp->def_vrf_id = vrf_id; SCTP_INP_INFO_WLOCK(); SCTP_INP_LOCK_INIT(inp); INP_LOCK_INIT(&inp->ip_inp.inp, "inp", "sctpinp"); SCTP_INP_READ_INIT(inp); SCTP_ASOC_CREATE_LOCK_INIT(inp); /* lock the new ep */ SCTP_INP_WLOCK(inp); /* add it to the info area */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(listhead), inp, sctp_list); SCTP_INP_INFO_WUNLOCK(); TAILQ_INIT(&inp->read_queue); LIST_INIT(&inp->sctp_addr_list); LIST_INIT(&inp->sctp_asoc_list); #ifdef SCTP_TRACK_FREED_ASOCS /* TEMP CODE */ LIST_INIT(&inp->sctp_asoc_free_list); #endif /* Init the timer structure for signature change */ SCTP_OS_TIMER_INIT(&inp->sctp_ep.signature_change.timer); inp->sctp_ep.signature_change.type = SCTP_TIMER_TYPE_NEWCOOKIE; /* now init the actual endpoint default data */ m = &inp->sctp_ep; /* setup the base timeout information */ m->sctp_timeoutticks[SCTP_TIMER_SEND] = SEC_TO_TICKS(SCTP_SEND_SEC); /* needed ? */ m->sctp_timeoutticks[SCTP_TIMER_INIT] = SEC_TO_TICKS(SCTP_INIT_SEC); /* needed ? */ m->sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_delayed_sack_time_default)); m->sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_heartbeat_interval_default)); m->sctp_timeoutticks[SCTP_TIMER_PMTU] = SEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_pmtu_raise_time_default)); m->sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] = SEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_shutdown_guard_time_default)); m->sctp_timeoutticks[SCTP_TIMER_SIGNATURE] = SEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_secret_lifetime_default)); /* all max/min max are in ms */ m->sctp_maxrto = SCTP_BASE_SYSCTL(sctp_rto_max_default); m->sctp_minrto = SCTP_BASE_SYSCTL(sctp_rto_min_default); m->initial_rto = SCTP_BASE_SYSCTL(sctp_rto_initial_default); m->initial_init_rto_max = SCTP_BASE_SYSCTL(sctp_init_rto_max_default); m->sctp_sack_freq = SCTP_BASE_SYSCTL(sctp_sack_freq_default); m->max_open_streams_intome = MAX_SCTP_STREAMS; m->max_init_times = SCTP_BASE_SYSCTL(sctp_init_rtx_max_default); m->max_send_times = SCTP_BASE_SYSCTL(sctp_assoc_rtx_max_default); m->def_net_failure = SCTP_BASE_SYSCTL(sctp_path_rtx_max_default); m->def_net_pf_threshold = SCTP_BASE_SYSCTL(sctp_path_pf_threshold); m->sctp_sws_sender = SCTP_SWS_SENDER_DEF; m->sctp_sws_receiver = SCTP_SWS_RECEIVER_DEF; m->max_burst = SCTP_BASE_SYSCTL(sctp_max_burst_default); m->fr_max_burst = SCTP_BASE_SYSCTL(sctp_fr_max_burst_default); m->sctp_default_cc_module = SCTP_BASE_SYSCTL(sctp_default_cc_module); m->sctp_default_ss_module = SCTP_BASE_SYSCTL(sctp_default_ss_module); /* number of streams to pre-open on a association */ m->pre_open_stream_count = SCTP_BASE_SYSCTL(sctp_nr_outgoing_streams_default); /* Add adaptation cookie */ m->adaptation_layer_indicator = 0x504C5253; /* seed random number generator */ m->random_counter = 1; m->store_at = SCTP_SIGNATURE_SIZE; SCTP_READ_RANDOM(m->random_numbers, sizeof(m->random_numbers)); sctp_fill_random_store(m); /* Minimum cookie size */ m->size_of_a_cookie = (sizeof(struct sctp_init_msg) * 2) + sizeof(struct sctp_state_cookie); m->size_of_a_cookie += SCTP_SIGNATURE_SIZE; /* Setup the initial secret */ (void)SCTP_GETTIME_TIMEVAL(&time); m->time_of_secret_change = time.tv_sec; for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) { m->secret_key[0][i] = sctp_select_initial_TSN(m); } sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL); /* How long is a cookie good for ? */ m->def_cookie_life = MSEC_TO_TICKS(SCTP_BASE_SYSCTL(sctp_valid_cookie_life_default)); /* * Initialize authentication parameters */ m->local_hmacs = sctp_default_supported_hmaclist(); m->local_auth_chunks = sctp_alloc_chunklist(); m->default_dscp = 0; #ifdef INET6 m->default_flowlabel = 0; #endif m->port = 0; /* encapsulation disabled by default */ sctp_auth_set_default_chunks(m->local_auth_chunks); LIST_INIT(&m->shared_keys); /* add default NULL key as key id 0 */ null_key = sctp_alloc_sharedkey(); sctp_insert_sharedkey(&m->shared_keys, null_key); SCTP_INP_WUNLOCK(inp); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 12); #endif return (error); } void sctp_move_pcb_and_assoc(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp, struct sctp_tcb *stcb) { struct sctp_nets *net; uint16_t lport, rport; struct sctppcbhead *head; struct sctp_laddr *laddr, *oladdr; atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(old_inp); SCTP_INP_WLOCK(new_inp); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); new_inp->sctp_ep.time_of_secret_change = old_inp->sctp_ep.time_of_secret_change; memcpy(new_inp->sctp_ep.secret_key, old_inp->sctp_ep.secret_key, sizeof(old_inp->sctp_ep.secret_key)); new_inp->sctp_ep.current_secret_number = old_inp->sctp_ep.current_secret_number; new_inp->sctp_ep.last_secret_number = old_inp->sctp_ep.last_secret_number; new_inp->sctp_ep.size_of_a_cookie = old_inp->sctp_ep.size_of_a_cookie; /* make it so new data pours into the new socket */ stcb->sctp_socket = new_inp->sctp_socket; stcb->sctp_ep = new_inp; /* Copy the port across */ lport = new_inp->sctp_lport = old_inp->sctp_lport; rport = stcb->rport; /* Pull the tcb from the old association */ LIST_REMOVE(stcb, sctp_tcbhash); LIST_REMOVE(stcb, sctp_tcblist); if (stcb->asoc.in_asocid_hash) { LIST_REMOVE(stcb, sctp_tcbasocidhash); } /* Now insert the new_inp into the TCP connected hash */ head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR((lport | rport), SCTP_BASE_INFO(hashtcpmark))]; LIST_INSERT_HEAD(head, new_inp, sctp_hash); /* Its safe to access */ new_inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND; /* Now move the tcb into the endpoint list */ LIST_INSERT_HEAD(&new_inp->sctp_asoc_list, stcb, sctp_tcblist); /* * Question, do we even need to worry about the ep-hash since we * only have one connection? Probably not :> so lets get rid of it * and not suck up any kernel memory in that. */ if (stcb->asoc.in_asocid_hash) { struct sctpasochead *lhd; lhd = &new_inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(stcb->asoc.assoc_id, new_inp->hashasocidmark)]; LIST_INSERT_HEAD(lhd, stcb, sctp_tcbasocidhash); } /* Ok. Let's restart timer. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, new_inp, stcb, net); } SCTP_INP_INFO_WUNLOCK(); if (new_inp->sctp_tcbhash != NULL) { SCTP_HASH_FREE(new_inp->sctp_tcbhash, new_inp->sctp_hashmark); new_inp->sctp_tcbhash = NULL; } if ((new_inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* Subset bound, so copy in the laddr list from the old_inp */ LIST_FOREACH(oladdr, &old_inp->sctp_addr_list, sctp_nxt_addr) { laddr = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (laddr == NULL) { /* * Gak, what can we do? This assoc is really * HOSED. We probably should send an abort * here. */ SCTPDBG(SCTP_DEBUG_PCB1, "Association hosed in TCP model, out of laddr memory\n"); continue; } SCTP_INCR_LADDR_COUNT(); bzero(laddr, sizeof(*laddr)); (void)SCTP_GETTIME_TIMEVAL(&laddr->start_time); laddr->ifa = oladdr->ifa; atomic_add_int(&laddr->ifa->refcount, 1); LIST_INSERT_HEAD(&new_inp->sctp_addr_list, laddr, sctp_nxt_addr); new_inp->laddr_count++; if (oladdr == stcb->asoc.last_used_address) { stcb->asoc.last_used_address = laddr; } } } /* * Now any running timers need to be adjusted since we really don't * care if they are running or not just blast in the new_inp into * all of them. */ stcb->asoc.dack_timer.ep = (void *)new_inp; stcb->asoc.asconf_timer.ep = (void *)new_inp; stcb->asoc.strreset_timer.ep = (void *)new_inp; stcb->asoc.shut_guard_timer.ep = (void *)new_inp; stcb->asoc.autoclose_timer.ep = (void *)new_inp; stcb->asoc.delayed_event_timer.ep = (void *)new_inp; stcb->asoc.delete_prim_timer.ep = (void *)new_inp; /* now what about the nets? */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { net->pmtu_timer.ep = (void *)new_inp; net->hb_timer.ep = (void *)new_inp; net->rxt_timer.ep = (void *)new_inp; } SCTP_INP_WUNLOCK(new_inp); SCTP_INP_WUNLOCK(old_inp); } /* sctp_ifap is used to bypass normal local address validation checks */ int sctp_inpcb_bind(struct socket *so, struct sockaddr *addr, struct sctp_ifa *sctp_ifap, struct thread *p) { /* bind a ep to a socket address */ struct sctppcbhead *head; struct sctp_inpcb *inp, *inp_tmp; struct inpcb *ip_inp; int port_reuse_active = 0; int bindall; uint16_t lport; int error; uint32_t vrf_id; lport = 0; error = 0; bindall = 1; inp = (struct sctp_inpcb *)so->so_pcb; ip_inp = (struct inpcb *)so->so_pcb; #ifdef SCTP_DEBUG if (addr) { SCTPDBG(SCTP_DEBUG_PCB1, "Bind called port:%d\n", ntohs(((struct sockaddr_in *)addr)->sin_port)); SCTPDBG(SCTP_DEBUG_PCB1, "Addr :"); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr); } #endif if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) { /* already did a bind, subsequent binds NOT allowed ! */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } #ifdef INVARIANTS if (p == NULL) panic("null proc/thread"); #endif if (addr != NULL) { switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; /* IPV6_V6ONLY socket? */ if (SCTP_IPV6_V6ONLY(ip_inp)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } if (addr->sa_len != sizeof(*sin)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } sin = (struct sockaddr_in *)addr; lport = sin->sin_port; /* * For LOOPBACK the prison_local_ip4() call * will transmute the ip address to the * proper value. */ if (p && (error = prison_local_ip4(p->td_ucred, &sin->sin_addr)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } if (sin->sin_addr.s_addr != INADDR_ANY) { bindall = 0; } break; } #endif #ifdef INET6 case AF_INET6: { /* * Only for pure IPv6 Address. (No IPv4 * Mapped!) */ struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (addr->sa_len != sizeof(*sin6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } lport = sin6->sin6_port; /* * For LOOPBACK the prison_local_ip6() call * will transmute the ipv6 address to the * proper value. */ if (p && (error = prison_local_ip6(p->td_ucred, &sin6->sin6_addr, (SCTP_IPV6_V6ONLY(inp) != 0))) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { bindall = 0; /* KAME hack: embed scopeid */ if (sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } } /* this must be cleared for ifa_ifwithaddr() */ sin6->sin6_scope_id = 0; break; } #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EAFNOSUPPORT); return (EAFNOSUPPORT); } } SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); /* Setup a vrf_id to be the default for the non-bind-all case. */ vrf_id = inp->def_vrf_id; /* increase our count due to the unlock we do */ SCTP_INP_INCR_REF(inp); if (lport) { /* * Did the caller specify a port? if so we must see if a ep * already has this one bound. */ /* got to be root to get at low ports */ if (ntohs(lport) < IPPORT_RESERVED) { if (p && (error = priv_check(p, PRIV_NETINET_RESERVEDPORT) )) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (error); } } if (p == NULL) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } SCTP_INP_WUNLOCK(inp); if (bindall) { vrf_id = inp->def_vrf_id; inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id); if (inp_tmp != NULL) { /* * lock guy returned and lower count note * that we are not bound so inp_tmp should * NEVER be inp. And it is this inp * (inp_tmp) that gets the reference bump, * so we must lower it. */ SCTP_INP_DECR_REF(inp_tmp); /* unlock info */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { /* * Ok, must be one-2-one and * allowing port re-use */ port_reuse_active = 1; goto continue_anyway; } SCTP_INP_DECR_REF(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } } else { inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id); if (inp_tmp != NULL) { /* * lock guy returned and lower count note * that we are not bound so inp_tmp should * NEVER be inp. And it is this inp * (inp_tmp) that gets the reference bump, * so we must lower it. */ SCTP_INP_DECR_REF(inp_tmp); /* unlock info */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { /* * Ok, must be one-2-one and * allowing port re-use */ port_reuse_active = 1; goto continue_anyway; } SCTP_INP_DECR_REF(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } } continue_anyway: SCTP_INP_WLOCK(inp); if (bindall) { /* verify that no lport is not used by a singleton */ if ((port_reuse_active == 0) && (inp_tmp = sctp_isport_inuse(inp, lport, vrf_id)) ) { /* Sorry someone already has this one bound */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { port_reuse_active = 1; } else { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } } } } else { uint16_t first, last, candidate; uint16_t count; int done; if (ip_inp->inp_flags & INP_HIGHPORT) { first = MODULE_GLOBAL(ipport_hifirstauto); last = MODULE_GLOBAL(ipport_hilastauto); } else if (ip_inp->inp_flags & INP_LOWPORT) { if (p && (error = priv_check(p, PRIV_NETINET_RESERVEDPORT) )) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); return (error); } first = MODULE_GLOBAL(ipport_lowfirstauto); last = MODULE_GLOBAL(ipport_lowlastauto); } else { first = MODULE_GLOBAL(ipport_firstauto); last = MODULE_GLOBAL(ipport_lastauto); } if (first > last) { uint16_t temp; temp = first; first = last; last = temp; } count = last - first + 1; /* number of candidates */ candidate = first + sctp_select_initial_TSN(&inp->sctp_ep) % (count); done = 0; while (!done) { if (sctp_isport_inuse(inp, htons(candidate), inp->def_vrf_id) == NULL) { done = 1; } if (!done) { if (--count == 0) { SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRINUSE); return (EADDRINUSE); } if (candidate == last) candidate = first; else candidate = candidate + 1; } } lport = htons(candidate); } SCTP_INP_DECR_REF(inp); if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { /* * this really should not happen. The guy did a non-blocking * bind and then did a close at the same time. */ SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } /* ok we look clear to give out this port, so lets setup the binding */ if (bindall) { /* binding to all addresses, so just set in the proper flags */ inp->sctp_flags |= SCTP_PCB_FLAGS_BOUNDALL; /* set the automatic addr changes from kernel flag */ if (SCTP_BASE_SYSCTL(sctp_auto_asconf) == 0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF); sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } else { sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF); sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } if (SCTP_BASE_SYSCTL(sctp_multiple_asconfs) == 0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_MULTIPLE_ASCONFS); } else { sctp_feature_on(inp, SCTP_PCB_FLAGS_MULTIPLE_ASCONFS); } /* * set the automatic mobility_base from kernel flag (by * micchie) */ if (SCTP_BASE_SYSCTL(sctp_mobility_base) == 0) { sctp_mobility_feature_off(inp, SCTP_MOBILITY_BASE); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } else { sctp_mobility_feature_on(inp, SCTP_MOBILITY_BASE); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } /* * set the automatic mobility_fasthandoff from kernel flag * (by micchie) */ if (SCTP_BASE_SYSCTL(sctp_mobility_fasthandoff) == 0) { sctp_mobility_feature_off(inp, SCTP_MOBILITY_FASTHANDOFF); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } else { sctp_mobility_feature_on(inp, SCTP_MOBILITY_FASTHANDOFF); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } } else { /* * bind specific, make sure flags is off and add a new * address structure to the sctp_addr_list inside the ep * structure. * * We will need to allocate one and insert it at the head. The * socketopt call can just insert new addresses in there as * well. It will also have to do the embed scope kame hack * too (before adding). */ struct sctp_ifa *ifa; struct sockaddr_storage store_sa; memset(&store_sa, 0, sizeof(store_sa)); switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)&store_sa; memcpy(sin, addr, sizeof(struct sockaddr_in)); sin->sin_port = 0; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&store_sa; memcpy(sin6, addr, sizeof(struct sockaddr_in6)); sin6->sin6_port = 0; break; } #endif default: break; } /* * first find the interface with the bound address need to * zero out the port to find the address! yuck! can't do * this earlier since need port for sctp_pcb_findep() */ if (sctp_ifap != NULL) ifa = sctp_ifap; else { /* * Note for BSD we hit here always other O/S's will * pass things in via the sctp_ifap argument * (Panda). */ ifa = sctp_find_ifa_by_addr((struct sockaddr *)&store_sa, vrf_id, SCTP_ADDR_NOT_LOCKED); } if (ifa == NULL) { /* Can't find an interface with that address */ SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EADDRNOTAVAIL); return (EADDRNOTAVAIL); } #ifdef INET6 if (addr->sa_family == AF_INET6) { /* GAK, more FIXME IFA lock? */ if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-existent addr. */ SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } } #endif /* we're not bound all */ inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUNDALL; /* allow bindx() to send ASCONF's for binding changes */ sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF); /* clear automatic addr changes from kernel flag */ sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); /* add this address to the endpoint list */ error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, 0); if (error != 0) { SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (error); } inp->laddr_count++; } /* find the bucket */ if (port_reuse_active) { /* Put it into tcp 1-2-1 hash */ head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashtcpmark))]; inp->sctp_flags |= SCTP_PCB_FLAGS_IN_TCPPOOL; } else { head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; } /* put it in the bucket */ LIST_INSERT_HEAD(head, inp, sctp_hash); SCTPDBG(SCTP_DEBUG_PCB1, "Main hash to bind at head:%p, bound port:%d - in tcp_pool=%d\n", head, ntohs(lport), port_reuse_active); /* set in the port */ inp->sctp_lport = lport; /* turn off just the unbound flag */ inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND; SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (0); } static void sctp_iterator_inp_being_freed(struct sctp_inpcb *inp) { struct sctp_iterator *it, *nit; /* * We enter with the only the ITERATOR_LOCK in place and a write * lock on the inp_info stuff. */ it = sctp_it_ctl.cur_it; if (it && (it->vn != curvnet)) { /* Its not looking at our VNET */ return; } if (it && (it->inp == inp)) { /* * This is tricky and we hold the iterator lock, but when it * returns and gets the lock (when we release it) the * iterator will try to operate on inp. We need to stop that * from happening. But of course the iterator has a * reference on the stcb and inp. We can mark it and it will * stop. * * If its a single iterator situation, we set the end iterator * flag. Otherwise we set the iterator to go to the next * inp. * */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_IT; } else { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_INP; } } /* * Now go through and remove any single reference to our inp that * may be still pending on the list */ SCTP_IPI_ITERATOR_WQ_LOCK(); TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { if (it->vn != curvnet) { continue; } if (it->inp == inp) { /* This one points to me is it inp specific? */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { /* Remove and free this one */ TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); } else { it->inp = LIST_NEXT(it->inp, sctp_list); if (it->inp) { SCTP_INP_INCR_REF(it->inp); } } /* * When its put in the refcnt is incremented so decr * it */ SCTP_INP_DECR_REF(inp); } } SCTP_IPI_ITERATOR_WQ_UNLOCK(); } /* release sctp_inpcb unbind the port */ void sctp_inpcb_free(struct sctp_inpcb *inp, int immediate, int from) { /* * Here we free a endpoint. We must find it (if it is in the Hash * table) and remove it from there. Then we must also find it in the * overall list and remove it from there. After all removals are * complete then any timer has to be stopped. Then start the actual * freeing. a) Any local lists. b) Any associations. c) The hash of * all associations. d) finally the ep itself. */ struct sctp_tcb *asoc, *nasoc; struct sctp_laddr *laddr, *nladdr; struct inpcb *ip_pcb; struct socket *so; int being_refed = 0; struct sctp_queued_to_read *sq, *nsq; int cnt; sctp_sharedkey_t *shared_key, *nshared_key; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 0); #endif SCTP_ITERATOR_LOCK(); /* mark any iterators on the list or being processed */ sctp_iterator_inp_being_freed(inp); SCTP_ITERATOR_UNLOCK(); so = inp->sctp_socket; if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { /* been here before.. eeks.. get out of here */ SCTP_PRINTF("This conflict in free SHOULD not be happening! from %d, imm %d\n", from, immediate); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 1); #endif return; } SCTP_ASOC_CREATE_LOCK(inp); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); if (from == SCTP_CALLED_AFTER_CMPSET_OFCLOSE) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_CLOSE_IP; /* socket is gone, so no more wakeups allowed */ inp->sctp_flags |= SCTP_PCB_FLAGS_DONT_WAKE; inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT; inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT; } /* First time through we have the socket lock, after that no more. */ sctp_timer_stop(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL, SCTP_FROM_SCTP_PCB + SCTP_LOC_1); if (inp->control) { sctp_m_freem(inp->control); inp->control = NULL; } if (inp->pkt) { sctp_m_freem(inp->pkt); inp->pkt = NULL; } ip_pcb = &inp->ip_inp.inp; /* we could just cast the main pointer * here but I will be nice :> (i.e. * ip_pcb = ep;) */ if (immediate == SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE) { int cnt_in_sd; cnt_in_sd = 0; LIST_FOREACH_SAFE(asoc, &inp->sctp_asoc_list, sctp_tcblist, nasoc) { SCTP_TCB_LOCK(asoc); if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* Skip guys being freed */ cnt_in_sd++; if (asoc->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE) { /* * Special case - we did not start a * kill timer on the asoc due to it * was not closed. So go ahead and * start it now. */ asoc->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, asoc, NULL); } SCTP_TCB_UNLOCK(asoc); continue; } if (((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_ECHOED)) && (asoc->asoc.total_output_queue_size == 0)) { /* * If we have data in queue, we don't want * to just free since the app may have done, * send()/close or connect/send/close. And * it wants the data to get across first. */ /* Just abandon things in the front states */ if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_2) == 0) { cnt_in_sd++; } continue; } /* Disconnect the socket please */ asoc->sctp_socket = NULL; asoc->asoc.state |= SCTP_STATE_CLOSED_SOCKET; if ((asoc->asoc.size_on_reasm_queue > 0) || (asoc->asoc.control_pdapi) || (asoc->asoc.size_on_all_streams > 0) || (so && (so->so_rcv.sb_cc > 0))) { /* Left with Data unread */ struct mbuf *op_err; op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)), 0, M_DONTWAIT, 1, MT_DATA); if (op_err) { /* Fill in the user initiated abort */ struct sctp_paramhdr *ph; uint32_t *ippp; SCTP_BUF_LEN(op_err) = sizeof(struct sctp_paramhdr) + sizeof(uint32_t); ph = mtod(op_err, struct sctp_paramhdr *); ph->param_type = htons( SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(SCTP_BUF_LEN(op_err)); ippp = (uint32_t *) (ph + 1); *ippp = htonl(SCTP_FROM_SCTP_PCB + SCTP_LOC_3); } asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_3; sctp_send_abort_tcb(asoc, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_4) == 0) { cnt_in_sd++; } continue; } else if (TAILQ_EMPTY(&asoc->asoc.send_queue) && TAILQ_EMPTY(&asoc->asoc.sent_queue) && (asoc->asoc.stream_queue_cnt == 0) ) { if (asoc->asoc.locked_on_sending) { goto abort_anyway; } if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { struct sctp_nets *netp; if (asoc->asoc.alternate) { netp = asoc->asoc.alternate; } else { netp = asoc->asoc.primary_destination; } /* * there is nothing queued to send, * so I send shutdown */ sctp_send_shutdown(asoc, netp); if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(&asoc->asoc, SCTP_STATE_SHUTDOWN_SENT); SCTP_CLEAR_SUBSTATE(&asoc->asoc, SCTP_STATE_SHUTDOWN_PENDING); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, asoc->sctp_ep, asoc, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc, asoc->asoc.primary_destination); sctp_chunk_output(inp, asoc, SCTP_OUTPUT_FROM_SHUT_TMR, SCTP_SO_LOCKED); } } else { /* mark into shutdown pending */ struct sctp_stream_queue_pending *sp; asoc->asoc.state |= SCTP_STATE_SHUTDOWN_PENDING; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc, asoc->asoc.primary_destination); if (asoc->asoc.locked_on_sending) { sp = TAILQ_LAST(&((asoc->asoc.locked_on_sending)->outqueue), sctp_streamhead); if (sp == NULL) { SCTP_PRINTF("Error, sp is NULL, locked on sending is %p strm:%d\n", asoc->asoc.locked_on_sending, asoc->asoc.locked_on_sending->stream_no); } else { if ((sp->length == 0) && (sp->msg_is_complete == 0)) asoc->asoc.state |= SCTP_STATE_PARTIAL_MSG_LEFT; } } if (TAILQ_EMPTY(&asoc->asoc.send_queue) && TAILQ_EMPTY(&asoc->asoc.sent_queue) && (asoc->asoc.state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)), 0, M_DONTWAIT, 1, MT_DATA); if (op_err) { /* * Fill in the user * initiated abort */ struct sctp_paramhdr *ph; uint32_t *ippp; SCTP_BUF_LEN(op_err) = (sizeof(struct sctp_paramhdr) + sizeof(uint32_t)); ph = mtod(op_err, struct sctp_paramhdr *); ph->param_type = htons( SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(SCTP_BUF_LEN(op_err)); ippp = (uint32_t *) (ph + 1); *ippp = htonl(SCTP_FROM_SCTP_PCB + SCTP_LOC_5); } asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_5; sctp_send_abort_tcb(asoc, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_6) == 0) { cnt_in_sd++; } continue; } else { sctp_chunk_output(inp, asoc, SCTP_OUTPUT_FROM_CLOSING, SCTP_SO_LOCKED); } } cnt_in_sd++; SCTP_TCB_UNLOCK(asoc); } /* now is there some left in our SHUTDOWN state? */ if (cnt_in_sd) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 2); #endif inp->sctp_socket = NULL; SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } } inp->sctp_socket = NULL; if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) != SCTP_PCB_FLAGS_UNBOUND) { /* * ok, this guy has been bound. It's port is somewhere in * the SCTP_BASE_INFO(hash table). Remove it! */ LIST_REMOVE(inp, sctp_hash); inp->sctp_flags |= SCTP_PCB_FLAGS_UNBOUND; } /* * If there is a timer running to kill us, forget it, since it may * have a contest on the INP lock.. which would cause us to die ... */ cnt = 0; LIST_FOREACH_SAFE(asoc, &inp->sctp_asoc_list, sctp_tcblist, nasoc) { SCTP_TCB_LOCK(asoc); if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { if (asoc->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE) { asoc->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, asoc, NULL); } cnt++; SCTP_TCB_UNLOCK(asoc); continue; } /* Free associations that are NOT killing us */ if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_COOKIE_WAIT) && ((asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0)) { struct mbuf *op_err; uint32_t *ippp; op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)), 0, M_DONTWAIT, 1, MT_DATA); if (op_err) { /* Fill in the user initiated abort */ struct sctp_paramhdr *ph; SCTP_BUF_LEN(op_err) = (sizeof(struct sctp_paramhdr) + sizeof(uint32_t)); ph = mtod(op_err, struct sctp_paramhdr *); ph->param_type = htons( SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(SCTP_BUF_LEN(op_err)); ippp = (uint32_t *) (ph + 1); *ippp = htonl(SCTP_FROM_SCTP_PCB + SCTP_LOC_7); } asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_7; sctp_send_abort_tcb(asoc, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); } else if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { cnt++; SCTP_TCB_UNLOCK(asoc); continue; } if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, asoc, SCTP_PCBFREE_FORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_8) == 0) { cnt++; } } if (cnt) { /* Ok we have someone out there that will kill us */ (void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 3); #endif SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } if (SCTP_INP_LOCK_CONTENDED(inp)) being_refed++; if (SCTP_INP_READ_CONTENDED(inp)) being_refed++; if (SCTP_ASOC_CREATE_LOCK_CONTENDED(inp)) being_refed++; if ((inp->refcount) || (being_refed) || (inp->sctp_flags & SCTP_PCB_FLAGS_CLOSE_IP)) { (void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 4); #endif sctp_timer_start(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL); SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } inp->sctp_ep.signature_change.type = 0; inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_ALLGONE; /* * Remove it from the list .. last thing we need a lock for. */ LIST_REMOVE(inp, sctp_list); SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); /* * Now we release all locks. Since this INP cannot be found anymore * except possibly by the kill timer that might be running. We call * the drain function here. It should hit the case were it sees the * ACTIVE flag cleared and exit out freeing us to proceed and * destroy everything. */ if (from != SCTP_CALLED_FROM_INPKILL_TIMER) { (void)SCTP_OS_TIMER_STOP_DRAIN(&inp->sctp_ep.signature_change.timer); } else { /* Probably un-needed */ (void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer); } #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 5); #endif if ((inp->sctp_asocidhash) != NULL) { SCTP_HASH_FREE(inp->sctp_asocidhash, inp->hashasocidmark); inp->sctp_asocidhash = NULL; } /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH_SAFE(sq, &inp->read_queue, next, nsq) { /* Its only abandoned if it had data left */ if (sq->length) SCTP_STAT_INCR(sctps_left_abandon); TAILQ_REMOVE(&inp->read_queue, sq, next); sctp_free_remote_addr(sq->whoFrom); if (so) so->so_rcv.sb_cc -= sq->length; if (sq->data) { sctp_m_freem(sq->data); sq->data = NULL; } /* * no need to free the net count, since at this point all * assoc's are gone. */ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_readq), sq); SCTP_DECR_READQ_COUNT(); } /* Now the sctp_pcb things */ /* * free each asoc if it is not already closed/free. we can't use the * macro here since le_next will get freed as part of the * sctp_free_assoc() call. */ if (so) { #ifdef IPSEC ipsec_delete_pcbpolicy(ip_pcb); #endif /* IPSEC */ /* Unlocks not needed since the socket is gone now */ } if (ip_pcb->inp_options) { (void)sctp_m_free(ip_pcb->inp_options); ip_pcb->inp_options = 0; } #ifdef INET6 if (ip_pcb->inp_vflag & INP_IPV6) { struct in6pcb *in6p; in6p = (struct in6pcb *)inp; ip6_freepcbopts(in6p->in6p_outputopts); } #endif /* INET6 */ ip_pcb->inp_vflag = 0; /* free up authentication fields */ if (inp->sctp_ep.local_auth_chunks != NULL) sctp_free_chunklist(inp->sctp_ep.local_auth_chunks); if (inp->sctp_ep.local_hmacs != NULL) sctp_free_hmaclist(inp->sctp_ep.local_hmacs); LIST_FOREACH_SAFE(shared_key, &inp->sctp_ep.shared_keys, next, nshared_key) { LIST_REMOVE(shared_key, next); sctp_free_sharedkey(shared_key); /* sa_ignore FREED_MEMORY */ } /* * if we have an address list the following will free the list of * ifaddr's that are set into this ep. Again macro limitations here, * since the LIST_FOREACH could be a bad idea. */ LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { sctp_remove_laddr(laddr); } #ifdef SCTP_TRACK_FREED_ASOCS /* TEMP CODE */ LIST_FOREACH_SAFE(asoc, &inp->sctp_asoc_free_list, sctp_tcblist, nasoc) { LIST_REMOVE(asoc, sctp_tcblist); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), asoc); SCTP_DECR_ASOC_COUNT(); } /* *** END TEMP CODE *** */ #endif /* Now lets see about freeing the EP hash table. */ if (inp->sctp_tcbhash != NULL) { SCTP_HASH_FREE(inp->sctp_tcbhash, inp->sctp_hashmark); inp->sctp_tcbhash = NULL; } /* Now we must put the ep memory back into the zone pool */ INP_LOCK_DESTROY(&inp->ip_inp.inp); SCTP_INP_LOCK_DESTROY(inp); SCTP_INP_READ_DESTROY(inp); SCTP_ASOC_CREATE_LOCK_DESTROY(inp); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_DECR_EP_COUNT(); } struct sctp_nets * sctp_findnet(struct sctp_tcb *stcb, struct sockaddr *addr) { struct sctp_nets *net; /* locate the address */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (sctp_cmpaddr(addr, (struct sockaddr *)&net->ro._l_addr)) return (net); } return (NULL); } int sctp_is_address_on_local_host(struct sockaddr *addr, uint32_t vrf_id) { struct sctp_ifa *sctp_ifa; sctp_ifa = sctp_find_ifa_by_addr(addr, vrf_id, SCTP_ADDR_NOT_LOCKED); if (sctp_ifa) { return (1); } else { return (0); } } /* * add's a remote endpoint address, done with the INIT/INIT-ACK as well as * when a ASCONF arrives that adds it. It will also initialize all the cwnd * stats of stuff. */ int sctp_add_remote_addr(struct sctp_tcb *stcb, struct sockaddr *newaddr, struct sctp_nets **netp, int set_scope, int from) { /* * The following is redundant to the same lines in the * sctp_aloc_assoc() but is needed since others call the add address * function */ struct sctp_nets *net, *netfirst; int addr_inscope; SCTPDBG(SCTP_DEBUG_PCB1, "Adding an address (from:%d) to the peer: ", from); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, newaddr); netfirst = sctp_findnet(stcb, newaddr); if (netfirst) { /* * Lie and return ok, we don't want to make the association * go away for this behavior. It will happen in the TCP * model in a connected socket. It does not reach the hash * table until after the association is built so it can't be * found. Mark as reachable, since the initial creation will * have been cleared and the NOT_IN_ASSOC flag will have * been added... and we don't want to end up removing it * back out. */ if (netfirst->dest_state & SCTP_ADDR_UNCONFIRMED) { netfirst->dest_state = (SCTP_ADDR_REACHABLE | SCTP_ADDR_UNCONFIRMED); } else { netfirst->dest_state = SCTP_ADDR_REACHABLE; } return (0); } addr_inscope = 1; switch (newaddr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)newaddr; if (sin->sin_addr.s_addr == 0) { /* Invalid address */ return (-1); } /* zero out the bzero area */ memset(&sin->sin_zero, 0, sizeof(sin->sin_zero)); /* assure len is set */ sin->sin_len = sizeof(struct sockaddr_in); if (set_scope) { #ifdef SCTP_DONT_DO_PRIVADDR_SCOPE stcb->ipv4_local_scope = 1; #else if (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { stcb->asoc.ipv4_local_scope = 1; } #endif /* SCTP_DONT_DO_PRIVADDR_SCOPE */ } else { /* Validate the address is in scope */ if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) && (stcb->asoc.ipv4_local_scope == 0)) { addr_inscope = 0; } } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)newaddr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* Invalid address */ return (-1); } /* assure len is set */ sin6->sin6_len = sizeof(struct sockaddr_in6); if (set_scope) { if (sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id)) { stcb->asoc.loopback_scope = 1; stcb->asoc.local_scope = 0; stcb->asoc.ipv4_local_scope = 1; stcb->asoc.site_scope = 1; } else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { /* * If the new destination is a * LINK_LOCAL we must have common * site scope. Don't set the local * scope since we may not share all * links, only loopback can do this. * Links on the local network would * also be on our private network * for v4 too. */ stcb->asoc.ipv4_local_scope = 1; stcb->asoc.site_scope = 1; } else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) { /* * If the new destination is * SITE_LOCAL then we must have site * scope in common. */ stcb->asoc.site_scope = 1; } } else { /* Validate the address is in scope */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr) && (stcb->asoc.loopback_scope == 0)) { addr_inscope = 0; } else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) && (stcb->asoc.local_scope == 0)) { addr_inscope = 0; } else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr) && (stcb->asoc.site_scope == 0)) { addr_inscope = 0; } } break; } #endif default: /* not supported family type */ return (-1); } net = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_net), struct sctp_nets); if (net == NULL) { return (-1); } SCTP_INCR_RADDR_COUNT(); bzero(net, sizeof(struct sctp_nets)); (void)SCTP_GETTIME_TIMEVAL(&net->start_time); memcpy(&net->ro._l_addr, newaddr, newaddr->sa_len); switch (newaddr->sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)&net->ro._l_addr)->sin_port = stcb->rport; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)&net->ro._l_addr)->sin6_port = stcb->rport; break; #endif default: break; } net->addr_is_local = sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id); if (net->addr_is_local && ((set_scope || (from == SCTP_ADDR_IS_CONFIRMED)))) { stcb->asoc.loopback_scope = 1; stcb->asoc.ipv4_local_scope = 1; stcb->asoc.local_scope = 0; stcb->asoc.site_scope = 1; addr_inscope = 1; } net->failure_threshold = stcb->asoc.def_net_failure; net->pf_threshold = stcb->asoc.def_net_pf_threshold; if (addr_inscope == 0) { net->dest_state = (SCTP_ADDR_REACHABLE | SCTP_ADDR_OUT_OF_SCOPE); } else { if (from == SCTP_ADDR_IS_CONFIRMED) /* SCTP_ADDR_IS_CONFIRMED is passed by connect_x */ net->dest_state = SCTP_ADDR_REACHABLE; else net->dest_state = SCTP_ADDR_REACHABLE | SCTP_ADDR_UNCONFIRMED; } /* * We set this to 0, the timer code knows that this means its an * initial value */ net->rto_needed = 1; net->RTO = 0; net->RTO_measured = 0; stcb->asoc.numnets++; net->ref_count = 1; net->cwr_window_tsn = net->last_cwr_tsn = stcb->asoc.sending_seq - 1; net->port = stcb->asoc.port; net->dscp = stcb->asoc.default_dscp; #ifdef INET6 net->flowlabel = stcb->asoc.default_flowlabel; #endif if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DONOT_HEARTBEAT)) { net->dest_state |= SCTP_ADDR_NOHB; } else { net->dest_state &= ~SCTP_ADDR_NOHB; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DO_NOT_PMTUD)) { net->dest_state |= SCTP_ADDR_NO_PMTUD; } else { net->dest_state &= ~SCTP_ADDR_NO_PMTUD; } net->heart_beat_delay = stcb->asoc.heart_beat_delay; /* Init the timer structure */ SCTP_OS_TIMER_INIT(&net->rxt_timer.timer); SCTP_OS_TIMER_INIT(&net->pmtu_timer.timer); SCTP_OS_TIMER_INIT(&net->hb_timer.timer); /* Now generate a route for this guy */ #ifdef INET6 /* KAME hack: embed scopeid */ if (newaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)); sin6->sin6_scope_id = 0; } #endif SCTP_RTALLOC((sctp_route_t *) & net->ro, stcb->asoc.vrf_id); if (SCTP_ROUTE_HAS_VALID_IFN(&net->ro)) { /* Get source address */ net->ro._s_addr = sctp_source_address_selection(stcb->sctp_ep, stcb, (sctp_route_t *) & net->ro, net, 0, stcb->asoc.vrf_id); /* Now get the interface MTU */ if (net->ro._s_addr && net->ro._s_addr->ifn_p) { net->mtu = SCTP_GATHER_MTU_FROM_INTFC(net->ro._s_addr->ifn_p); } if (net->mtu > 0) { uint32_t rmtu; rmtu = SCTP_GATHER_MTU_FROM_ROUTE(net->ro._s_addr, &net->ro._l_addr.sa, net->ro.ro_rt); if (rmtu == 0) { /* * Start things off to match mtu of * interface please. */ SCTP_SET_MTU_OF_ROUTE(&net->ro._l_addr.sa, net->ro.ro_rt, net->mtu); } else { /* * we take the route mtu over the interface, * since the route may be leading out the * loopback, or a different interface. */ net->mtu = rmtu; } } } if (net->mtu == 0) { switch (newaddr->sa_family) { #ifdef INET case AF_INET: net->mtu = SCTP_DEFAULT_MTU; break; #endif #ifdef INET6 case AF_INET6: net->mtu = 1280; break; #endif default: break; } } if (net->port) { net->mtu -= (uint32_t) sizeof(struct udphdr); } if (from == SCTP_ALLOC_ASOC) { stcb->asoc.smallest_mtu = net->mtu; } if (stcb->asoc.smallest_mtu > net->mtu) { stcb->asoc.smallest_mtu = net->mtu; } #ifdef INET6 if (newaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_recoverscope(sin6); } #endif /* JRS - Use the congestion control given in the CC module */ if (stcb->asoc.cc_functions.sctp_set_initial_cc_param != NULL) (*stcb->asoc.cc_functions.sctp_set_initial_cc_param) (stcb, net); /* * CMT: CUC algo - set find_pseudo_cumack to TRUE (1) at beginning * of assoc (2005/06/27, iyengar@cis.udel.edu) */ net->find_pseudo_cumack = 1; net->find_rtx_pseudo_cumack = 1; net->src_addr_selected = 0; /* Choose an initial flowid. */ net->flowid = stcb->asoc.my_vtag ^ ntohs(stcb->rport) ^ ntohs(stcb->sctp_ep->sctp_lport); #ifdef INVARIANTS net->flowidset = 1; #endif if (netp) { *netp = net; } netfirst = TAILQ_FIRST(&stcb->asoc.nets); if (net->ro.ro_rt == NULL) { /* Since we have no route put it at the back */ TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next); } else if (netfirst == NULL) { /* We are the first one in the pool. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else if (netfirst->ro.ro_rt == NULL) { /* * First one has NO route. Place this one ahead of the first * one. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else if (net->ro.ro_rt->rt_ifp != netfirst->ro.ro_rt->rt_ifp) { /* * This one has a different interface than the one at the * top of the list. Place it ahead. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else { /* * Ok we have the same interface as the first one. Move * forward until we find either a) one with a NULL route... * insert ahead of that b) one with a different ifp.. insert * after that. c) end of the list.. insert at the tail. */ struct sctp_nets *netlook; do { netlook = TAILQ_NEXT(netfirst, sctp_next); if (netlook == NULL) { /* End of the list */ TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next); break; } else if (netlook->ro.ro_rt == NULL) { /* next one has NO route */ TAILQ_INSERT_BEFORE(netfirst, net, sctp_next); break; } else if (netlook->ro.ro_rt->rt_ifp != net->ro.ro_rt->rt_ifp) { TAILQ_INSERT_AFTER(&stcb->asoc.nets, netlook, net, sctp_next); break; } /* Shift forward */ netfirst = netlook; } while (netlook != NULL); } /* got to have a primary set */ if (stcb->asoc.primary_destination == 0) { stcb->asoc.primary_destination = net; } else if ((stcb->asoc.primary_destination->ro.ro_rt == NULL) && (net->ro.ro_rt) && ((net->dest_state & SCTP_ADDR_UNCONFIRMED) == 0)) { /* No route to current primary adopt new primary */ stcb->asoc.primary_destination = net; } /* Validate primary is first */ net = TAILQ_FIRST(&stcb->asoc.nets); if ((net != stcb->asoc.primary_destination) && (stcb->asoc.primary_destination)) { /* * first one on the list is NOT the primary sctp_cmpaddr() * is much more efficient if the primary is the first on the * list, make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); } return (0); } static uint32_t sctp_aloc_a_assoc_id(struct sctp_inpcb *inp, struct sctp_tcb *stcb) { uint32_t id; struct sctpasochead *head; struct sctp_tcb *lstcb; SCTP_INP_WLOCK(inp); try_again: if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { /* TSNH */ SCTP_INP_WUNLOCK(inp); return (0); } /* * We don't allow assoc id to be one of SCTP_FUTURE_ASSOC, * SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC. */ if (inp->sctp_associd_counter <= SCTP_ALL_ASSOC) { inp->sctp_associd_counter = SCTP_ALL_ASSOC + 1; } id = inp->sctp_associd_counter; inp->sctp_associd_counter++; lstcb = sctp_findasoc_ep_asocid_locked(inp, (sctp_assoc_t) id, 0); if (lstcb) { goto try_again; } head = &inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(id, inp->hashasocidmark)]; LIST_INSERT_HEAD(head, stcb, sctp_tcbasocidhash); stcb->asoc.in_asocid_hash = 1; SCTP_INP_WUNLOCK(inp); return id; } /* * allocate an association and add it to the endpoint. The caller must be * careful to add all additional addresses once they are know right away or * else the assoc will be may experience a blackout scenario. */ struct sctp_tcb * sctp_aloc_assoc(struct sctp_inpcb *inp, struct sockaddr *firstaddr, int *error, uint32_t override_tag, uint32_t vrf_id, struct thread *p ) { /* note the p argument is only valid in unbound sockets */ struct sctp_tcb *stcb; struct sctp_association *asoc; struct sctpasochead *head; uint16_t rport; int err; /* * Assumption made here: Caller has done a * sctp_findassociation_ep_addr(ep, addr's); to make sure the * address does not exist already. */ if (SCTP_BASE_INFO(ipi_count_asoc) >= SCTP_MAX_NUM_OF_ASOC) { /* Hit max assoc, sorry no more */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); *error = ENOBUFS; return (NULL); } if (firstaddr == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) && ((sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE)) || (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) { /* * If its in the TCP pool, its NOT allowed to create an * association. The parent listener needs to call * sctp_aloc_assoc.. or the one-2-many socket. If a peeled * off, or connected one does this.. its an error. */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) || (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED)) { SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } } SCTPDBG(SCTP_DEBUG_PCB3, "Allocate an association for peer:"); #ifdef SCTP_DEBUG if (firstaddr) { SCTPDBG_ADDR(SCTP_DEBUG_PCB3, firstaddr); switch (firstaddr->sa_family) { #ifdef INET case AF_INET: SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n", ntohs(((struct sockaddr_in *)firstaddr)->sin_port)); break; #endif #ifdef INET6 case AF_INET6: SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n", ntohs(((struct sockaddr_in6 *)firstaddr)->sin6_port)); break; #endif default: break; } } else { SCTPDBG(SCTP_DEBUG_PCB3, "None\n"); } #endif /* SCTP_DEBUG */ switch (firstaddr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)firstaddr; if ((ntohs(sin->sin_port) == 0) || (sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* Invalid address */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } rport = sin->sin_port; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)firstaddr; if ((ntohs(sin6->sin6_port) == 0) || IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { /* Invalid address */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } rport = sin6->sin6_port; break; } #endif default: /* not supported family type */ SCTP_INP_RUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } SCTP_INP_RUNLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { /* * If you have not performed a bind, then we need to do the * ephemeral bind for you. */ if ((err = sctp_inpcb_bind(inp->sctp_socket, (struct sockaddr *)NULL, (struct sctp_ifa *)NULL, p ))) { /* bind error, probably perm */ *error = err; return (NULL); } } stcb = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_asoc), struct sctp_tcb); if (stcb == NULL) { /* out of memory? */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOMEM); *error = ENOMEM; return (NULL); } SCTP_INCR_ASOC_COUNT(); bzero(stcb, sizeof(*stcb)); asoc = &stcb->asoc; asoc->assoc_id = sctp_aloc_a_assoc_id(inp, stcb); SCTP_TCB_LOCK_INIT(stcb); SCTP_TCB_SEND_LOCK_INIT(stcb); stcb->rport = rport; /* setup back pointer's */ stcb->sctp_ep = inp; stcb->sctp_socket = inp->sctp_socket; if ((err = sctp_init_asoc(inp, stcb, override_tag, vrf_id))) { /* failed */ SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); *error = err; return (NULL); } /* and the port */ SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { /* inpcb freed while alloc going on */ SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); SCTP_DECR_ASOC_COUNT(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } SCTP_TCB_LOCK(stcb); /* now that my_vtag is set, add it to the hash */ head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag, SCTP_BASE_INFO(hashasocmark))]; /* put it in the bucket in the vtag hash of assoc's for the system */ LIST_INSERT_HEAD(head, stcb, sctp_asocs); SCTP_INP_INFO_WUNLOCK(); if ((err = sctp_add_remote_addr(stcb, firstaddr, NULL, SCTP_DO_SETSCOPE, SCTP_ALLOC_ASOC))) { /* failure.. memory error? */ if (asoc->strmout) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); asoc->strmout = NULL; } if (asoc->mapping_array) { SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); asoc->mapping_array = NULL; } if (asoc->nr_mapping_array) { SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->nr_mapping_array = NULL; } SCTP_DECR_ASOC_COUNT(); SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_INP_WUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); *error = ENOBUFS; return (NULL); } /* Init all the timers */ SCTP_OS_TIMER_INIT(&asoc->dack_timer.timer); SCTP_OS_TIMER_INIT(&asoc->strreset_timer.timer); SCTP_OS_TIMER_INIT(&asoc->asconf_timer.timer); SCTP_OS_TIMER_INIT(&asoc->shut_guard_timer.timer); SCTP_OS_TIMER_INIT(&asoc->autoclose_timer.timer); SCTP_OS_TIMER_INIT(&asoc->delayed_event_timer.timer); SCTP_OS_TIMER_INIT(&asoc->delete_prim_timer.timer); LIST_INSERT_HEAD(&inp->sctp_asoc_list, stcb, sctp_tcblist); /* now file the port under the hash as well */ if (inp->sctp_tcbhash != NULL) { head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(stcb->rport, inp->sctp_hashmark)]; LIST_INSERT_HEAD(head, stcb, sctp_tcbhash); } SCTP_INP_WUNLOCK(inp); SCTPDBG(SCTP_DEBUG_PCB1, "Association %p now allocated\n", stcb); return (stcb); } void sctp_remove_net(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_association *asoc; asoc = &stcb->asoc; asoc->numnets--; TAILQ_REMOVE(&asoc->nets, net, sctp_next); if (net == asoc->primary_destination) { /* Reset primary */ struct sctp_nets *lnet; lnet = TAILQ_FIRST(&asoc->nets); /* * Mobility adaptation Ideally, if deleted destination is * the primary, it becomes a fast retransmission trigger by * the subsequent SET PRIMARY. (by micchie) */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "remove_net: primary dst is deleting\n"); if (asoc->deleted_primary != NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "remove_net: deleted primary may be already stored\n"); goto out; } asoc->deleted_primary = net; atomic_add_int(&net->ref_count, 1); memset(&net->lastsa, 0, sizeof(net->lastsa)); memset(&net->lastsv, 0, sizeof(net->lastsv)); sctp_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_PRIM_DELETED); sctp_timer_start(SCTP_TIMER_TYPE_PRIM_DELETED, stcb->sctp_ep, stcb, NULL); } out: /* Try to find a confirmed primary */ asoc->primary_destination = sctp_find_alternate_net(stcb, lnet, 0); } if (net == asoc->last_data_chunk_from) { /* Reset primary */ asoc->last_data_chunk_from = TAILQ_FIRST(&asoc->nets); } if (net == asoc->last_control_chunk_from) { /* Clear net */ asoc->last_control_chunk_from = NULL; } if (net == stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } sctp_free_remote_addr(net); } /* * remove a remote endpoint address from an association, it will fail if the * address does not exist. */ int sctp_del_remote_addr(struct sctp_tcb *stcb, struct sockaddr *remaddr) { /* * Here we need to remove a remote address. This is quite simple, we * first find it in the list of address for the association * (tasoc->asoc.nets) and then if it is there, we do a LIST_REMOVE * on that item. Note we do not allow it to be removed if there are * no other addresses. */ struct sctp_association *asoc; struct sctp_nets *net, *nnet; asoc = &stcb->asoc; /* locate the address */ TAILQ_FOREACH_SAFE(net, &asoc->nets, sctp_next, nnet) { if (net->ro._l_addr.sa.sa_family != remaddr->sa_family) { continue; } if (sctp_cmpaddr((struct sockaddr *)&net->ro._l_addr, remaddr)) { /* we found the guy */ if (asoc->numnets < 2) { /* Must have at LEAST two remote addresses */ return (-1); } else { sctp_remove_net(stcb, net); return (0); } } } /* not found. */ return (-2); } void sctp_delete_from_timewait(uint32_t tag, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; int found = 0; int i; chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; if (!LIST_EMPTY(chain)) { LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { twait_block->vtag_block[i].tv_sec_at_expire = 0; twait_block->vtag_block[i].v_tag = 0; twait_block->vtag_block[i].lport = 0; twait_block->vtag_block[i].rport = 0; found = 1; break; } } if (found) break; } } } int sctp_is_in_timewait(uint32_t tag, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; int found = 0; int i; SCTP_INP_INFO_WLOCK(); chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; if (!LIST_EMPTY(chain)) { LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { found = 1; break; } } if (found) break; } } SCTP_INP_INFO_WUNLOCK(); return (found); } void sctp_add_vtag_to_timewait(uint32_t tag, uint32_t time, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; struct timeval now; int set, i; if (time == 0) { /* Its disabled */ return; } (void)SCTP_GETTIME_TIMEVAL(&now); chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; set = 0; if (!LIST_EMPTY(chain)) { /* Block(s) present, lets find space, and expire on the fly */ LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == 0) && !set) { twait_block->vtag_block[i].tv_sec_at_expire = now.tv_sec + time; twait_block->vtag_block[i].v_tag = tag; twait_block->vtag_block[i].lport = lport; twait_block->vtag_block[i].rport = rport; set = 1; } else if ((twait_block->vtag_block[i].v_tag) && ((long)twait_block->vtag_block[i].tv_sec_at_expire < now.tv_sec)) { /* Audit expires this guy */ twait_block->vtag_block[i].tv_sec_at_expire = 0; twait_block->vtag_block[i].v_tag = 0; twait_block->vtag_block[i].lport = 0; twait_block->vtag_block[i].rport = 0; if (set == 0) { /* Reuse it for my new tag */ twait_block->vtag_block[i].tv_sec_at_expire = now.tv_sec + time; twait_block->vtag_block[i].v_tag = tag; twait_block->vtag_block[i].lport = lport; twait_block->vtag_block[i].rport = rport; set = 1; } } } if (set) { /* * We only do up to the block where we can * place our tag for audits */ break; } } } /* Need to add a new block to chain */ if (!set) { SCTP_MALLOC(twait_block, struct sctp_tagblock *, sizeof(struct sctp_tagblock), SCTP_M_TIMW); if (twait_block == NULL) { #ifdef INVARIANTS panic("Can not alloc tagblock"); #endif return; } memset(twait_block, 0, sizeof(struct sctp_tagblock)); LIST_INSERT_HEAD(chain, twait_block, sctp_nxt_tagblock); twait_block->vtag_block[0].tv_sec_at_expire = now.tv_sec + time; twait_block->vtag_block[0].v_tag = tag; twait_block->vtag_block[0].lport = lport; twait_block->vtag_block[0].rport = rport; } } /*- * Free the association after un-hashing the remote port. This * function ALWAYS returns holding NO LOCK on the stcb. It DOES * expect that the input to this function IS a locked TCB. * It will return 0, if it did NOT destroy the association (instead * it unlocks it. It will return NON-zero if it either destroyed the * association OR the association is already destroyed. */ int sctp_free_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int from_inpcbfree, int from_location) { int i; struct sctp_association *asoc; struct sctp_nets *net, *nnet; struct sctp_laddr *laddr, *naddr; struct sctp_tmit_chunk *chk, *nchk; struct sctp_asconf_addr *aparam, *naparam; struct sctp_asconf_ack *aack, *naack; struct sctp_stream_reset_list *strrst, *nstrrst; struct sctp_queued_to_read *sq, *nsq; struct sctp_stream_queue_pending *sp, *nsp; sctp_sharedkey_t *shared_key, *nshared_key; struct socket *so; /* first, lets purge the entry from the hash table. */ #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 6); #endif if (stcb->asoc.state == 0) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 7); #endif /* there is no asoc, really TSNH :-0 */ return (1); } if (stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } /* TEMP CODE */ if (stcb->freed_from_where == 0) { /* Only record the first place free happened from */ stcb->freed_from_where = from_location; } /* TEMP CODE */ asoc = &stcb->asoc; if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; else so = inp->sctp_socket; /* * We used timer based freeing if a reader or writer is in the way. * So we first check if we are actually being called from a timer, * if so we abort early if a reader or writer is still in the way. */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) && (from_inpcbfree == SCTP_NORMAL_PROC)) { /* * is it the timer driving us? if so are the reader/writers * gone? */ if (stcb->asoc.refcnt) { /* nope, reader or writer in the way */ sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); /* no asoc destroyed */ SCTP_TCB_UNLOCK(stcb); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 8); #endif return (0); } } /* now clean up any other timers */ (void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer); asoc->dack_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); /*- * For stream reset we don't blast this unless * it is a str-reset timer, it might be the * free-asoc timer which we DON'T want to * disturb. */ if (asoc->strreset_timer.type == SCTP_TIMER_TYPE_STRRESET) asoc->strreset_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer); asoc->asconf_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer); asoc->autoclose_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->shut_guard_timer.timer); asoc->shut_guard_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer); asoc->delayed_event_timer.self = NULL; /* Mobility adaptation */ (void)SCTP_OS_TIMER_STOP(&asoc->delete_prim_timer.timer); asoc->delete_prim_timer.self = NULL; TAILQ_FOREACH(net, &asoc->nets, sctp_next) { (void)SCTP_OS_TIMER_STOP(&net->rxt_timer.timer); net->rxt_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer); net->pmtu_timer.self = NULL; (void)SCTP_OS_TIMER_STOP(&net->hb_timer.timer); net->hb_timer.self = NULL; } /* Now the read queue needs to be cleaned up (only once) */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0) { stcb->asoc.state |= SCTP_STATE_ABOUT_TO_BE_FREED; SCTP_INP_READ_LOCK(inp); TAILQ_FOREACH(sq, &inp->read_queue, next) { if (sq->stcb == stcb) { sq->do_not_ref_stcb = 1; sq->sinfo_cumtsn = stcb->asoc.cumulative_tsn; /* * If there is no end, there never will be * now. */ if (sq->end_added == 0) { /* Held for PD-API clear that. */ sq->pdapi_aborted = 1; sq->held_length = 0; if (sctp_stcb_is_feature_on(inp, stcb, SCTP_PCB_FLAGS_PDAPIEVNT) && (so != NULL)) { /* * Need to add a PD-API * aborted indication. * Setting the control_pdapi * assures that it will be * added right after this * msg. */ uint32_t strseq; stcb->asoc.control_pdapi = sq; strseq = (sq->sinfo_stream << 16) | sq->sinfo_ssn; sctp_ulp_notify(SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION, stcb, SCTP_PARTIAL_DELIVERY_ABORTED, (void *)&strseq, SCTP_SO_LOCKED); stcb->asoc.control_pdapi = NULL; } } /* Add an end to wake them */ sq->end_added = 1; } } SCTP_INP_READ_UNLOCK(inp); if (stcb->block_entry) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_PCB, ECONNRESET); stcb->block_entry->error = ECONNRESET; stcb->block_entry = NULL; } } if ((stcb->asoc.refcnt) || (stcb->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE)) { /* * Someone holds a reference OR the socket is unaccepted * yet. */ if ((stcb->asoc.refcnt) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { stcb->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); } SCTP_TCB_UNLOCK(stcb); if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; if (so) { /* Wake any reader/writers */ sctp_sorwakeup(inp, so); sctp_sowwakeup(inp, so); } #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 9); #endif /* no asoc destroyed */ return (0); } #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 10); #endif /* * When I reach here, no others want to kill the assoc yet.. and I * own the lock. Now its possible an abort comes in when I do the * lock exchange below to grab all the locks to do the final take * out. to prevent this we increment the count, which will start a * timer and blow out above thus assuring us that we hold exclusive * killing of the asoc. Note that after getting back the TCB lock we * will go ahead and increment the counter back up and stop any * timer a passing stranger may have started :-S */ if (from_inpcbfree == SCTP_NORMAL_PROC) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); SCTP_TCB_LOCK(stcb); } /* Double check the GONE flag */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* * For TCP type we need special handling when we are * connected. We also include the peel'ed off ones to. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_CONNECTED; inp->sctp_flags |= SCTP_PCB_FLAGS_WAS_CONNECTED; if (so) { SOCK_LOCK(so); if (so->so_rcv.sb_cc == 0) { so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING | SS_ISCONNECTED); } socantrcvmore_locked(so); sctp_sowwakeup(inp, so); sctp_sorwakeup(inp, so); SCTP_SOWAKEUP(so); } } } /* * Make it invalid too, that way if its about to run it will abort * and return. */ /* re-increment the lock */ if (from_inpcbfree == SCTP_NORMAL_PROC) { atomic_add_int(&stcb->asoc.refcnt, -1); } if (stcb->asoc.refcnt) { stcb->asoc.state &= ~SCTP_STATE_IN_ACCEPT_QUEUE; sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_WUNLOCK(inp); } SCTP_TCB_UNLOCK(stcb); return (0); } asoc->state = 0; if (inp->sctp_tcbhash) { LIST_REMOVE(stcb, sctp_tcbhash); } if (stcb->asoc.in_asocid_hash) { LIST_REMOVE(stcb, sctp_tcbasocidhash); } /* Now lets remove it from the list of ALL associations in the EP */ LIST_REMOVE(stcb, sctp_tcblist); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); } /* pull from vtag hash */ LIST_REMOVE(stcb, sctp_asocs); sctp_add_vtag_to_timewait(asoc->my_vtag, SCTP_BASE_SYSCTL(sctp_vtag_time_wait), inp->sctp_lport, stcb->rport); /* * Now restop the timers to be sure this is paranoia at is finest! */ (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->shut_guard_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer); (void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer); TAILQ_FOREACH(net, &asoc->nets, sctp_next) { (void)SCTP_OS_TIMER_STOP(&net->rxt_timer.timer); (void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer); (void)SCTP_OS_TIMER_STOP(&net->hb_timer.timer); } asoc->strreset_timer.type = SCTP_TIMER_TYPE_NONE; /* * The chunk lists and such SHOULD be empty but we check them just * in case. */ /* anything on the wheel needs to be removed */ for (i = 0; i < asoc->streamoutcnt; i++) { struct sctp_stream_out *outs; outs = &asoc->strmout[i]; /* now clean up any chunks here */ TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) { TAILQ_REMOVE(&outs->outqueue, sp, next); sctp_free_spbufspace(stcb, asoc, sp); if (sp->data) { if (so) { /* Still an open socket - report */ sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb, 0, (void *)sp, SCTP_SO_LOCKED); } if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } sctp_free_a_strmoq(stcb, sp, SCTP_SO_LOCKED); } } /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH_SAFE(strrst, &asoc->resetHead, next_resp, nstrrst) { TAILQ_REMOVE(&asoc->resetHead, strrst, next_resp); SCTP_FREE(strrst, SCTP_M_STRESET); } TAILQ_FOREACH_SAFE(sq, &asoc->pending_reply_queue, next, nsq) { TAILQ_REMOVE(&asoc->pending_reply_queue, sq, next); if (sq->data) { sctp_m_freem(sq->data); sq->data = NULL; } sctp_free_remote_addr(sq->whoFrom); sq->whoFrom = NULL; sq->stcb = NULL; /* Free the ctl entry */ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_readq), sq); SCTP_DECR_READQ_COUNT(); /* sa_ignore FREED_MEMORY */ } TAILQ_FOREACH_SAFE(chk, &asoc->free_chunks, sctp_next, nchk) { TAILQ_REMOVE(&asoc->free_chunks, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); atomic_subtract_int(&SCTP_BASE_INFO(ipi_free_chunks), 1); asoc->free_chunk_cnt--; /* sa_ignore FREED_MEMORY */ } /* pending send queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next); if (chk->data) { if (so) { /* Still a socket? */ sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, chk, SCTP_SO_LOCKED); } if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); if (chk->whoTo) { sctp_free_remote_addr(chk->whoTo); chk->whoTo = NULL; } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* sent queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next); if (chk->data) { if (so) { /* Still a socket? */ sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, chk, SCTP_SO_LOCKED); } if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* control queue MAY not be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->control_send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->control_send_queue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* ASCONF queue MAY not be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->asconf_send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->asconf_send_queue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } TAILQ_FOREACH_SAFE(chk, &asoc->reasmqueue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->reasmqueue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } if (asoc->mapping_array) { SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); asoc->mapping_array = NULL; } if (asoc->nr_mapping_array) { SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->nr_mapping_array = NULL; } /* the stream outs */ if (asoc->strmout) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); asoc->strmout = NULL; } asoc->strm_realoutsize = asoc->streamoutcnt = 0; if (asoc->strmin) { struct sctp_queued_to_read *ctl, *nctl; for (i = 0; i < asoc->streamincnt; i++) { TAILQ_FOREACH_SAFE(ctl, &asoc->strmin[i].inqueue, next, nctl) { TAILQ_REMOVE(&asoc->strmin[i].inqueue, ctl, next); sctp_free_remote_addr(ctl->whoFrom); if (ctl->data) { sctp_m_freem(ctl->data); ctl->data = NULL; } /* * We don't free the address here since all * the net's were freed above. */ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_readq), ctl); SCTP_DECR_READQ_COUNT(); } } SCTP_FREE(asoc->strmin, SCTP_M_STRMI); asoc->strmin = NULL; } asoc->streamincnt = 0; TAILQ_FOREACH_SAFE(net, &asoc->nets, sctp_next, nnet) { #ifdef INVARIANTS if (SCTP_BASE_INFO(ipi_count_raddr) == 0) { panic("no net's left alloc'ed, or list points to itself"); } #endif TAILQ_REMOVE(&asoc->nets, net, sctp_next); sctp_free_remote_addr(net); } LIST_FOREACH_SAFE(laddr, &asoc->sctp_restricted_addrs, sctp_nxt_addr, naddr) { /* sa_ignore FREED_MEMORY */ sctp_remove_laddr(laddr); } /* pending asconf (address) parameters */ TAILQ_FOREACH_SAFE(aparam, &asoc->asconf_queue, next, naparam) { /* sa_ignore FREED_MEMORY */ TAILQ_REMOVE(&asoc->asconf_queue, aparam, next); SCTP_FREE(aparam, SCTP_M_ASC_ADDR); } TAILQ_FOREACH_SAFE(aack, &asoc->asconf_ack_sent, next, naack) { /* sa_ignore FREED_MEMORY */ TAILQ_REMOVE(&asoc->asconf_ack_sent, aack, next); if (aack->data != NULL) { sctp_m_freem(aack->data); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asconf_ack), aack); } /* clean up auth stuff */ if (asoc->local_hmacs) sctp_free_hmaclist(asoc->local_hmacs); if (asoc->peer_hmacs) sctp_free_hmaclist(asoc->peer_hmacs); if (asoc->local_auth_chunks) sctp_free_chunklist(asoc->local_auth_chunks); if (asoc->peer_auth_chunks) sctp_free_chunklist(asoc->peer_auth_chunks); sctp_free_authinfo(&asoc->authinfo); LIST_FOREACH_SAFE(shared_key, &asoc->shared_keys, next, nshared_key) { LIST_REMOVE(shared_key, next); sctp_free_sharedkey(shared_key); /* sa_ignore FREED_MEMORY */ } /* Insert new items here :> */ /* Get rid of LOCK */ SCTP_TCB_LOCK_DESTROY(stcb); SCTP_TCB_SEND_LOCK_DESTROY(stcb); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_RLOCK(inp); } #ifdef SCTP_TRACK_FREED_ASOCS if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* now clean up the tasoc itself */ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); } else { LIST_INSERT_HEAD(&inp->sctp_asoc_free_list, stcb, sctp_tcblist); } #else SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); #endif if (from_inpcbfree == SCTP_NORMAL_PROC) { if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* * If its NOT the inp_free calling us AND sctp_close * as been called, we call back... */ SCTP_INP_RUNLOCK(inp); /* * This will start the kill timer (if we are the * last one) since we hold an increment yet. But * this is the only safe way to do this since * otherwise if the socket closes at the same time * we are here we might collide in the cleanup. */ sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE, SCTP_CALLED_DIRECTLY_NOCMPSET); SCTP_INP_DECR_REF(inp); goto out_of; } else { /* The socket is still open. */ SCTP_INP_DECR_REF(inp); } } if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_RUNLOCK(inp); } out_of: /* destroyed the asoc */ #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 11); #endif return (1); } /* * determine if a destination is "reachable" based upon the addresses bound * to the current endpoint (e.g. only v4 or v6 currently bound) */ /* * FIX: if we allow assoc-level bindx(), then this needs to be fixed to use * assoc level v4/v6 flags, as the assoc *may* not have the same address * types bound as its endpoint */ int sctp_destination_is_reachable(struct sctp_tcb *stcb, struct sockaddr *destaddr) { struct sctp_inpcb *inp; int answer; /* * No locks here, the TCB, in all cases is already locked and an * assoc is up. There is either a INP lock by the caller applied (in * asconf case when deleting an address) or NOT in the HB case, * however if HB then the INP increment is up and the INP will not * be removed (on top of the fact that we have a TCB lock). So we * only want to read the sctp_flags, which is either bound-all or * not.. no protection needed since once an assoc is up you can't be * changing your binding. */ inp = stcb->sctp_ep; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* if bound all, destination is not restricted */ /* * RRS: Question during lock work: Is this correct? If you * are bound-all you still might need to obey the V4--V6 * flags??? IMO this bound-all stuff needs to be removed! */ return (1); } /* NOTE: all "scope" checks are done when local addresses are added */ switch (destaddr->sa_family) { #ifdef INET6 case AF_INET6: answer = inp->ip_inp.inp.inp_vflag & INP_IPV6; break; #endif #ifdef INET case AF_INET: answer = inp->ip_inp.inp.inp_vflag & INP_IPV4; break; #endif default: /* invalid family, so it's unreachable */ answer = 0; break; } return (answer); } /* * update the inp_vflags on an endpoint */ static void sctp_update_ep_vflag(struct sctp_inpcb *inp) { struct sctp_laddr *laddr; /* first clear the flag */ inp->ip_inp.inp.inp_vflag = 0; /* set the flag based on addresses on the ep list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __FUNCTION__); continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { continue; } switch (laddr->ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: inp->ip_inp.inp.inp_vflag |= INP_IPV6; break; #endif #ifdef INET case AF_INET: inp->ip_inp.inp.inp_vflag |= INP_IPV4; break; #endif default: break; } } } /* * Add the address to the endpoint local address list There is nothing to be * done if we are bound to all addresses */ void sctp_add_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa, uint32_t action) { struct sctp_laddr *laddr; int fnd, error = 0; fnd = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* You are already bound to all. You have it already */ return; } #ifdef INET6 if (ifa->address.sa.sa_family == AF_INET6) { if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-useable addr. */ return; } } #endif /* first, is it already present? */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { fnd = 1; break; } } if (fnd == 0) { /* Not in the ep list */ error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, action); if (error != 0) return; inp->laddr_count++; /* update inp_vflag flags */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: inp->ip_inp.inp.inp_vflag |= INP_IPV6; break; #endif #ifdef INET case AF_INET: inp->ip_inp.inp.inp_vflag |= INP_IPV4; break; #endif default: break; } } return; } /* * select a new (hopefully reachable) destination net (should only be used * when we deleted an ep addr that is the only usable source address to reach * the destination net) */ static void sctp_select_primary_destination(struct sctp_tcb *stcb) { struct sctp_nets *net; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* for now, we'll just pick the first reachable one we find */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) continue; if (sctp_destination_is_reachable(stcb, (struct sockaddr *)&net->ro._l_addr)) { /* found a reachable destination */ stcb->asoc.primary_destination = net; } } /* I can't there from here! ...we're gonna die shortly... */ } /* * Delete the address from the endpoint local address list There is nothing * to be done if we are bound to all addresses */ void sctp_del_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa) { struct sctp_laddr *laddr; int fnd; fnd = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* You are already bound to all. You have it already */ return; } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { fnd = 1; break; } } if (fnd && (inp->laddr_count < 2)) { /* can't delete unless there are at LEAST 2 addresses */ return; } if (fnd) { /* * clean up any use of this address go through our * associations and clear any last_used_address that match * this one for each assoc, see if a new primary_destination * is needed */ struct sctp_tcb *stcb; /* clean up "next_addr_touse" */ if (inp->next_addr_touse == laddr) /* delete this address */ inp->next_addr_touse = NULL; /* clean up "last_used_address" */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { struct sctp_nets *net; SCTP_TCB_LOCK(stcb); if (stcb->asoc.last_used_address == laddr) /* delete this address */ stcb->asoc.last_used_address = NULL; /* * Now spin through all the nets and purge any ref * to laddr */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._s_addr && (net->ro._s_addr->ifa == laddr->ifa)) { /* Yep, purge src address selected */ sctp_rtentry_t *rt; /* delete this address if cached */ rt = net->ro.ro_rt; if (rt != NULL) { RTFREE(rt); net->ro.ro_rt = NULL; } sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } } SCTP_TCB_UNLOCK(stcb); } /* for each tcb */ /* remove it from the ep list */ sctp_remove_laddr(laddr); inp->laddr_count--; /* update inp_vflag flags */ sctp_update_ep_vflag(inp); } return; } /* * Add the address to the TCB local address restricted list. * This is a "pending" address list (eg. addresses waiting for an * ASCONF-ACK response) and cannot be used as a valid source address. */ void sctp_add_local_addr_restricted(struct sctp_tcb *stcb, struct sctp_ifa *ifa) { struct sctp_laddr *laddr; struct sctpladdr *list; /* * Assumes TCB is locked.. and possibly the INP. May need to * confirm/fix that if we need it and is not the case. */ list = &stcb->asoc.sctp_restricted_addrs; #ifdef INET6 if (ifa->address.sa.sa_family == AF_INET6) { if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-existent addr. */ return; } } #endif /* does the address already exist? */ LIST_FOREACH(laddr, list, sctp_nxt_addr) { if (laddr->ifa == ifa) { return; } } /* add to the list */ (void)sctp_insert_laddr(list, ifa, 0); return; } /* * insert an laddr entry with the given ifa for the desired list */ int sctp_insert_laddr(struct sctpladdr *list, struct sctp_ifa *ifa, uint32_t act) { struct sctp_laddr *laddr; laddr = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (laddr == NULL) { /* out of memory? */ SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } SCTP_INCR_LADDR_COUNT(); bzero(laddr, sizeof(*laddr)); (void)SCTP_GETTIME_TIMEVAL(&laddr->start_time); laddr->ifa = ifa; laddr->action = act; atomic_add_int(&ifa->refcount, 1); /* insert it */ LIST_INSERT_HEAD(list, laddr, sctp_nxt_addr); return (0); } /* * Remove an laddr entry from the local address list (on an assoc) */ void sctp_remove_laddr(struct sctp_laddr *laddr) { /* remove from the list */ LIST_REMOVE(laddr, sctp_nxt_addr); sctp_free_ifa(laddr->ifa); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), laddr); SCTP_DECR_LADDR_COUNT(); } /* * Remove a local address from the TCB local address restricted list */ void sctp_del_local_addr_restricted(struct sctp_tcb *stcb, struct sctp_ifa *ifa) { struct sctp_inpcb *inp; struct sctp_laddr *laddr; /* * This is called by asconf work. It is assumed that a) The TCB is * locked and b) The INP is locked. This is true in as much as I can * trace through the entry asconf code where I did these locks. * Again, the ASCONF code is a bit different in that it does lock * the INP during its work often times. This must be since we don't * want other proc's looking up things while what they are looking * up is changing :-D */ inp = stcb->sctp_ep; /* if subset bound and don't allow ASCONF's, can't delete last */ if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { if (stcb->sctp_ep->laddr_count < 2) { /* can't delete last address */ return; } } LIST_FOREACH(laddr, &stcb->asoc.sctp_restricted_addrs, sctp_nxt_addr) { /* remove the address if it exists */ if (laddr->ifa == NULL) continue; if (laddr->ifa == ifa) { sctp_remove_laddr(laddr); return; } } /* address not found! */ return; } /* * Temporarily remove for __APPLE__ until we use the Tiger equivalents */ /* sysctl */ static int sctp_max_number_of_assoc = SCTP_MAX_NUM_OF_ASOC; static int sctp_scale_up_for_address = SCTP_SCALE_FOR_ADDR; #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) struct sctp_mcore_ctrl *sctp_mcore_workers = NULL; int *sctp_cpuarry = NULL; void sctp_queue_to_mcore(struct mbuf *m, int off, int cpu_to_use) { /* Queue a packet to a processor for the specified core */ struct sctp_mcore_queue *qent; struct sctp_mcore_ctrl *wkq; int need_wake = 0; if (sctp_mcore_workers == NULL) { /* Something went way bad during setup */ sctp_input_with_port(m, off, 0); return; } SCTP_MALLOC(qent, struct sctp_mcore_queue *, (sizeof(struct sctp_mcore_queue)), SCTP_M_MCORE); if (qent == NULL) { /* This is trouble */ sctp_input_with_port(m, off, 0); return; } qent->vn = curvnet; qent->m = m; qent->off = off; qent->v6 = 0; wkq = &sctp_mcore_workers[cpu_to_use]; SCTP_MCORE_QLOCK(wkq); TAILQ_INSERT_TAIL(&wkq->que, qent, next); if (wkq->running == 0) { need_wake = 1; } SCTP_MCORE_QUNLOCK(wkq); if (need_wake) { wakeup(&wkq->running); } } static void sctp_mcore_thread(void *arg) { struct sctp_mcore_ctrl *wkq; struct sctp_mcore_queue *qent; wkq = (struct sctp_mcore_ctrl *)arg; struct mbuf *m; int off, v6; /* Wait for first tickle */ SCTP_MCORE_LOCK(wkq); wkq->running = 0; msleep(&wkq->running, &wkq->core_mtx, 0, "wait for pkt", 0); SCTP_MCORE_UNLOCK(wkq); /* Bind to our cpu */ thread_lock(curthread); sched_bind(curthread, wkq->cpuid); thread_unlock(curthread); /* Now lets start working */ SCTP_MCORE_LOCK(wkq); /* Now grab lock and go */ for (;;) { SCTP_MCORE_QLOCK(wkq); skip_sleep: wkq->running = 1; qent = TAILQ_FIRST(&wkq->que); if (qent) { TAILQ_REMOVE(&wkq->que, qent, next); SCTP_MCORE_QUNLOCK(wkq); CURVNET_SET(qent->vn); m = qent->m; off = qent->off; v6 = qent->v6; SCTP_FREE(qent, SCTP_M_MCORE); if (v6 == 0) { sctp_input_with_port(m, off, 0); } else { SCTP_PRINTF("V6 not yet supported\n"); sctp_m_freem(m); } CURVNET_RESTORE(); SCTP_MCORE_QLOCK(wkq); } wkq->running = 0; if (!TAILQ_EMPTY(&wkq->que)) { goto skip_sleep; } SCTP_MCORE_QUNLOCK(wkq); msleep(&wkq->running, &wkq->core_mtx, 0, "wait for pkt", 0); } } static void sctp_startup_mcore_threads(void) { int i, cpu; if (mp_ncpus == 1) return; if (sctp_mcore_workers != NULL) { /* * Already been here in some previous vnet? */ return; } SCTP_MALLOC(sctp_mcore_workers, struct sctp_mcore_ctrl *, ((mp_maxid + 1) * sizeof(struct sctp_mcore_ctrl)), SCTP_M_MCORE); if (sctp_mcore_workers == NULL) { /* TSNH I hope */ return; } memset(sctp_mcore_workers, 0, ((mp_maxid + 1) * sizeof(struct sctp_mcore_ctrl))); /* Init the structures */ for (i = 0; i <= mp_maxid; i++) { TAILQ_INIT(&sctp_mcore_workers[i].que); SCTP_MCORE_LOCK_INIT(&sctp_mcore_workers[i]); SCTP_MCORE_QLOCK_INIT(&sctp_mcore_workers[i]); sctp_mcore_workers[i].cpuid = i; } if (sctp_cpuarry == NULL) { SCTP_MALLOC(sctp_cpuarry, int *, (mp_ncpus * sizeof(int)), SCTP_M_MCORE); i = 0; CPU_FOREACH(cpu) { sctp_cpuarry[i] = cpu; i++; } } /* Now start them all */ CPU_FOREACH(cpu) { (void)kproc_create(sctp_mcore_thread, (void *)&sctp_mcore_workers[cpu], &sctp_mcore_workers[cpu].thread_proc, RFPROC, SCTP_KTHREAD_PAGES, SCTP_MCORE_NAME); } } #endif void sctp_pcb_init() { /* * SCTP initialization for the PCB structures should be called by * the sctp_init() funciton. */ int i; struct timeval tv; if (SCTP_BASE_VAR(sctp_pcb_initialized) != 0) { /* error I was called twice */ return; } SCTP_BASE_VAR(sctp_pcb_initialized) = 1; #if defined(SCTP_LOCAL_TRACE_BUF) bzero(&SCTP_BASE_SYSCTL(sctp_log), sizeof(struct sctp_log)); #endif #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) SCTP_MALLOC(SCTP_BASE_STATS, struct sctpstat *, ((mp_maxid + 1) * sizeof(struct sctpstat)), SCTP_M_MCORE); #endif (void)SCTP_GETTIME_TIMEVAL(&tv); #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) bzero(SCTP_BASE_STATS, (sizeof(struct sctpstat) * (mp_maxid + 1))); SCTP_BASE_STATS[PCPU_GET(cpuid)].sctps_discontinuitytime.tv_sec = (uint32_t) tv.tv_sec; SCTP_BASE_STATS[PCPU_GET(cpuid)].sctps_discontinuitytime.tv_usec = (uint32_t) tv.tv_usec; #else bzero(&SCTP_BASE_STATS, sizeof(struct sctpstat)); SCTP_BASE_STAT(sctps_discontinuitytime).tv_sec = (uint32_t) tv.tv_sec; SCTP_BASE_STAT(sctps_discontinuitytime).tv_usec = (uint32_t) tv.tv_usec; #endif /* init the empty list of (All) Endpoints */ LIST_INIT(&SCTP_BASE_INFO(listhead)); /* init the hash table of endpoints */ TUNABLE_INT_FETCH("net.inet.sctp.tcbhashsize", &SCTP_BASE_SYSCTL(sctp_hashtblsize)); TUNABLE_INT_FETCH("net.inet.sctp.pcbhashsize", &SCTP_BASE_SYSCTL(sctp_pcbtblsize)); TUNABLE_INT_FETCH("net.inet.sctp.chunkscale", &SCTP_BASE_SYSCTL(sctp_chunkscale)); SCTP_BASE_INFO(sctp_asochash) = SCTP_HASH_INIT((SCTP_BASE_SYSCTL(sctp_hashtblsize) * 31), &SCTP_BASE_INFO(hashasocmark)); SCTP_BASE_INFO(sctp_ephash) = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_hashtblsize), &SCTP_BASE_INFO(hashmark)); SCTP_BASE_INFO(sctp_tcpephash) = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_hashtblsize), &SCTP_BASE_INFO(hashtcpmark)); SCTP_BASE_INFO(hashtblsize) = SCTP_BASE_SYSCTL(sctp_hashtblsize); SCTP_BASE_INFO(sctp_vrfhash) = SCTP_HASH_INIT(SCTP_SIZE_OF_VRF_HASH, &SCTP_BASE_INFO(hashvrfmark)); SCTP_BASE_INFO(vrf_ifn_hash) = SCTP_HASH_INIT(SCTP_VRF_IFN_HASH_SIZE, &SCTP_BASE_INFO(vrf_ifn_hashmark)); /* init the zones */ /* * FIX ME: Should check for NULL returns, but if it does fail we are * doomed to panic anyways... add later maybe. */ SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_ep), "sctp_ep", sizeof(struct sctp_inpcb), maxsockets); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asoc), "sctp_asoc", sizeof(struct sctp_tcb), sctp_max_number_of_assoc); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_laddr), "sctp_laddr", sizeof(struct sctp_laddr), (sctp_max_number_of_assoc * sctp_scale_up_for_address)); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_net), "sctp_raddr", sizeof(struct sctp_nets), (sctp_max_number_of_assoc * sctp_scale_up_for_address)); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_chunk), "sctp_chunk", sizeof(struct sctp_tmit_chunk), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_readq), "sctp_readq", sizeof(struct sctp_queued_to_read), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_strmoq), "sctp_stream_msg_out", sizeof(struct sctp_stream_queue_pending), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asconf), "sctp_asconf", sizeof(struct sctp_asconf), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asconf_ack), "sctp_asconf_ack", sizeof(struct sctp_asconf_ack), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); /* Master Lock INIT for info structure */ SCTP_INP_INFO_LOCK_INIT(); SCTP_STATLOG_INIT_LOCK(); SCTP_IPI_COUNT_INIT(); SCTP_IPI_ADDR_INIT(); #ifdef SCTP_PACKET_LOGGING SCTP_IP_PKTLOG_INIT(); #endif LIST_INIT(&SCTP_BASE_INFO(addr_wq)); SCTP_WQ_ADDR_INIT(); /* not sure if we need all the counts */ SCTP_BASE_INFO(ipi_count_ep) = 0; /* assoc/tcb zone info */ SCTP_BASE_INFO(ipi_count_asoc) = 0; /* local addrlist zone info */ SCTP_BASE_INFO(ipi_count_laddr) = 0; /* remote addrlist zone info */ SCTP_BASE_INFO(ipi_count_raddr) = 0; /* chunk info */ SCTP_BASE_INFO(ipi_count_chunk) = 0; /* socket queue zone info */ SCTP_BASE_INFO(ipi_count_readq) = 0; /* stream out queue cont */ SCTP_BASE_INFO(ipi_count_strmoq) = 0; SCTP_BASE_INFO(ipi_free_strmoq) = 0; SCTP_BASE_INFO(ipi_free_chunks) = 0; SCTP_OS_TIMER_INIT(&SCTP_BASE_INFO(addr_wq_timer.timer)); /* Init the TIMEWAIT list */ for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) { LIST_INIT(&SCTP_BASE_INFO(vtag_timewait)[i]); } sctp_startup_iterator(); #if defined(__FreeBSD__) && defined(SCTP_MCORE_INPUT) && defined(SMP) sctp_startup_mcore_threads(); #endif /* * INIT the default VRF which for BSD is the only one, other O/S's * may have more. But initially they must start with one and then * add the VRF's as addresses are added. */ sctp_init_vrf_list(SCTP_DEFAULT_VRF); } /* * Assumes that the SCTP_BASE_INFO() lock is NOT held. */ void sctp_pcb_finish(void) { struct sctp_vrflist *vrf_bucket; struct sctp_vrf *vrf, *nvrf; struct sctp_ifn *ifn, *nifn; struct sctp_ifa *ifa, *nifa; struct sctpvtaghead *chain; struct sctp_tagblock *twait_block, *prev_twait_block; struct sctp_laddr *wi, *nwi; int i; /* * Free BSD the it thread never exits but we do clean up. The only * way freebsd reaches here if we have VRF's but we still add the * ifdef to make it compile on old versions. */ { struct sctp_iterator *it, *nit; SCTP_IPI_ITERATOR_WQ_LOCK(); TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { if (it->vn != curvnet) { continue; } TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); } SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_ITERATOR_LOCK(); if ((sctp_it_ctl.cur_it) && (sctp_it_ctl.cur_it->vn == curvnet)) { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_IT; } SCTP_ITERATOR_UNLOCK(); } SCTP_OS_TIMER_STOP(&SCTP_BASE_INFO(addr_wq_timer.timer)); SCTP_WQ_ADDR_LOCK(); LIST_FOREACH_SAFE(wi, &SCTP_BASE_INFO(addr_wq), sctp_nxt_addr, nwi) { LIST_REMOVE(wi, sctp_nxt_addr); SCTP_DECR_LADDR_COUNT(); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), wi); } SCTP_WQ_ADDR_UNLOCK(); /* * free the vrf/ifn/ifa lists and hashes (be sure address monitor is * destroyed first). */ vrf_bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(SCTP_DEFAULT_VRFID & SCTP_BASE_INFO(hashvrfmark))]; LIST_FOREACH_SAFE(vrf, vrf_bucket, next_vrf, nvrf) { LIST_FOREACH_SAFE(ifn, &vrf->ifnlist, next_ifn, nifn) { LIST_FOREACH_SAFE(ifa, &ifn->ifalist, next_ifa, nifa) { /* free the ifa */ LIST_REMOVE(ifa, next_bucket); LIST_REMOVE(ifa, next_ifa); SCTP_FREE(ifa, SCTP_M_IFA); } /* free the ifn */ LIST_REMOVE(ifn, next_bucket); LIST_REMOVE(ifn, next_ifn); SCTP_FREE(ifn, SCTP_M_IFN); } SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark); /* free the vrf */ LIST_REMOVE(vrf, next_vrf); SCTP_FREE(vrf, SCTP_M_VRF); } /* free the vrf hashes */ SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_vrfhash), SCTP_BASE_INFO(hashvrfmark)); SCTP_HASH_FREE(SCTP_BASE_INFO(vrf_ifn_hash), SCTP_BASE_INFO(vrf_ifn_hashmark)); /* * free the TIMEWAIT list elements malloc'd in the function * sctp_add_vtag_to_timewait()... */ for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) { chain = &SCTP_BASE_INFO(vtag_timewait)[i]; if (!LIST_EMPTY(chain)) { prev_twait_block = NULL; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { if (prev_twait_block) { SCTP_FREE(prev_twait_block, SCTP_M_TIMW); } prev_twait_block = twait_block; } SCTP_FREE(prev_twait_block, SCTP_M_TIMW); } } /* free the locks and mutexes */ #ifdef SCTP_PACKET_LOGGING SCTP_IP_PKTLOG_DESTROY(); #endif SCTP_IPI_ADDR_DESTROY(); SCTP_STATLOG_DESTROY(); SCTP_INP_INFO_LOCK_DESTROY(); SCTP_WQ_ADDR_DESTROY(); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_ep)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asoc)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_laddr)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_net)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_chunk)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_readq)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_strmoq)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asconf)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asconf_ack)); /* Get rid of other stuff to */ if (SCTP_BASE_INFO(sctp_asochash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_asochash), SCTP_BASE_INFO(hashasocmark)); if (SCTP_BASE_INFO(sctp_ephash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_ephash), SCTP_BASE_INFO(hashmark)); if (SCTP_BASE_INFO(sctp_tcpephash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_tcpephash), SCTP_BASE_INFO(hashtcpmark)); #if defined(__FreeBSD__) && defined(SMP) && defined(SCTP_USE_PERCPU_STAT) SCTP_FREE(SCTP_BASE_STATS, SCTP_M_MCORE); #endif } int sctp_load_addresses_from_init(struct sctp_tcb *stcb, struct mbuf *m, int offset, int limit, struct sctphdr *sh, struct sockaddr *altsa) { /* * grub through the INIT pulling addresses and loading them to the * nets structure in the asoc. The from address in the mbuf should * also be loaded (if it is not already). This routine can be called * with either INIT or INIT-ACK's as long as the m points to the IP * packet and the offset points to the beginning of the parameters. */ struct sctp_inpcb *inp; struct sctp_nets *net, *nnet, *net_tmp; struct ip *iph; struct sctp_paramhdr *phdr, parm_buf; struct sctp_tcb *stcb_tmp; uint16_t ptype, plen; struct sockaddr *sa; struct sockaddr_storage dest_store; struct sockaddr *local_sa = (struct sockaddr *)&dest_store; uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_random *p_random = NULL; uint16_t random_len = 0; uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_hmac_algo *hmacs = NULL; uint16_t hmacs_len = 0; uint8_t saw_asconf = 0; uint8_t saw_asconf_ack = 0; uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_chunk_list *chunks = NULL; uint16_t num_chunks = 0; sctp_key_t *new_key; uint32_t keylen; int got_random = 0, got_hmacs = 0, got_chklist = 0; uint8_t ecn_allowed; #ifdef INET struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif /* First get the destination address setup too. */ #ifdef INET memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = stcb->rport; #endif #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_port = stcb->rport; #endif iph = mtod(m, struct ip *); switch (iph->ip_v) { #ifdef INET case IPVERSION: { /* its IPv4 */ struct sockaddr_in *sin_2; sin_2 = (struct sockaddr_in *)(local_sa); memset(sin_2, 0, sizeof(sin)); sin_2->sin_family = AF_INET; sin_2->sin_len = sizeof(sin); sin_2->sin_port = sh->dest_port; sin_2->sin_addr.s_addr = iph->ip_dst.s_addr; if (altsa) { /* * For cookies we use the src address NOT * from the packet but from the original * INIT. */ sa = altsa; } else { sin.sin_addr = iph->ip_src; sa = (struct sockaddr *)&sin; } break; } #endif #ifdef INET6 case IPV6_VERSION >> 4: { /* its IPv6 */ struct ip6_hdr *ip6; struct sockaddr_in6 *sin6_2; ip6 = mtod(m, struct ip6_hdr *); sin6_2 = (struct sockaddr_in6 *)(local_sa); memset(sin6_2, 0, sizeof(sin6)); sin6_2->sin6_family = AF_INET6; sin6_2->sin6_len = sizeof(struct sockaddr_in6); sin6_2->sin6_port = sh->dest_port; sin6_2->sin6_addr = ip6->ip6_dst; if (altsa) { /* * For cookies we use the src address NOT * from the packet but from the original * INIT. */ sa = altsa; } else { sin6.sin6_addr = ip6->ip6_src; sa = (struct sockaddr *)&sin6; } break; } #endif default: return (-1); break; } /* Turn off ECN until we get through all params */ ecn_allowed = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* mark all addresses that we have currently on the list */ net->dest_state |= SCTP_ADDR_NOT_IN_ASSOC; } /* does the source address already exist? if so skip it */ inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net_tmp, local_sa, stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) { /* we must add the source address */ /* no scope set here since we have a tcb already. */ switch (sa->sa_family) { #ifdef INET case AF_INET: if (stcb->asoc.ipv4_addr_legal) { if (sctp_add_remote_addr(stcb, sa, NULL, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_2)) { return (-1); } } break; #endif #ifdef INET6 case AF_INET6: if (stcb->asoc.ipv6_addr_legal) { if (sctp_add_remote_addr(stcb, sa, NULL, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_3)) { return (-2); } } break; #endif default: break; } } else { if (net_tmp != NULL && stcb_tmp == stcb) { net_tmp->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } else if (stcb_tmp != stcb) { /* It belongs to another association? */ if (stcb_tmp) SCTP_TCB_UNLOCK(stcb_tmp); return (-3); } } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-4); } /* * peer must explicitly turn this on. This may have been initialized * to be "on" in order to allow local addr changes while INIT's are * in flight. */ stcb->asoc.peer_supports_asconf = 0; /* now we must go through each of the params. */ phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); while (phdr) { ptype = ntohs(phdr->param_type); plen = ntohs(phdr->param_length); /* * SCTP_PRINTF("ptype => %0x, plen => %d\n", * (uint32_t)ptype, (int)plen); */ if (offset + plen > limit) { break; } if (plen == 0) { break; } #ifdef INET if (ptype == SCTP_IPV4_ADDRESS) { if (stcb->asoc.ipv4_addr_legal) { struct sctp_ipv4addr_param *p4, p4_buf; /* ok get the v4 address and check/add */ phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&p4_buf, sizeof(p4_buf)); if (plen != sizeof(struct sctp_ipv4addr_param) || phdr == NULL) { return (-5); } p4 = (struct sctp_ipv4addr_param *)phdr; sin.sin_addr.s_addr = p4->addr; if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { /* Skip multi-cast addresses */ goto next_param; } if ((sin.sin_addr.s_addr == INADDR_BROADCAST) || (sin.sin_addr.s_addr == INADDR_ANY)) { goto next_param; } sa = (struct sockaddr *)&sin; inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net, local_sa, stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) { /* we must add the source address */ /* * no scope set since we have a tcb * already */ /* * we must validate the state again * here */ add_it_now: if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-7); } if (sctp_add_remote_addr(stcb, sa, NULL, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_4)) { return (-8); } } else if (stcb_tmp == stcb) { if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-10); } if (net != NULL) { /* clear flag */ net->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } } else { /* * strange, address is in another * assoc? straighten out locks. */ if (stcb_tmp) { if (SCTP_GET_STATE(&stcb_tmp->asoc) & SCTP_STATE_COOKIE_WAIT) { /* * in setup state we * abort this guy */ sctp_abort_an_association(stcb_tmp->sctp_ep, stcb_tmp, NULL, SCTP_SO_NOT_LOCKED); goto add_it_now; } SCTP_TCB_UNLOCK(stcb_tmp); } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-12); } return (-13); } } } else #endif #ifdef INET6 if (ptype == SCTP_IPV6_ADDRESS) { if (stcb->asoc.ipv6_addr_legal) { /* ok get the v6 address and check/add */ struct sctp_ipv6addr_param *p6, p6_buf; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&p6_buf, sizeof(p6_buf)); if (plen != sizeof(struct sctp_ipv6addr_param) || phdr == NULL) { return (-14); } p6 = (struct sctp_ipv6addr_param *)phdr; memcpy((caddr_t)&sin6.sin6_addr, p6->addr, sizeof(p6->addr)); if (IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr)) { /* Skip multi-cast addresses */ goto next_param; } if (IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr)) { /* * Link local make no sense without * scope */ goto next_param; } sa = (struct sockaddr *)&sin6; inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net, local_sa, stcb); atomic_add_int(&stcb->asoc.refcnt, -1); if (stcb_tmp == NULL && (inp == stcb->sctp_ep || inp == NULL)) { /* * we must validate the state again * here */ add_it_now6: if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-16); } /* * we must add the address, no scope * set */ if (sctp_add_remote_addr(stcb, sa, NULL, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_5)) { return (-17); } } else if (stcb_tmp == stcb) { /* * we must validate the state again * here */ if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-19); } if (net != NULL) { /* clear flag */ net->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } } else { /* * strange, address is in another * assoc? straighten out locks. */ if (stcb_tmp) if (SCTP_GET_STATE(&stcb_tmp->asoc) & SCTP_STATE_COOKIE_WAIT) { /* * in setup state we * abort this guy */ sctp_abort_an_association(stcb_tmp->sctp_ep, stcb_tmp, NULL, SCTP_SO_NOT_LOCKED); goto add_it_now6; } SCTP_TCB_UNLOCK(stcb_tmp); if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-21); } return (-22); } } } else #endif if (ptype == SCTP_ECN_CAPABLE) { ecn_allowed = 1; } else if (ptype == SCTP_ULP_ADAPTATION) { if (stcb->asoc.state != SCTP_STATE_OPEN) { struct sctp_adaptation_layer_indication ai, *aip; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ai, sizeof(ai)); aip = (struct sctp_adaptation_layer_indication *)phdr; if (aip) { stcb->asoc.peers_adaptation = ntohl(aip->indication); stcb->asoc.adaptation_needed = 1; } } } else if (ptype == SCTP_SET_PRIM_ADDR) { struct sctp_asconf_addr_param lstore, *fee; int lptype; struct sockaddr *lsa = NULL; #ifdef INET struct sctp_asconf_addrv4_param *fii; #endif stcb->asoc.peer_supports_asconf = 1; if (plen > sizeof(lstore)) { return (-23); } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&lstore, min(plen, sizeof(lstore))); if (phdr == NULL) { return (-24); } fee = (struct sctp_asconf_addr_param *)phdr; lptype = ntohs(fee->addrp.ph.param_type); switch (lptype) { #ifdef INET case SCTP_IPV4_ADDRESS: if (plen != sizeof(struct sctp_asconf_addrv4_param)) { SCTP_PRINTF("Sizeof setprim in init/init ack not %d but %d - ignored\n", (int)sizeof(struct sctp_asconf_addrv4_param), plen); } else { fii = (struct sctp_asconf_addrv4_param *)fee; sin.sin_addr.s_addr = fii->addrp.addr; lsa = (struct sockaddr *)&sin; } break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (plen != sizeof(struct sctp_asconf_addr_param)) { SCTP_PRINTF("Sizeof setprim (v6) in init/init ack not %d but %d - ignored\n", (int)sizeof(struct sctp_asconf_addr_param), plen); } else { memcpy(sin6.sin6_addr.s6_addr, fee->addrp.addr, sizeof(fee->addrp.addr)); lsa = (struct sockaddr *)&sin6; } break; #endif default: break; } if (lsa) { (void)sctp_set_primary_addr(stcb, sa, NULL); } } else if (ptype == SCTP_HAS_NAT_SUPPORT) { stcb->asoc.peer_supports_nat = 1; } else if (ptype == SCTP_PRSCTP_SUPPORTED) { /* Peer supports pr-sctp */ stcb->asoc.peer_supports_prsctp = 1; } else if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { /* A supported extension chunk */ struct sctp_supported_chunk_types_param *pr_supported; uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; int num_ent, i; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&local_store, min(sizeof(local_store), plen)); if (phdr == NULL) { return (-25); } stcb->asoc.peer_supports_asconf = 0; stcb->asoc.peer_supports_prsctp = 0; stcb->asoc.peer_supports_pktdrop = 0; stcb->asoc.peer_supports_strreset = 0; stcb->asoc.peer_supports_nr_sack = 0; stcb->asoc.peer_supports_auth = 0; pr_supported = (struct sctp_supported_chunk_types_param *)phdr; num_ent = plen - sizeof(struct sctp_paramhdr); for (i = 0; i < num_ent; i++) { switch (pr_supported->chunk_types[i]) { case SCTP_ASCONF: case SCTP_ASCONF_ACK: stcb->asoc.peer_supports_asconf = 1; break; case SCTP_FORWARD_CUM_TSN: stcb->asoc.peer_supports_prsctp = 1; break; case SCTP_PACKET_DROPPED: stcb->asoc.peer_supports_pktdrop = 1; break; case SCTP_NR_SELECTIVE_ACK: stcb->asoc.peer_supports_nr_sack = 1; break; case SCTP_STREAM_RESET: stcb->asoc.peer_supports_strreset = 1; break; case SCTP_AUTHENTICATION: stcb->asoc.peer_supports_auth = 1; break; default: /* one I have not learned yet */ break; } } } else if (ptype == SCTP_RANDOM) { if (plen > sizeof(random_store)) break; if (got_random) { /* already processed a RANDOM */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)random_store, min(sizeof(random_store), plen)); if (phdr == NULL) return (-26); p_random = (struct sctp_auth_random *)phdr; random_len = plen - sizeof(*p_random); /* enforce the random length */ if (random_len != SCTP_AUTH_RANDOM_SIZE_REQUIRED) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: invalid RANDOM len\n"); return (-27); } got_random = 1; } else if (ptype == SCTP_HMAC_LIST) { int num_hmacs; int i; if (plen > sizeof(hmacs_store)) break; if (got_hmacs) { /* already processed a HMAC list */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store))); if (phdr == NULL) return (-28); hmacs = (struct sctp_auth_hmac_algo *)phdr; hmacs_len = plen - sizeof(*hmacs); num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); /* validate the hmac list */ if (sctp_verify_hmac_param(hmacs, num_hmacs)) { return (-29); } if (stcb->asoc.peer_hmacs != NULL) sctp_free_hmaclist(stcb->asoc.peer_hmacs); stcb->asoc.peer_hmacs = sctp_alloc_hmaclist(num_hmacs); if (stcb->asoc.peer_hmacs != NULL) { for (i = 0; i < num_hmacs; i++) { (void)sctp_auth_add_hmacid(stcb->asoc.peer_hmacs, ntohs(hmacs->hmac_ids[i])); } } got_hmacs = 1; } else if (ptype == SCTP_CHUNK_LIST) { int i; if (plen > sizeof(chunks_store)) break; if (got_chklist) { /* already processed a Chunks list */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store))); if (phdr == NULL) return (-30); chunks = (struct sctp_auth_chunk_list *)phdr; num_chunks = plen - sizeof(*chunks); if (stcb->asoc.peer_auth_chunks != NULL) sctp_clear_chunklist(stcb->asoc.peer_auth_chunks); else stcb->asoc.peer_auth_chunks = sctp_alloc_chunklist(); for (i = 0; i < num_chunks; i++) { (void)sctp_auth_add_chunk(chunks->chunk_types[i], stcb->asoc.peer_auth_chunks); /* record asconf/asconf-ack if listed */ if (chunks->chunk_types[i] == SCTP_ASCONF) saw_asconf = 1; if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) saw_asconf_ack = 1; } got_chklist = 1; } else if ((ptype == SCTP_HEARTBEAT_INFO) || (ptype == SCTP_STATE_COOKIE) || (ptype == SCTP_UNRECOG_PARAM) || (ptype == SCTP_COOKIE_PRESERVE) || (ptype == SCTP_SUPPORTED_ADDRTYPE) || (ptype == SCTP_ADD_IP_ADDRESS) || (ptype == SCTP_DEL_IP_ADDRESS) || (ptype == SCTP_ERROR_CAUSE_IND) || (ptype == SCTP_SUCCESS_REPORT)) { /* don't care */ ; } else { if ((ptype & 0x8000) == 0x0000) { /* * must stop processing the rest of the * param's. Any report bits were handled * with the call to * sctp_arethere_unrecognized_parameters() * when the INIT or INIT-ACK was first seen. */ break; } } next_param: offset += SCTP_SIZE32(plen); if (offset >= limit) { break; } phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); } /* Now check to see if we need to purge any addresses */ TAILQ_FOREACH_SAFE(net, &stcb->asoc.nets, sctp_next, nnet) { if ((net->dest_state & SCTP_ADDR_NOT_IN_ASSOC) == SCTP_ADDR_NOT_IN_ASSOC) { /* This address has been removed from the asoc */ /* remove and free it */ stcb->asoc.numnets--; TAILQ_REMOVE(&stcb->asoc.nets, net, sctp_next); sctp_free_remote_addr(net); if (net == stcb->asoc.primary_destination) { stcb->asoc.primary_destination = NULL; sctp_select_primary_destination(stcb); } } } if (ecn_allowed == 0) { stcb->asoc.ecn_allowed = 0; } /* validate authentication required parameters */ if (got_random && got_hmacs) { stcb->asoc.peer_supports_auth = 1; } else { stcb->asoc.peer_supports_auth = 0; } if (!stcb->asoc.peer_supports_auth && got_chklist) { /* peer does not support auth but sent a chunks list? */ return (-31); } if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && stcb->asoc.peer_supports_asconf && !stcb->asoc.peer_supports_auth) { /* peer supports asconf but not auth? */ return (-32); } else if ((stcb->asoc.peer_supports_asconf) && (stcb->asoc.peer_supports_auth) && ((saw_asconf == 0) || (saw_asconf_ack == 0))) { return (-33); } /* concatenate the full random key */ keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; if (chunks != NULL) { keylen += sizeof(*chunks) + num_chunks; } new_key = sctp_alloc_key(keylen); if (new_key != NULL) { /* copy in the RANDOM */ if (p_random != NULL) { keylen = sizeof(*p_random) + random_len; bcopy(p_random, new_key->key, keylen); } /* append in the AUTH chunks */ if (chunks != NULL) { bcopy(chunks, new_key->key + keylen, sizeof(*chunks) + num_chunks); keylen += sizeof(*chunks) + num_chunks; } /* append in the HMACs */ if (hmacs != NULL) { bcopy(hmacs, new_key->key + keylen, sizeof(*hmacs) + hmacs_len); } } else { /* failed to get memory for the key */ return (-34); } if (stcb->asoc.authinfo.peer_random != NULL) sctp_free_key(stcb->asoc.authinfo.peer_random); stcb->asoc.authinfo.peer_random = new_key; sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); return (0); } int sctp_set_primary_addr(struct sctp_tcb *stcb, struct sockaddr *sa, struct sctp_nets *net) { /* make sure the requested primary address exists in the assoc */ if (net == NULL && sa) net = sctp_findnet(stcb, sa); if (net == NULL) { /* didn't find the requested primary address! */ return (-1); } else { /* set the primary address */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) { /* Must be confirmed, so queue to set */ net->dest_state |= SCTP_ADDR_REQ_PRIMARY; return (0); } stcb->asoc.primary_destination = net; if (!(net->dest_state & SCTP_ADDR_PF) && (stcb->asoc.alternate)) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } net = TAILQ_FIRST(&stcb->asoc.nets); if (net != stcb->asoc.primary_destination) { /* * first one on the list is NOT the primary * sctp_cmpaddr() is much more efficient if the * primary is the first on the list, make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); } return (0); } } int sctp_is_vtag_good(uint32_t tag, uint16_t lport, uint16_t rport, struct timeval *now) { /* * This function serves two purposes. It will see if a TAG can be * re-used and return 1 for yes it is ok and 0 for don't use that * tag. A secondary function it will do is purge out old tags that * can be removed. */ struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; struct sctpasochead *head; struct sctp_tcb *stcb; int i; SCTP_INP_INFO_RLOCK(); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(tag, SCTP_BASE_INFO(hashasocmark))]; if (head == NULL) { /* invalid vtag */ goto skip_vtag_check; } LIST_FOREACH(stcb, head, sctp_asocs) { /* * We choose not to lock anything here. TCB's can't be * removed since we have the read lock, so they can't be * freed on us, same thing for the INP. I may be wrong with * this assumption, but we will go with it for now :-) */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { continue; } if (stcb->asoc.my_vtag == tag) { /* candidate */ if (stcb->rport != rport) { continue; } if (stcb->sctp_ep->sctp_lport != lport) { continue; } /* Its a used tag set */ SCTP_INP_INFO_RUNLOCK(); return (0); } } skip_vtag_check: chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; /* Now what about timed wait ? */ if (!LIST_EMPTY(chain)) { /* * Block(s) are present, lets see if we have this tag in the * list */ LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if (twait_block->vtag_block[i].v_tag == 0) { /* not used */ continue; } else if ((long)twait_block->vtag_block[i].tv_sec_at_expire < now->tv_sec) { /* Audit expires this guy */ twait_block->vtag_block[i].tv_sec_at_expire = 0; twait_block->vtag_block[i].v_tag = 0; twait_block->vtag_block[i].lport = 0; twait_block->vtag_block[i].rport = 0; } else if ((twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { /* Bad tag, sorry :< */ SCTP_INP_INFO_RUNLOCK(); return (0); } } } } SCTP_INP_INFO_RUNLOCK(); return (1); } static void sctp_drain_mbufs(struct sctp_tcb *stcb) { /* * We must hunt this association for MBUF's past the cumack (i.e. * out of order data that we can renege on). */ struct sctp_association *asoc; struct sctp_tmit_chunk *chk, *nchk; uint32_t cumulative_tsn_p1; struct sctp_queued_to_read *ctl, *nctl; int cnt, strmat; uint32_t gap, i; int fnd = 0; /* We look for anything larger than the cum-ack + 1 */ asoc = &stcb->asoc; if (asoc->cumulative_tsn == asoc->highest_tsn_inside_map) { /* none we can reneg on. */ return; } SCTP_STAT_INCR(sctps_protocol_drains_done); cumulative_tsn_p1 = asoc->cumulative_tsn + 1; cnt = 0; /* First look in the re-assembly queue */ TAILQ_FOREACH_SAFE(chk, &asoc->reasmqueue, sctp_next, nchk) { if (SCTP_TSN_GT(chk->rec.data.TSN_seq, cumulative_tsn_p1)) { /* Yep it is above cum-ack */ cnt++; SCTP_CALC_TSN_TO_GAP(gap, chk->rec.data.TSN_seq, asoc->mapping_array_base_tsn); asoc->size_on_reasm_queue = sctp_sbspace_sub(asoc->size_on_reasm_queue, chk->send_size); sctp_ucount_decr(asoc->cnt_on_reasm_queue); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); TAILQ_REMOVE(&asoc->reasmqueue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } } /* Ok that was fun, now we will drain all the inbound streams? */ for (strmat = 0; strmat < asoc->streamincnt; strmat++) { TAILQ_FOREACH_SAFE(ctl, &asoc->strmin[strmat].inqueue, next, nctl) { if (SCTP_TSN_GT(ctl->sinfo_tsn, cumulative_tsn_p1)) { /* Yep it is above cum-ack */ cnt++; SCTP_CALC_TSN_TO_GAP(gap, ctl->sinfo_tsn, asoc->mapping_array_base_tsn); asoc->size_on_all_streams = sctp_sbspace_sub(asoc->size_on_all_streams, ctl->length); sctp_ucount_decr(asoc->cnt_on_all_streams); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); TAILQ_REMOVE(&asoc->strmin[strmat].inqueue, ctl, next); if (ctl->data) { sctp_m_freem(ctl->data); ctl->data = NULL; } sctp_free_remote_addr(ctl->whoFrom); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_readq), ctl); SCTP_DECR_READQ_COUNT(); } } } if (cnt) { /* We must back down to see what the new highest is */ for (i = asoc->highest_tsn_inside_map; SCTP_TSN_GE(i, asoc->mapping_array_base_tsn); i--) { SCTP_CALC_TSN_TO_GAP(gap, i, asoc->mapping_array_base_tsn); if (SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap)) { asoc->highest_tsn_inside_map = i; fnd = 1; break; } } if (!fnd) { asoc->highest_tsn_inside_map = asoc->mapping_array_base_tsn - 1; } /* * Question, should we go through the delivery queue? The * only reason things are on here is the app not reading OR * a p-d-api up. An attacker COULD send enough in to * initiate the PD-API and then send a bunch of stuff to * other streams... these would wind up on the delivery * queue.. and then we would not get to them. But in order * to do this I then have to back-track and un-deliver * sequence numbers in streams.. el-yucko. I think for now * we will NOT look at the delivery queue and leave it to be * something to consider later. An alternative would be to * abort the P-D-API with a notification and then deliver * the data.... Or another method might be to keep track of * how many times the situation occurs and if we see a * possible attack underway just abort the association. */ #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB1, "Freed %d chunks from reneg harvest\n", cnt); #endif /* * Now do we need to find a new * asoc->highest_tsn_inside_map? */ asoc->last_revoke_count = cnt; (void)SCTP_OS_TIMER_STOP(&stcb->asoc.dack_timer.timer); /* sa_ignore NO_NULL_CHK */ sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_DRAIN, SCTP_SO_NOT_LOCKED); } /* * Another issue, in un-setting the TSN's in the mapping array we * DID NOT adjust the highest_tsn marker. This will cause one of * two things to occur. It may cause us to do extra work in checking * for our mapping array movement. More importantly it may cause us * to SACK every datagram. This may not be a bad thing though since * we will recover once we get our cum-ack above and all this stuff * we dumped recovered. */ } void sctp_drain() { /* * We must walk the PCB lists for ALL associations here. The system * is LOW on MBUF's and needs help. This is where reneging will * occur. We really hope this does NOT happen! */ VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); struct sctp_inpcb *inp; struct sctp_tcb *stcb; SCTP_STAT_INCR(sctps_protocol_drain_calls); if (SCTP_BASE_SYSCTL(sctp_do_drain) == 0) { #ifdef VIMAGE continue; #else return; #endif } SCTP_INP_INFO_RLOCK(); LIST_FOREACH(inp, &SCTP_BASE_INFO(listhead), sctp_list) { /* For each endpoint */ SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { /* For each association */ SCTP_TCB_LOCK(stcb); sctp_drain_mbufs(stcb); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } SCTP_INP_INFO_RUNLOCK(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * start a new iterator * iterates through all endpoints and associations based on the pcb_state * flags and asoc_state. "af" (mandatory) is executed for all matching * assocs and "ef" (optional) is executed when the iterator completes. * "inpf" (optional) is executed for each new endpoint as it is being * iterated through. inpe (optional) is called when the inp completes * its way through all the stcbs. */ int sctp_initiate_iterator(inp_func inpf, asoc_func af, inp_func inpe, uint32_t pcb_state, uint32_t pcb_features, uint32_t asoc_state, void *argp, uint32_t argi, end_func ef, struct sctp_inpcb *s_inp, uint8_t chunk_output_off) { struct sctp_iterator *it = NULL; if (af == NULL) { return (-1); } SCTP_MALLOC(it, struct sctp_iterator *, sizeof(struct sctp_iterator), SCTP_M_ITER); if (it == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOMEM); return (ENOMEM); } memset(it, 0, sizeof(*it)); it->function_assoc = af; it->function_inp = inpf; if (inpf) it->done_current_ep = 0; else it->done_current_ep = 1; it->function_atend = ef; it->pointer = argp; it->val = argi; it->pcb_flags = pcb_state; it->pcb_features = pcb_features; it->asoc_state = asoc_state; it->function_inp_end = inpe; it->no_chunk_output = chunk_output_off; it->vn = curvnet; if (s_inp) { /* Assume lock is held here */ it->inp = s_inp; SCTP_INP_INCR_REF(it->inp); it->iterator_flags = SCTP_ITERATOR_DO_SINGLE_INP; } else { SCTP_INP_INFO_RLOCK(); it->inp = LIST_FIRST(&SCTP_BASE_INFO(listhead)); if (it->inp) { SCTP_INP_INCR_REF(it->inp); } SCTP_INP_INFO_RUNLOCK(); it->iterator_flags = SCTP_ITERATOR_DO_ALL_INP; } SCTP_IPI_ITERATOR_WQ_LOCK(); TAILQ_INSERT_TAIL(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (sctp_it_ctl.iterator_running == 0) { sctp_wakeup_iterator(); } SCTP_IPI_ITERATOR_WQ_UNLOCK(); /* sa_ignore MEMLEAK {memory is put on the tailq for the iterator} */ return (0); }