Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/vx/@/ofed/drivers/net/mlx4/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/vx/@/ofed/drivers/net/mlx4/en_tx.c |
/* * Copyright (c) 2007 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include "mlx4_en.h" #include <linux/mlx4/cq.h> #include <linux/mlx4/qp.h> #include <linux/vmalloc.h> #include <net/ethernet.h> #include <net/if_vlan_var.h> #include <sys/mbuf.h> #include <netinet/in_systm.h> #include <netinet/in.h> #include <netinet/if_ether.h> #include <netinet/ip.h> #include <netinet/ip6.h> #include <netinet/tcp.h> #include <netinet/tcp_lro.h> #include <netinet/udp.h> enum { MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */ MAX_BF = 256, }; static int inline_thold = MAX_INLINE; module_param_named(inline_thold, inline_thold, int, 0444); MODULE_PARM_DESC(inline_thold, "treshold for using inline data"); int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, u32 size, u16 stride) { struct mlx4_en_dev *mdev = priv->mdev; int tmp; int err; ring->size = size; ring->size_mask = size - 1; ring->stride = stride; inline_thold = min(inline_thold, MAX_INLINE); mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF); mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF); /* Allocate the buf ring */ ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF, M_WAITOK, &ring->tx_lock.m); if (ring->br == NULL) { en_err(priv, "Failed allocating tx_info ring\n"); return -ENOMEM; } tmp = size * sizeof(struct mlx4_en_tx_info); ring->tx_info = kmalloc(tmp, GFP_KERNEL); if (!ring->tx_info) { en_err(priv, "Failed allocating tx_info ring\n"); err = -ENOMEM; goto err_tx; } en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", ring->tx_info, tmp); ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); if (!ring->bounce_buf) { en_err(priv, "Failed allocating bounce buffer\n"); err = -ENOMEM; goto err_tx; } ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 2 * PAGE_SIZE); if (err) { en_err(priv, "Failed allocating hwq resources\n"); goto err_bounce; } err = mlx4_en_map_buffer(&ring->wqres.buf); if (err) { en_err(priv, "Failed to map TX buffer\n"); goto err_hwq_res; } ring->buf = ring->wqres.buf.direct.buf; en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d " "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); err = mlx4_qp_reserve_range(mdev->dev, 1, 256, &ring->qpn); if (err) { en_err(priv, "Failed reserving qp for tx ring.\n"); goto err_map; } err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp); if (err) { en_err(priv, "Failed allocating qp %d\n", ring->qpn); goto err_reserve; } ring->qp.event = mlx4_en_sqp_event; err = mlx4_bf_alloc(mdev->dev, &ring->bf); if (err) { ring->bf.uar = &mdev->priv_uar; ring->bf.uar->map = mdev->uar_map; ring->bf_enabled = false; } else ring->bf_enabled = true; return 0; err_reserve: mlx4_qp_release_range(mdev->dev, ring->qpn, 1); err_map: mlx4_en_unmap_buffer(&ring->wqres.buf); err_hwq_res: mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); err_bounce: kfree(ring->bounce_buf); ring->bounce_buf = NULL; err_tx: buf_ring_free(ring->br, M_DEVBUF); kfree(ring->tx_info); ring->tx_info = NULL; return err; } void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); buf_ring_free(ring->br, M_DEVBUF); if (ring->bf_enabled) mlx4_bf_free(mdev->dev, &ring->bf); mlx4_qp_remove(mdev->dev, &ring->qp); mlx4_qp_free(mdev->dev, &ring->qp); mlx4_qp_release_range(mdev->dev, ring->qpn, 1); mlx4_en_unmap_buffer(&ring->wqres.buf); mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); kfree(ring->bounce_buf); ring->bounce_buf = NULL; kfree(ring->tx_info); ring->tx_info = NULL; mtx_destroy(&ring->tx_lock.m); mtx_destroy(&ring->comp_lock.m); } int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int cq) { struct mlx4_en_dev *mdev = priv->mdev; int err; ring->cqn = cq; ring->prod = 0; ring->cons = 0xffffffff; ring->last_nr_txbb = 1; ring->poll_cnt = 0; ring->blocked = 0; memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); memset(ring->buf, 0, ring->buf_size); ring->qp_state = MLX4_QP_STATE_RST; ring->doorbell_qpn = swab32(ring->qp.qpn << 8); mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, ring->cqn, &ring->context); if (ring->bf_enabled) ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, &ring->qp, &ring->qp_state); return err; } void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); } static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int index, u8 owner) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; struct mbuf *mb = tx_info->mb; void *end = ring->buf + ring->buf_size; int frags = tx_info->nr_segs; int i; __be32 *ptr = (__be32 *)tx_desc; __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); /* Optimize the common case when there are no wraparounds */ if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { if (!tx_info->inl) { for (i = 0; i < frags; i++) { pci_unmap_single(mdev->pdev, (dma_addr_t) be64_to_cpu(data[i].addr), data[i].byte_count, PCI_DMA_TODEVICE); } } /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; } } else { if (!tx_info->inl) { for (i = 0; i < frags; i++) { /* Check for wraparound before unmapping */ if ((void *) data >= end) data = (struct mlx4_wqe_data_seg *) ring->buf; pci_unmap_single(mdev->pdev, (dma_addr_t) be64_to_cpu(data->addr), data->byte_count, PCI_DMA_TODEVICE); ++data; } } /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; if ((void *) ptr >= end) { ptr = ring->buf; stamp ^= cpu_to_be32(0x80000000); } } } m_freem(mb); return tx_info->nr_txbb; } int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) { struct mlx4_en_priv *priv = netdev_priv(dev); int cnt = 0; /* Skip last polled descriptor */ ring->cons += ring->last_nr_txbb; en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", ring->cons, ring->prod); if ((u32) (ring->prod - ring->cons) > ring->size) { en_warn(priv, "Tx consumer passed producer!\n"); return 0; } while (ring->cons != ring->prod) { ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, ring->cons & ring->size_mask, !!(ring->cons & ring->size)); ring->cons += ring->last_nr_txbb; cnt++; } if (cnt) en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); return cnt; } void mlx4_en_set_prio_map(struct mlx4_en_priv *priv, u16 *prio_map, u32 ring_num) { int block = 8 / ring_num; int extra = 8 - (block * ring_num); int num = 0; u16 ring = 1; int prio; if (ring_num == 1) { for (prio = 0; prio < 8; prio++) prio_map[prio] = 0; return; } for (prio = 0; prio < 8; prio++) { if (extra && (num == block + 1)) { ring++; num = 0; extra--; } else if (!extra && (num == block)) { ring++; num = 0; } prio_map[prio] = ring; en_dbg(DRV, priv, " prio:%d --> ring:%d\n", prio, ring); num++; } } static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_cq *mcq = &cq->mcq; struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring]; struct mlx4_cqe *cqe = cq->buf; u16 index; u16 new_index; u32 txbbs_skipped = 0; u32 cq_last_sav; /* index always points to the first TXBB of the last polled descriptor */ index = ring->cons & ring->size_mask; new_index = be16_to_cpu(cqe->wqe_index) & ring->size_mask; if (index == new_index) return; if (!priv->port_up) return; /* * We use a two-stage loop: * - the first samples the HW-updated CQE * - the second frees TXBBs until the last sample * This lets us amortize CQE cache misses, while still polling the CQ * until is quiescent. */ cq_last_sav = mcq->cons_index; do { do { /* Skip over last polled CQE */ index = (index + ring->last_nr_txbb) & ring->size_mask; txbbs_skipped += ring->last_nr_txbb; /* Poll next CQE */ ring->last_nr_txbb = mlx4_en_free_tx_desc( priv, ring, index, !!((ring->cons + txbbs_skipped) & ring->size)); ++mcq->cons_index; } while (index != new_index); new_index = be16_to_cpu(cqe->wqe_index) & ring->size_mask; } while (index != new_index); AVG_PERF_COUNTER(priv->pstats.tx_coal_avg, (u32) (mcq->cons_index - cq_last_sav)); /* * To prevent CQ overflow we first update CQ consumer and only then * the ring consumer. */ mlx4_cq_set_ci(mcq); wmb(); ring->cons += txbbs_skipped; /* Wakeup Tx queue if this ring stopped it */ if (unlikely(ring->blocked)) { if ((u32) (ring->prod - ring->cons) <= ring->size - HEADROOM - MAX_DESC_TXBBS) { ring->blocked = 0; if (atomic_fetchadd_int(&priv->blocked, -1) == 1) atomic_clear_int(&dev->if_drv_flags, IFF_DRV_OACTIVE); priv->port_stats.wake_queue++; } } } void mlx4_en_tx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = netdev_priv(cq->dev); struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring]; if (!spin_trylock(&ring->comp_lock)) return; mlx4_en_process_tx_cq(cq->dev, cq); mod_timer(&cq->timer, jiffies + 1); spin_unlock(&ring->comp_lock); } void mlx4_en_poll_tx_cq(unsigned long data) { struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data; struct mlx4_en_priv *priv = netdev_priv(cq->dev); struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring]; u32 inflight; INC_PERF_COUNTER(priv->pstats.tx_poll); if (!spin_trylock(&ring->comp_lock)) { mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); return; } mlx4_en_process_tx_cq(cq->dev, cq); inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb); /* If there are still packets in flight and the timer has not already * been scheduled by the Tx routine then schedule it here to guarantee * completion processing of these packets */ if (inflight && priv->port_up) mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); spin_unlock(&ring->comp_lock); } static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, u32 index, unsigned int desc_size) { u32 copy = (ring->size - index) * TXBB_SIZE; int i; for (i = desc_size - copy - 4; i >= 0; i -= 4) { if ((i & (TXBB_SIZE - 1)) == 0) wmb(); *((u32 *) (ring->buf + i)) = *((u32 *) (ring->bounce_buf + copy + i)); } for (i = copy - 4; i >= 4 ; i -= 4) { if ((i & (TXBB_SIZE - 1)) == 0) wmb(); *((u32 *) (ring->buf + index * TXBB_SIZE + i)) = *((u32 *) (ring->bounce_buf + i)); } /* Return real descriptor location */ return ring->buf + index * TXBB_SIZE; } static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind) { struct mlx4_en_cq *cq = &priv->tx_cq[tx_ind]; struct mlx4_en_tx_ring *ring = &priv->tx_ring[tx_ind]; /* If we don't have a pending timer, set one up to catch our recent post in case the interface becomes idle */ if (!timer_pending(&cq->timer)) mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); /* Poll the CQ every mlx4_en_TX_MODER_POLL packets */ if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0) if (spin_trylock(&ring->comp_lock)) { mlx4_en_process_tx_cq(priv->dev, cq); spin_unlock(&ring->comp_lock); } } static int is_inline(struct mbuf *mb) { if (inline_thold && mb->m_pkthdr.len <= inline_thold && (mb->m_pkthdr.csum_flags & CSUM_TSO) == 0) return 1; return 0; } static int inline_size(struct mbuf *mb) { int len; len = mb->m_pkthdr.len; if (len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) <= MLX4_INLINE_ALIGN) return ALIGN(len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg), 16); else return ALIGN(len + CTRL_SIZE + 2 * sizeof(struct mlx4_wqe_inline_seg), 16); } static int get_head_size(struct mbuf *mb) { struct tcphdr *th; struct ip *ip; int ip_hlen, tcp_hlen; int len; len = ETHER_HDR_LEN; if (mb->m_len < len + sizeof(struct ip)) return (0); ip = (struct ip *)(mtod(mb, char *) + len); if (ip->ip_p != IPPROTO_TCP) return (0); ip_hlen = ip->ip_hl << 2; len += ip_hlen; if (mb->m_len < len + sizeof(struct tcphdr)) return (0); th = (struct tcphdr *)(mtod(mb, char *) + len); tcp_hlen = th->th_off << 2; len += tcp_hlen; if (mb->m_len < len) return (0); return (len); } static int get_real_size(struct mbuf *mb, struct net_device *dev, int *segsp, int *lso_header_size) { struct mbuf *m; int nr_segs; nr_segs = 0; for (m = mb; m != NULL; m = m->m_next) if (m->m_len) nr_segs++; if (mb->m_pkthdr.csum_flags & CSUM_TSO) { *lso_header_size = get_head_size(mb); if (*lso_header_size) { if (mb->m_len == *lso_header_size) nr_segs--; *segsp = nr_segs; return CTRL_SIZE + nr_segs * DS_SIZE + ALIGN(*lso_header_size + 4, DS_SIZE); } } else *lso_header_size = 0; *segsp = nr_segs; if (is_inline(mb)) return inline_size(mb); return (CTRL_SIZE + nr_segs * DS_SIZE); } static struct mbuf *mb_copy(struct mbuf *mb, int *offp, char *data, int len) { int bytes; int off; off = *offp; while (len) { bytes = min(mb->m_len - off, len); if (bytes) memcpy(data, mb->m_data + off, bytes); len -= bytes; data += bytes; off += bytes; if (off == mb->m_len) { off = 0; mb = mb->m_next; } } *offp = off; return (mb); } static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct mbuf *mb, int real_size, u16 *vlan_tag, int tx_ind) { struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl; int len; int off; off = 0; len = mb->m_pkthdr.len; if (len <= spc) { inl->byte_count = cpu_to_be32(1 << 31 | len); mb_copy(mb, &off, (void *)(inl + 1), len); } else { inl->byte_count = cpu_to_be32(1 << 31 | spc); mb = mb_copy(mb, &off, (void *)(inl + 1), spc); inl = (void *) (inl + 1) + spc; mb_copy(mb, &off, (void *)(inl + 1), len - spc); wmb(); inl->byte_count = cpu_to_be32(1 << 31 | (len - spc)); } tx_desc->ctrl.vlan_tag = cpu_to_be16(*vlan_tag); tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!(*vlan_tag); tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f; } u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_tx_hash_entry *entry; struct ether_header *eth; struct tcphdr *th; struct ip *iph; u32 hash_index; int tx_ind = 0; u16 vlan_tag = 0; int len; /* Obtain VLAN information if present */ if (mb->m_flags & M_VLANTAG) { vlan_tag = mb->m_pkthdr.ether_vtag; /* Set the Tx ring to use according to vlan priority */ tx_ind = priv->tx_prio_map[vlan_tag >> 13]; if (tx_ind) return tx_ind; } if (mb->m_len < ETHER_HDR_LEN + sizeof(struct ip) + sizeof(struct tcphdr)) return MLX4_EN_NUM_HASH_RINGS; eth = mtod(mb, struct ether_header *); /* Hashing is only done for TCP/IP or UDP/IP packets */ if (be16_to_cpu(eth->ether_type) != ETHERTYPE_IP) return MLX4_EN_NUM_HASH_RINGS; len = ETHER_HDR_LEN; iph = (struct ip *)(mtod(mb, char *) + len); len += iph->ip_hl << 2; th = (struct tcphdr *)(mtod(mb, char *) + len); hash_index = be32_to_cpu(iph->ip_dst.s_addr) & MLX4_EN_TX_HASH_MASK; switch(iph->ip_p) { case IPPROTO_UDP: break; case IPPROTO_TCP: if (mb->m_len < len + sizeof(struct tcphdr)) return MLX4_EN_NUM_HASH_RINGS; hash_index = (hash_index ^ be16_to_cpu(th->th_dport ^ th->th_sport)) & MLX4_EN_TX_HASH_MASK; break; default: return MLX4_EN_NUM_HASH_RINGS; } entry = &priv->tx_hash[hash_index]; if(unlikely(!entry->cnt)) { tx_ind = hash_index & (MLX4_EN_NUM_HASH_RINGS / 2 - 1); if (2 * entry->small_pkts > entry->big_pkts) tx_ind += MLX4_EN_NUM_HASH_RINGS / 2; entry->small_pkts = entry->big_pkts = 0; entry->ring = tx_ind; } entry->cnt++; if (mb->m_pkthdr.len > MLX4_EN_SMALL_PKT_SIZE) entry->big_pkts++; else entry->small_pkts++; return entry->ring; } static void mlx4_bf_copy(unsigned long *dst, unsigned long *src, unsigned bytecnt) { __iowrite64_copy(dst, src, bytecnt / 8); } static int mlx4_en_xmit(struct net_device *dev, int tx_ind, struct mbuf **mbp) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_ring *ring; struct mlx4_en_cq *cq; struct mlx4_en_tx_desc *tx_desc; struct mlx4_wqe_data_seg *data; struct mlx4_en_tx_info *tx_info; struct mbuf *m; int nr_txbb; int nr_segs; int desc_size; int real_size; dma_addr_t dma; u32 index, bf_index; __be32 op_own; u16 vlan_tag = 0; int i; int lso_header_size; bool bounce = false; struct mbuf *mb; int defrag = 1; ring = &priv->tx_ring[tx_ind]; mb = *mbp; if (!priv->port_up) goto tx_drop; retry: real_size = get_real_size(mb, dev, &nr_segs, &lso_header_size); if (unlikely(!real_size)) goto tx_drop; /* Allign descriptor to TXBB size */ desc_size = ALIGN(real_size, TXBB_SIZE); nr_txbb = desc_size / TXBB_SIZE; if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { if (defrag) { mb = m_defrag(*mbp, M_DONTWAIT); if (mb == NULL) { mb = *mbp; goto tx_drop; } *mbp = mb; defrag = 0; goto retry; } goto tx_drop; } /* Check available TXBBs And 2K spare for prefetch */ if (unlikely(((int)(ring->prod - ring->cons)) > ring->size - HEADROOM - MAX_DESC_TXBBS)) { /* every full Tx ring stops queue */ if (ring->blocked == 0) atomic_add_int(&priv->blocked, 1); atomic_set_int(&dev->if_drv_flags, IFF_DRV_OACTIVE); ring->blocked = 1; priv->port_stats.queue_stopped++; /* Use interrupts to find out when queue opened */ cq = &priv->tx_cq[tx_ind]; mlx4_en_arm_cq(priv, cq); return EBUSY; } /* Track current inflight packets for performance analysis */ AVG_PERF_COUNTER(priv->pstats.inflight_avg, (u32) (ring->prod - ring->cons - 1)); /* Packet is good - grab an index and transmit it */ index = ring->prod & ring->size_mask; bf_index = ring->prod; /* See if we have enough space for whole descriptor TXBB for setting * SW ownership on next descriptor; if not, use a bounce buffer. */ if (likely(index + nr_txbb <= ring->size)) tx_desc = ring->buf + index * TXBB_SIZE; else { tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; bounce = true; } /* Prepare ctrl segement apart opcode+ownership, which depends on * whether LSO is used */ if (mb->m_flags & M_VLANTAG) vlan_tag = mb->m_pkthdr.ether_vtag; tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag); tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!vlan_tag; tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f; tx_desc->ctrl.srcrb_flags = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE | MLX4_WQE_CTRL_SOLICITED); if (mb->m_pkthdr.csum_flags & (CSUM_IP|CSUM_TCP|CSUM_UDP)) { tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | MLX4_WQE_CTRL_TCP_UDP_CSUM); priv->port_stats.tx_chksum_offload++; } if (unlikely(priv->validate_loopback)) { /* Copy dst mac address to wqe */ struct ether_header *ethh; u64 mac; u32 mac_l, mac_h; ethh = mtod(mb, struct ether_header *); mac = mlx4_en_mac_to_u64(ethh->ether_dhost); if (mac) { mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16); mac_l = (u32) (mac & 0xffffffff); tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h); tx_desc->ctrl.imm = cpu_to_be32(mac_l); } } /* Handle LSO (TSO) packets */ if (lso_header_size) { int segsz; /* Mark opcode as LSO */ op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | ((ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); /* Fill in the LSO prefix */ tx_desc->lso.mss_hdr_size = cpu_to_be32( mb->m_pkthdr.tso_segsz << 16 | lso_header_size); /* Copy headers; * note that we already verified that it is linear */ memcpy(tx_desc->lso.header, mb->m_data, lso_header_size); data = ((void *) &tx_desc->lso + ALIGN(lso_header_size + 4, DS_SIZE)); priv->port_stats.tso_packets++; segsz = mb->m_pkthdr.tso_segsz; i = ((mb->m_pkthdr.len - lso_header_size) / segsz) + !!((mb->m_pkthdr.len - lso_header_size) % segsz); ring->bytes += mb->m_pkthdr.len + (i - 1) * lso_header_size; ring->packets += i; mb->m_data += lso_header_size; mb->m_len -= lso_header_size; } else { /* Normal (Non LSO) packet */ op_own = cpu_to_be32(MLX4_OPCODE_SEND) | ((ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); data = &tx_desc->data; ring->bytes += max(mb->m_pkthdr.len, (unsigned int)ETHER_MIN_LEN - ETHER_CRC_LEN); ring->packets++; } AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len); /* Save mb in tx_info ring */ tx_info = &ring->tx_info[index]; tx_info->mb = mb; tx_info->nr_txbb = nr_txbb; tx_info->nr_segs = nr_segs; /* valid only for non inline segments */ tx_info->data_offset = (void *) data - (void *) tx_desc; if (!is_inline(mb)) { for (i = 0, m = mb; i < nr_segs; i++, m = m->m_next) { if (m->m_len == 0) { i--; continue; } dma = pci_map_single(mdev->dev->pdev, m->m_data, m->m_len, PCI_DMA_TODEVICE); data->addr = cpu_to_be64(dma); data->lkey = cpu_to_be32(mdev->mr.key); wmb(); data->byte_count = cpu_to_be32(m->m_len); data++; } if (lso_header_size) { mb->m_data -= lso_header_size; mb->m_len += lso_header_size; } tx_info->inl = 0; } else { build_inline_wqe(tx_desc, mb, real_size, &vlan_tag, tx_ind); tx_info->inl = 1; } ring->prod += nr_txbb; /* If we used a bounce buffer then copy descriptor back into place */ if (bounce) tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tag) { *(u32 *) (&tx_desc->ctrl.vlan_tag) |= ring->doorbell_qpn; op_own |= htonl((bf_index & 0xffff) << 8); /* Ensure new descirptor hits memory * before setting ownership of this descriptor to HW */ wmb(); tx_desc->ctrl.owner_opcode = op_own; wmb(); mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl, desc_size); wmb(); ring->bf.offset ^= ring->bf.buf_size; } else { /* Ensure new descirptor hits memory * before setting ownership of this descriptor to HW */ wmb(); tx_desc->ctrl.owner_opcode = op_own; wmb(); writel(ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL); } return 0; tx_drop: *mbp = NULL; m_freem(mb); ring->errors++; return EINVAL; } static int mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_tx_ring *ring; struct mbuf *next; int enqueued, err = 0; ring = &priv->tx_ring[tx_ind]; if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || priv->port_up == 0) { if (m != NULL) err = drbr_enqueue(dev, ring->br, m); return (err); } enqueued = 0; if (m == NULL) { next = drbr_dequeue(dev, ring->br); } else if (drbr_needs_enqueue(dev, ring->br)) { if ((err = drbr_enqueue(dev, ring->br, m)) != 0) return (err); next = drbr_dequeue(dev, ring->br); } else next = m; /* Process the queue */ while (next != NULL) { if ((err = mlx4_en_xmit(dev, tx_ind, &next)) != 0) { if (next != NULL) err = drbr_enqueue(dev, ring->br, next); break; } enqueued++; drbr_stats_update(dev, next->m_pkthdr.len, next->m_flags); /* Send a copy of the frame to the BPF listener */ ETHER_BPF_MTAP(dev, next); if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0) break; next = drbr_dequeue(dev, ring->br); } if (enqueued > 0) ring->watchdog_time = ticks; return (err); } void mlx4_en_tx_que(void *context, int pending) { struct mlx4_en_tx_ring *ring; struct mlx4_en_priv *priv; struct net_device *dev; struct mlx4_en_cq *cq; int tx_ind; cq = context; dev = cq->dev; priv = dev->if_softc; tx_ind = cq->ring; ring = &priv->tx_ring[tx_ind]; if (dev->if_drv_flags & IFF_DRV_RUNNING) { mlx4_en_xmit_poll(priv, tx_ind); spin_lock(&ring->tx_lock); if (!drbr_empty(dev, ring->br)) mlx4_en_transmit_locked(dev, tx_ind, NULL); spin_unlock(&ring->tx_lock); } } int mlx4_en_transmit(struct ifnet *dev, struct mbuf *m) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_tx_ring *ring; struct mlx4_en_cq *cq; int i = 0, err = 0; /* Which queue to use */ if ((m->m_flags & (M_FLOWID | M_VLANTAG)) == M_FLOWID) i = m->m_pkthdr.flowid % (MLX4_EN_NUM_HASH_RINGS - 1); else i = mlx4_en_select_queue(dev, m); ring = &priv->tx_ring[i]; if (spin_trylock(&ring->tx_lock)) { err = mlx4_en_transmit_locked(dev, i, m); spin_unlock(&ring->tx_lock); /* Poll CQ here */ mlx4_en_xmit_poll(priv, i); } else { err = drbr_enqueue(dev, ring->br, m); cq = &priv->tx_cq[i]; taskqueue_enqueue(cq->tq, &cq->cq_task); } return (err); } /* * Flush ring buffers. */ void mlx4_en_qflush(struct ifnet *dev) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_tx_ring *ring = priv->tx_ring; struct mbuf *m; for (int i = 0; i < priv->tx_ring_num; i++, ring++) { spin_lock(&ring->tx_lock); while ((m = buf_ring_dequeue_sc(ring->br)) != NULL) m_freem(m); spin_unlock(&ring->tx_lock); } if_qflush(dev); }