Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_ccmp/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_ccmp/@/contrib/octeon-sdk/cvmx-pow-defs.h |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * cvmx-pow-defs.h * * Configuration and status register (CSR) type definitions for * Octeon pow. * * This file is auto generated. Do not edit. * * <hr>$Revision$<hr> * */ #ifndef __CVMX_POW_TYPEDEFS_H__ #define __CVMX_POW_TYPEDEFS_H__ #define CVMX_POW_BIST_STAT (CVMX_ADD_IO_SEG(0x00016700000003F8ull)) #define CVMX_POW_DS_PC (CVMX_ADD_IO_SEG(0x0001670000000398ull)) #define CVMX_POW_ECC_ERR (CVMX_ADD_IO_SEG(0x0001670000000218ull)) #define CVMX_POW_INT_CTL (CVMX_ADD_IO_SEG(0x0001670000000220ull)) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_IQ_CNTX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))))) cvmx_warn("CVMX_POW_IQ_CNTX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000340ull) + ((offset) & 7) * 8; } #else #define CVMX_POW_IQ_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000000340ull) + ((offset) & 7) * 8) #endif #define CVMX_POW_IQ_COM_CNT (CVMX_ADD_IO_SEG(0x0001670000000388ull)) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_POW_IQ_INT CVMX_POW_IQ_INT_FUNC() static inline uint64_t CVMX_POW_IQ_INT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_POW_IQ_INT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000000238ull); } #else #define CVMX_POW_IQ_INT (CVMX_ADD_IO_SEG(0x0001670000000238ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_POW_IQ_INT_EN CVMX_POW_IQ_INT_EN_FUNC() static inline uint64_t CVMX_POW_IQ_INT_EN_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_POW_IQ_INT_EN not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000000240ull); } #else #define CVMX_POW_IQ_INT_EN (CVMX_ADD_IO_SEG(0x0001670000000240ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_IQ_THRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))))) cvmx_warn("CVMX_POW_IQ_THRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x00016700000003A0ull) + ((offset) & 7) * 8; } #else #define CVMX_POW_IQ_THRX(offset) (CVMX_ADD_IO_SEG(0x00016700000003A0ull) + ((offset) & 7) * 8) #endif #define CVMX_POW_NOS_CNT (CVMX_ADD_IO_SEG(0x0001670000000228ull)) #define CVMX_POW_NW_TIM (CVMX_ADD_IO_SEG(0x0001670000000210ull)) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_POW_PF_RST_MSK CVMX_POW_PF_RST_MSK_FUNC() static inline uint64_t CVMX_POW_PF_RST_MSK_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_POW_PF_RST_MSK not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001670000000230ull); } #else #define CVMX_POW_PF_RST_MSK (CVMX_ADD_IO_SEG(0x0001670000000230ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_PP_GRP_MSKX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 11))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 5))))) cvmx_warn("CVMX_POW_PP_GRP_MSKX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000000ull) + ((offset) & 15) * 8; } #else #define CVMX_POW_PP_GRP_MSKX(offset) (CVMX_ADD_IO_SEG(0x0001670000000000ull) + ((offset) & 15) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_QOS_RNDX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))))) cvmx_warn("CVMX_POW_QOS_RNDX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x00016700000001C0ull) + ((offset) & 7) * 8; } #else #define CVMX_POW_QOS_RNDX(offset) (CVMX_ADD_IO_SEG(0x00016700000001C0ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_QOS_THRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))))) cvmx_warn("CVMX_POW_QOS_THRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000180ull) + ((offset) & 7) * 8; } #else #define CVMX_POW_QOS_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000000180ull) + ((offset) & 7) * 8) #endif #define CVMX_POW_TS_PC (CVMX_ADD_IO_SEG(0x0001670000000390ull)) #define CVMX_POW_WA_COM_PC (CVMX_ADD_IO_SEG(0x0001670000000380ull)) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_WA_PCX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))))) cvmx_warn("CVMX_POW_WA_PCX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000300ull) + ((offset) & 7) * 8; } #else #define CVMX_POW_WA_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000000300ull) + ((offset) & 7) * 8) #endif #define CVMX_POW_WQ_INT (CVMX_ADD_IO_SEG(0x0001670000000200ull)) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_WQ_INT_CNTX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 15))))) cvmx_warn("CVMX_POW_WQ_INT_CNTX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000100ull) + ((offset) & 15) * 8; } #else #define CVMX_POW_WQ_INT_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000000100ull) + ((offset) & 15) * 8) #endif #define CVMX_POW_WQ_INT_PC (CVMX_ADD_IO_SEG(0x0001670000000208ull)) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_WQ_INT_THRX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 15))))) cvmx_warn("CVMX_POW_WQ_INT_THRX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000080ull) + ((offset) & 15) * 8; } #else #define CVMX_POW_WQ_INT_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000000080ull) + ((offset) & 15) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_POW_WS_PCX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) || (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 15))))) cvmx_warn("CVMX_POW_WS_PCX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001670000000280ull) + ((offset) & 15) * 8; } #else #define CVMX_POW_WS_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000000280ull) + ((offset) & 15) * 8) #endif /** * cvmx_pow_bist_stat * * POW_BIST_STAT = POW BIST Status Register * * Contains the BIST status for the POW memories ('0' = pass, '1' = fail). * * Also contains the BIST status for the PP's. Each bit in the PP field is the OR of all BIST * results for the corresponding physical PP ('0' = pass, '1' = fail). */ union cvmx_pow_bist_stat { uint64_t u64; struct cvmx_pow_bist_stat_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t pp : 16; /**< Physical PP BIST status */ uint64_t reserved_0_15 : 16; #else uint64_t reserved_0_15 : 16; uint64_t pp : 16; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_bist_stat_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_17_63 : 47; uint64_t pp : 1; /**< Physical PP BIST status */ uint64_t reserved_9_15 : 7; uint64_t cam : 1; /**< POW CAM BIST status */ uint64_t nbt1 : 1; /**< NCB transmitter memory 1 BIST status */ uint64_t nbt0 : 1; /**< NCB transmitter memory 0 BIST status */ uint64_t index : 1; /**< Index memory BIST status */ uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */ uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */ uint64_t pend : 1; /**< Pending switch memory BIST status */ uint64_t adr : 1; /**< Address memory BIST status */ #else uint64_t adr : 1; uint64_t pend : 1; uint64_t nbr0 : 1; uint64_t nbr1 : 1; uint64_t fidx : 1; uint64_t index : 1; uint64_t nbt0 : 1; uint64_t nbt1 : 1; uint64_t cam : 1; uint64_t reserved_9_15 : 7; uint64_t pp : 1; uint64_t reserved_17_63 : 47; #endif } cn30xx; struct cvmx_pow_bist_stat_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_18_63 : 46; uint64_t pp : 2; /**< Physical PP BIST status */ uint64_t reserved_9_15 : 7; uint64_t cam : 1; /**< POW CAM BIST status */ uint64_t nbt1 : 1; /**< NCB transmitter memory 1 BIST status */ uint64_t nbt0 : 1; /**< NCB transmitter memory 0 BIST status */ uint64_t index : 1; /**< Index memory BIST status */ uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */ uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */ uint64_t pend : 1; /**< Pending switch memory BIST status */ uint64_t adr : 1; /**< Address memory BIST status */ #else uint64_t adr : 1; uint64_t pend : 1; uint64_t nbr0 : 1; uint64_t nbr1 : 1; uint64_t fidx : 1; uint64_t index : 1; uint64_t nbt0 : 1; uint64_t nbt1 : 1; uint64_t cam : 1; uint64_t reserved_9_15 : 7; uint64_t pp : 2; uint64_t reserved_18_63 : 46; #endif } cn31xx; struct cvmx_pow_bist_stat_cn38xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t pp : 16; /**< Physical PP BIST status */ uint64_t reserved_10_15 : 6; uint64_t cam : 1; /**< POW CAM BIST status */ uint64_t nbt : 1; /**< NCB transmitter memory BIST status */ uint64_t index : 1; /**< Index memory BIST status */ uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */ uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */ uint64_t pend1 : 1; /**< Pending switch memory 1 BIST status */ uint64_t pend0 : 1; /**< Pending switch memory 0 BIST status */ uint64_t adr1 : 1; /**< Address memory 1 BIST status */ uint64_t adr0 : 1; /**< Address memory 0 BIST status */ #else uint64_t adr0 : 1; uint64_t adr1 : 1; uint64_t pend0 : 1; uint64_t pend1 : 1; uint64_t nbr0 : 1; uint64_t nbr1 : 1; uint64_t fidx : 1; uint64_t index : 1; uint64_t nbt : 1; uint64_t cam : 1; uint64_t reserved_10_15 : 6; uint64_t pp : 16; uint64_t reserved_32_63 : 32; #endif } cn38xx; struct cvmx_pow_bist_stat_cn38xx cn38xxp2; struct cvmx_pow_bist_stat_cn31xx cn50xx; struct cvmx_pow_bist_stat_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_20_63 : 44; uint64_t pp : 4; /**< Physical PP BIST status */ uint64_t reserved_9_15 : 7; uint64_t cam : 1; /**< POW CAM BIST status */ uint64_t nbt1 : 1; /**< NCB transmitter memory 1 BIST status */ uint64_t nbt0 : 1; /**< NCB transmitter memory 0 BIST status */ uint64_t index : 1; /**< Index memory BIST status */ uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */ uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */ uint64_t pend : 1; /**< Pending switch memory BIST status */ uint64_t adr : 1; /**< Address memory BIST status */ #else uint64_t adr : 1; uint64_t pend : 1; uint64_t nbr0 : 1; uint64_t nbr1 : 1; uint64_t fidx : 1; uint64_t index : 1; uint64_t nbt0 : 1; uint64_t nbt1 : 1; uint64_t cam : 1; uint64_t reserved_9_15 : 7; uint64_t pp : 4; uint64_t reserved_20_63 : 44; #endif } cn52xx; struct cvmx_pow_bist_stat_cn52xx cn52xxp1; struct cvmx_pow_bist_stat_cn56xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t pp : 12; /**< Physical PP BIST status */ uint64_t reserved_10_15 : 6; uint64_t cam : 1; /**< POW CAM BIST status */ uint64_t nbt : 1; /**< NCB transmitter memory BIST status */ uint64_t index : 1; /**< Index memory BIST status */ uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */ uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */ uint64_t pend1 : 1; /**< Pending switch memory 1 BIST status */ uint64_t pend0 : 1; /**< Pending switch memory 0 BIST status */ uint64_t adr1 : 1; /**< Address memory 1 BIST status */ uint64_t adr0 : 1; /**< Address memory 0 BIST status */ #else uint64_t adr0 : 1; uint64_t adr1 : 1; uint64_t pend0 : 1; uint64_t pend1 : 1; uint64_t nbr0 : 1; uint64_t nbr1 : 1; uint64_t fidx : 1; uint64_t index : 1; uint64_t nbt : 1; uint64_t cam : 1; uint64_t reserved_10_15 : 6; uint64_t pp : 12; uint64_t reserved_28_63 : 36; #endif } cn56xx; struct cvmx_pow_bist_stat_cn56xx cn56xxp1; struct cvmx_pow_bist_stat_cn38xx cn58xx; struct cvmx_pow_bist_stat_cn38xx cn58xxp1; struct cvmx_pow_bist_stat_cn63xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_22_63 : 42; uint64_t pp : 6; /**< Physical PP BIST status */ uint64_t reserved_12_15 : 4; uint64_t cam : 1; /**< POW CAM BIST status */ uint64_t nbr : 3; /**< NCB receiver memory BIST status */ uint64_t nbt : 4; /**< NCB transmitter memory BIST status */ uint64_t index : 1; /**< Index memory BIST status */ uint64_t fidx : 1; /**< Forward index memory BIST status */ uint64_t pend : 1; /**< Pending switch memory BIST status */ uint64_t adr : 1; /**< Address memory BIST status */ #else uint64_t adr : 1; uint64_t pend : 1; uint64_t fidx : 1; uint64_t index : 1; uint64_t nbt : 4; uint64_t nbr : 3; uint64_t cam : 1; uint64_t reserved_12_15 : 4; uint64_t pp : 6; uint64_t reserved_22_63 : 42; #endif } cn63xx; struct cvmx_pow_bist_stat_cn63xx cn63xxp1; }; typedef union cvmx_pow_bist_stat cvmx_pow_bist_stat_t; /** * cvmx_pow_ds_pc * * POW_DS_PC = POW De-Schedule Performance Counter * * Counts the number of de-schedule requests. Write to clear. */ union cvmx_pow_ds_pc { uint64_t u64; struct cvmx_pow_ds_pc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t ds_pc : 32; /**< De-schedule performance counter */ #else uint64_t ds_pc : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_ds_pc_s cn30xx; struct cvmx_pow_ds_pc_s cn31xx; struct cvmx_pow_ds_pc_s cn38xx; struct cvmx_pow_ds_pc_s cn38xxp2; struct cvmx_pow_ds_pc_s cn50xx; struct cvmx_pow_ds_pc_s cn52xx; struct cvmx_pow_ds_pc_s cn52xxp1; struct cvmx_pow_ds_pc_s cn56xx; struct cvmx_pow_ds_pc_s cn56xxp1; struct cvmx_pow_ds_pc_s cn58xx; struct cvmx_pow_ds_pc_s cn58xxp1; struct cvmx_pow_ds_pc_s cn63xx; struct cvmx_pow_ds_pc_s cn63xxp1; }; typedef union cvmx_pow_ds_pc cvmx_pow_ds_pc_t; /** * cvmx_pow_ecc_err * * POW_ECC_ERR = POW ECC Error Register * * Contains the single and double error bits and the corresponding interrupt enables for the ECC- * protected POW index memory. Also contains the syndrome value in the event of an ECC error. * * Also contains the remote pointer error bit and interrupt enable. RPE is set when the POW detected * corruption on one or more of the input queue lists in L2/DRAM (POW's local copy of the tail pointer * for the L2/DRAM input queue did not match the last entry on the the list). This is caused by * L2/DRAM corruption, and is generally a fatal error because it likely caused POW to load bad work * queue entries. * * This register also contains the illegal operation error bits and the corresponding interrupt * enables as follows: * * <0> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP from PP in NULL_NULL state * <1> Received SWTAG/SWTAG_DESCH/DESCH/UPD_WQP from PP in NULL state * <2> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/GET_WORK from PP with pending tag switch to ORDERED or ATOMIC * <3> Received SWTAG/SWTAG_FULL/SWTAG_DESCH from PP with tag specified as NULL_NULL * <4> Received SWTAG_FULL/SWTAG_DESCH from PP with tag specified as NULL * <5> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/NULL_RD from PP with GET_WORK pending * <6> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/NULL_RD from PP with NULL_RD pending * <7> Received CLR_NSCHED from PP with SWTAG_DESCH/DESCH/CLR_NSCHED pending * <8> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/NULL_RD from PP with CLR_NSCHED pending * <9> Received illegal opcode * <10> Received ADD_WORK with tag specified as NULL_NULL * <11> Received DBG load from PP with DBG load pending * <12> Received CSR load from PP with CSR load pending */ union cvmx_pow_ecc_err { uint64_t u64; struct cvmx_pow_ecc_err_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_45_63 : 19; uint64_t iop_ie : 13; /**< Illegal operation interrupt enables */ uint64_t reserved_29_31 : 3; uint64_t iop : 13; /**< Illegal operation errors */ uint64_t reserved_14_15 : 2; uint64_t rpe_ie : 1; /**< Remote pointer error interrupt enable */ uint64_t rpe : 1; /**< Remote pointer error */ uint64_t reserved_9_11 : 3; uint64_t syn : 5; /**< Syndrome value (only valid when DBE or SBE is set) */ uint64_t dbe_ie : 1; /**< Double bit error interrupt enable */ uint64_t sbe_ie : 1; /**< Single bit error interrupt enable */ uint64_t dbe : 1; /**< Double bit error */ uint64_t sbe : 1; /**< Single bit error */ #else uint64_t sbe : 1; uint64_t dbe : 1; uint64_t sbe_ie : 1; uint64_t dbe_ie : 1; uint64_t syn : 5; uint64_t reserved_9_11 : 3; uint64_t rpe : 1; uint64_t rpe_ie : 1; uint64_t reserved_14_15 : 2; uint64_t iop : 13; uint64_t reserved_29_31 : 3; uint64_t iop_ie : 13; uint64_t reserved_45_63 : 19; #endif } s; struct cvmx_pow_ecc_err_s cn30xx; struct cvmx_pow_ecc_err_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_14_63 : 50; uint64_t rpe_ie : 1; /**< Remote pointer error interrupt enable */ uint64_t rpe : 1; /**< Remote pointer error */ uint64_t reserved_9_11 : 3; uint64_t syn : 5; /**< Syndrome value (only valid when DBE or SBE is set) */ uint64_t dbe_ie : 1; /**< Double bit error interrupt enable */ uint64_t sbe_ie : 1; /**< Single bit error interrupt enable */ uint64_t dbe : 1; /**< Double bit error */ uint64_t sbe : 1; /**< Single bit error */ #else uint64_t sbe : 1; uint64_t dbe : 1; uint64_t sbe_ie : 1; uint64_t dbe_ie : 1; uint64_t syn : 5; uint64_t reserved_9_11 : 3; uint64_t rpe : 1; uint64_t rpe_ie : 1; uint64_t reserved_14_63 : 50; #endif } cn31xx; struct cvmx_pow_ecc_err_s cn38xx; struct cvmx_pow_ecc_err_cn31xx cn38xxp2; struct cvmx_pow_ecc_err_s cn50xx; struct cvmx_pow_ecc_err_s cn52xx; struct cvmx_pow_ecc_err_s cn52xxp1; struct cvmx_pow_ecc_err_s cn56xx; struct cvmx_pow_ecc_err_s cn56xxp1; struct cvmx_pow_ecc_err_s cn58xx; struct cvmx_pow_ecc_err_s cn58xxp1; struct cvmx_pow_ecc_err_s cn63xx; struct cvmx_pow_ecc_err_s cn63xxp1; }; typedef union cvmx_pow_ecc_err cvmx_pow_ecc_err_t; /** * cvmx_pow_int_ctl * * POW_INT_CTL = POW Internal Control Register * * Contains POW internal control values (for internal use, not typically for customer use): * * PFR_DIS = Disable high-performance pre-fetch reset mode. * * NBR_THR = Assert ncb__busy when the number of remaining coherent bus NBR credits equals is less * than or equal to this value. */ union cvmx_pow_int_ctl { uint64_t u64; struct cvmx_pow_int_ctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_6_63 : 58; uint64_t pfr_dis : 1; /**< High-perf pre-fetch reset mode disable */ uint64_t nbr_thr : 5; /**< NBR busy threshold */ #else uint64_t nbr_thr : 5; uint64_t pfr_dis : 1; uint64_t reserved_6_63 : 58; #endif } s; struct cvmx_pow_int_ctl_s cn30xx; struct cvmx_pow_int_ctl_s cn31xx; struct cvmx_pow_int_ctl_s cn38xx; struct cvmx_pow_int_ctl_s cn38xxp2; struct cvmx_pow_int_ctl_s cn50xx; struct cvmx_pow_int_ctl_s cn52xx; struct cvmx_pow_int_ctl_s cn52xxp1; struct cvmx_pow_int_ctl_s cn56xx; struct cvmx_pow_int_ctl_s cn56xxp1; struct cvmx_pow_int_ctl_s cn58xx; struct cvmx_pow_int_ctl_s cn58xxp1; struct cvmx_pow_int_ctl_s cn63xx; struct cvmx_pow_int_ctl_s cn63xxp1; }; typedef union cvmx_pow_int_ctl cvmx_pow_int_ctl_t; /** * cvmx_pow_iq_cnt# * * POW_IQ_CNTX = POW Input Queue Count Register (1 per QOS level) * * Contains a read-only count of the number of work queue entries for each QOS level. */ union cvmx_pow_iq_cntx { uint64_t u64; struct cvmx_pow_iq_cntx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t iq_cnt : 32; /**< Input queue count for QOS level X */ #else uint64_t iq_cnt : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_iq_cntx_s cn30xx; struct cvmx_pow_iq_cntx_s cn31xx; struct cvmx_pow_iq_cntx_s cn38xx; struct cvmx_pow_iq_cntx_s cn38xxp2; struct cvmx_pow_iq_cntx_s cn50xx; struct cvmx_pow_iq_cntx_s cn52xx; struct cvmx_pow_iq_cntx_s cn52xxp1; struct cvmx_pow_iq_cntx_s cn56xx; struct cvmx_pow_iq_cntx_s cn56xxp1; struct cvmx_pow_iq_cntx_s cn58xx; struct cvmx_pow_iq_cntx_s cn58xxp1; struct cvmx_pow_iq_cntx_s cn63xx; struct cvmx_pow_iq_cntx_s cn63xxp1; }; typedef union cvmx_pow_iq_cntx cvmx_pow_iq_cntx_t; /** * cvmx_pow_iq_com_cnt * * POW_IQ_COM_CNT = POW Input Queue Combined Count Register * * Contains a read-only count of the total number of work queue entries in all QOS levels. */ union cvmx_pow_iq_com_cnt { uint64_t u64; struct cvmx_pow_iq_com_cnt_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t iq_cnt : 32; /**< Input queue combined count */ #else uint64_t iq_cnt : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_iq_com_cnt_s cn30xx; struct cvmx_pow_iq_com_cnt_s cn31xx; struct cvmx_pow_iq_com_cnt_s cn38xx; struct cvmx_pow_iq_com_cnt_s cn38xxp2; struct cvmx_pow_iq_com_cnt_s cn50xx; struct cvmx_pow_iq_com_cnt_s cn52xx; struct cvmx_pow_iq_com_cnt_s cn52xxp1; struct cvmx_pow_iq_com_cnt_s cn56xx; struct cvmx_pow_iq_com_cnt_s cn56xxp1; struct cvmx_pow_iq_com_cnt_s cn58xx; struct cvmx_pow_iq_com_cnt_s cn58xxp1; struct cvmx_pow_iq_com_cnt_s cn63xx; struct cvmx_pow_iq_com_cnt_s cn63xxp1; }; typedef union cvmx_pow_iq_com_cnt cvmx_pow_iq_com_cnt_t; /** * cvmx_pow_iq_int * * POW_IQ_INT = POW Input Queue Interrupt Register * * Contains the bits (1 per QOS level) that can trigger the input queue interrupt. An IQ_INT bit * will be set if POW_IQ_CNT#QOS# changes and the resulting value is equal to POW_IQ_THR#QOS#. */ union cvmx_pow_iq_int { uint64_t u64; struct cvmx_pow_iq_int_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t iq_int : 8; /**< Input queue interrupt bits */ #else uint64_t iq_int : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_pow_iq_int_s cn52xx; struct cvmx_pow_iq_int_s cn52xxp1; struct cvmx_pow_iq_int_s cn56xx; struct cvmx_pow_iq_int_s cn56xxp1; struct cvmx_pow_iq_int_s cn63xx; struct cvmx_pow_iq_int_s cn63xxp1; }; typedef union cvmx_pow_iq_int cvmx_pow_iq_int_t; /** * cvmx_pow_iq_int_en * * POW_IQ_INT_EN = POW Input Queue Interrupt Enable Register * * Contains the bits (1 per QOS level) that enable the input queue interrupt. */ union cvmx_pow_iq_int_en { uint64_t u64; struct cvmx_pow_iq_int_en_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t int_en : 8; /**< Input queue interrupt enable bits */ #else uint64_t int_en : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_pow_iq_int_en_s cn52xx; struct cvmx_pow_iq_int_en_s cn52xxp1; struct cvmx_pow_iq_int_en_s cn56xx; struct cvmx_pow_iq_int_en_s cn56xxp1; struct cvmx_pow_iq_int_en_s cn63xx; struct cvmx_pow_iq_int_en_s cn63xxp1; }; typedef union cvmx_pow_iq_int_en cvmx_pow_iq_int_en_t; /** * cvmx_pow_iq_thr# * * POW_IQ_THRX = POW Input Queue Threshold Register (1 per QOS level) * * Threshold value for triggering input queue interrupts. */ union cvmx_pow_iq_thrx { uint64_t u64; struct cvmx_pow_iq_thrx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t iq_thr : 32; /**< Input queue threshold for QOS level X */ #else uint64_t iq_thr : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_iq_thrx_s cn52xx; struct cvmx_pow_iq_thrx_s cn52xxp1; struct cvmx_pow_iq_thrx_s cn56xx; struct cvmx_pow_iq_thrx_s cn56xxp1; struct cvmx_pow_iq_thrx_s cn63xx; struct cvmx_pow_iq_thrx_s cn63xxp1; }; typedef union cvmx_pow_iq_thrx cvmx_pow_iq_thrx_t; /** * cvmx_pow_nos_cnt * * POW_NOS_CNT = POW No-schedule Count Register * * Contains the number of work queue entries on the no-schedule list. */ union cvmx_pow_nos_cnt { uint64_t u64; struct cvmx_pow_nos_cnt_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_12_63 : 52; uint64_t nos_cnt : 12; /**< # of work queue entries on the no-schedule list */ #else uint64_t nos_cnt : 12; uint64_t reserved_12_63 : 52; #endif } s; struct cvmx_pow_nos_cnt_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_7_63 : 57; uint64_t nos_cnt : 7; /**< # of work queue entries on the no-schedule list */ #else uint64_t nos_cnt : 7; uint64_t reserved_7_63 : 57; #endif } cn30xx; struct cvmx_pow_nos_cnt_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t nos_cnt : 9; /**< # of work queue entries on the no-schedule list */ #else uint64_t nos_cnt : 9; uint64_t reserved_9_63 : 55; #endif } cn31xx; struct cvmx_pow_nos_cnt_s cn38xx; struct cvmx_pow_nos_cnt_s cn38xxp2; struct cvmx_pow_nos_cnt_cn31xx cn50xx; struct cvmx_pow_nos_cnt_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_10_63 : 54; uint64_t nos_cnt : 10; /**< # of work queue entries on the no-schedule list */ #else uint64_t nos_cnt : 10; uint64_t reserved_10_63 : 54; #endif } cn52xx; struct cvmx_pow_nos_cnt_cn52xx cn52xxp1; struct cvmx_pow_nos_cnt_s cn56xx; struct cvmx_pow_nos_cnt_s cn56xxp1; struct cvmx_pow_nos_cnt_s cn58xx; struct cvmx_pow_nos_cnt_s cn58xxp1; struct cvmx_pow_nos_cnt_cn63xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_11_63 : 53; uint64_t nos_cnt : 11; /**< # of work queue entries on the no-schedule list */ #else uint64_t nos_cnt : 11; uint64_t reserved_11_63 : 53; #endif } cn63xx; struct cvmx_pow_nos_cnt_cn63xx cn63xxp1; }; typedef union cvmx_pow_nos_cnt cvmx_pow_nos_cnt_t; /** * cvmx_pow_nw_tim * * POW_NW_TIM = POW New Work Timer Period Register * * Sets the minimum period for a new work request timeout. Period is specified in n-1 notation * where the increment value is 1024 clock cycles. Thus, a value of 0x0 in this register translates * to 1024 cycles, 0x1 translates to 2048 cycles, 0x2 translates to 3072 cycles, etc... Note: the * maximum period for a new work request timeout is 2 times the minimum period. Note: the new work * request timeout counter is reset when this register is written. * * There are two new work request timeout cases: * * - WAIT bit clear. The new work request can timeout if the timer expires before the pre-fetch * engine has reached the end of all work queues. This can occur if the executable work queue * entry is deep in the queue and the pre-fetch engine is subject to many resets (i.e. high switch, * de-schedule, or new work load from other PP's). Thus, it is possible for a PP to receive a work * response with the NO_WORK bit set even though there was at least one executable entry in the * work queues. The other (and typical) scenario for receiving a NO_WORK response with the WAIT * bit clear is that the pre-fetch engine has reached the end of all work queues without finding * executable work. * * - WAIT bit set. The new work request can timeout if the timer expires before the pre-fetch * engine has found executable work. In this case, the only scenario where the PP will receive a * work response with the NO_WORK bit set is if the timer expires. Note: it is still possible for * a PP to receive a NO_WORK response even though there was at least one executable entry in the * work queues. * * In either case, it's important to note that switches and de-schedules are higher priority * operations that can cause the pre-fetch engine to reset. Thus in a system with many switches or * de-schedules occuring, it's possible for the new work timer to expire (resulting in NO_WORK * responses) before the pre-fetch engine is able to get very deep into the work queues. */ union cvmx_pow_nw_tim { uint64_t u64; struct cvmx_pow_nw_tim_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_10_63 : 54; uint64_t nw_tim : 10; /**< New work timer period */ #else uint64_t nw_tim : 10; uint64_t reserved_10_63 : 54; #endif } s; struct cvmx_pow_nw_tim_s cn30xx; struct cvmx_pow_nw_tim_s cn31xx; struct cvmx_pow_nw_tim_s cn38xx; struct cvmx_pow_nw_tim_s cn38xxp2; struct cvmx_pow_nw_tim_s cn50xx; struct cvmx_pow_nw_tim_s cn52xx; struct cvmx_pow_nw_tim_s cn52xxp1; struct cvmx_pow_nw_tim_s cn56xx; struct cvmx_pow_nw_tim_s cn56xxp1; struct cvmx_pow_nw_tim_s cn58xx; struct cvmx_pow_nw_tim_s cn58xxp1; struct cvmx_pow_nw_tim_s cn63xx; struct cvmx_pow_nw_tim_s cn63xxp1; }; typedef union cvmx_pow_nw_tim cvmx_pow_nw_tim_t; /** * cvmx_pow_pf_rst_msk * * POW_PF_RST_MSK = POW Prefetch Reset Mask * * Resets the work prefetch engine when work is stored in an internal buffer (either when the add * work arrives or when the work is reloaded from an external buffer) for an enabled QOS level * (1 bit per QOS level). */ union cvmx_pow_pf_rst_msk { uint64_t u64; struct cvmx_pow_pf_rst_msk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t rst_msk : 8; /**< Prefetch engine reset mask */ #else uint64_t rst_msk : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_pow_pf_rst_msk_s cn50xx; struct cvmx_pow_pf_rst_msk_s cn52xx; struct cvmx_pow_pf_rst_msk_s cn52xxp1; struct cvmx_pow_pf_rst_msk_s cn56xx; struct cvmx_pow_pf_rst_msk_s cn56xxp1; struct cvmx_pow_pf_rst_msk_s cn58xx; struct cvmx_pow_pf_rst_msk_s cn58xxp1; struct cvmx_pow_pf_rst_msk_s cn63xx; struct cvmx_pow_pf_rst_msk_s cn63xxp1; }; typedef union cvmx_pow_pf_rst_msk cvmx_pow_pf_rst_msk_t; /** * cvmx_pow_pp_grp_msk# * * POW_PP_GRP_MSKX = POW PP Group Mask Register (1 per PP) * * Selects which group(s) a PP belongs to. A '1' in any bit position sets the PP's membership in * the corresponding group. A value of 0x0 will prevent the PP from receiving new work. Note: * disabled or non-existent PP's should have this field set to 0xffff (the reset value) in order to * maximize POW performance. * * Also contains the QOS level priorities for each PP. 0x0 is highest priority, and 0x7 the lowest. * Setting the priority to 0xf will prevent that PP from receiving work from that QOS level. * Priority values 0x8 through 0xe are reserved and should not be used. For a given PP, priorities * should begin at 0x0 and remain contiguous throughout the range. */ union cvmx_pow_pp_grp_mskx { uint64_t u64; struct cvmx_pow_pp_grp_mskx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_48_63 : 16; uint64_t qos7_pri : 4; /**< PPX priority for QOS level 7 */ uint64_t qos6_pri : 4; /**< PPX priority for QOS level 6 */ uint64_t qos5_pri : 4; /**< PPX priority for QOS level 5 */ uint64_t qos4_pri : 4; /**< PPX priority for QOS level 4 */ uint64_t qos3_pri : 4; /**< PPX priority for QOS level 3 */ uint64_t qos2_pri : 4; /**< PPX priority for QOS level 2 */ uint64_t qos1_pri : 4; /**< PPX priority for QOS level 1 */ uint64_t qos0_pri : 4; /**< PPX priority for QOS level 0 */ uint64_t grp_msk : 16; /**< PPX group mask */ #else uint64_t grp_msk : 16; uint64_t qos0_pri : 4; uint64_t qos1_pri : 4; uint64_t qos2_pri : 4; uint64_t qos3_pri : 4; uint64_t qos4_pri : 4; uint64_t qos5_pri : 4; uint64_t qos6_pri : 4; uint64_t qos7_pri : 4; uint64_t reserved_48_63 : 16; #endif } s; struct cvmx_pow_pp_grp_mskx_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t grp_msk : 16; /**< PPX group mask */ #else uint64_t grp_msk : 16; uint64_t reserved_16_63 : 48; #endif } cn30xx; struct cvmx_pow_pp_grp_mskx_cn30xx cn31xx; struct cvmx_pow_pp_grp_mskx_cn30xx cn38xx; struct cvmx_pow_pp_grp_mskx_cn30xx cn38xxp2; struct cvmx_pow_pp_grp_mskx_s cn50xx; struct cvmx_pow_pp_grp_mskx_s cn52xx; struct cvmx_pow_pp_grp_mskx_s cn52xxp1; struct cvmx_pow_pp_grp_mskx_s cn56xx; struct cvmx_pow_pp_grp_mskx_s cn56xxp1; struct cvmx_pow_pp_grp_mskx_s cn58xx; struct cvmx_pow_pp_grp_mskx_s cn58xxp1; struct cvmx_pow_pp_grp_mskx_s cn63xx; struct cvmx_pow_pp_grp_mskx_s cn63xxp1; }; typedef union cvmx_pow_pp_grp_mskx cvmx_pow_pp_grp_mskx_t; /** * cvmx_pow_qos_rnd# * * POW_QOS_RNDX = POW QOS Issue Round Register (4 rounds per register x 8 registers = 32 rounds) * * Contains the round definitions for issuing new work. Each round consists of 8 bits with each bit * corresponding to a QOS level. There are 4 rounds contained in each register for a total of 32 * rounds. The issue logic traverses through the rounds sequentially (lowest round to highest round) * in an attempt to find new work for each PP. Within each round, the issue logic traverses through * the QOS levels sequentially (highest QOS to lowest QOS) skipping over each QOS level with a clear * bit in the round mask. Note: setting a QOS level to all zeroes in all issue round registers will * prevent work from being issued from that QOS level. */ union cvmx_pow_qos_rndx { uint64_t u64; struct cvmx_pow_qos_rndx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t rnd_p3 : 8; /**< Round mask for round Xx4+3 */ uint64_t rnd_p2 : 8; /**< Round mask for round Xx4+2 */ uint64_t rnd_p1 : 8; /**< Round mask for round Xx4+1 */ uint64_t rnd : 8; /**< Round mask for round Xx4 */ #else uint64_t rnd : 8; uint64_t rnd_p1 : 8; uint64_t rnd_p2 : 8; uint64_t rnd_p3 : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_qos_rndx_s cn30xx; struct cvmx_pow_qos_rndx_s cn31xx; struct cvmx_pow_qos_rndx_s cn38xx; struct cvmx_pow_qos_rndx_s cn38xxp2; struct cvmx_pow_qos_rndx_s cn50xx; struct cvmx_pow_qos_rndx_s cn52xx; struct cvmx_pow_qos_rndx_s cn52xxp1; struct cvmx_pow_qos_rndx_s cn56xx; struct cvmx_pow_qos_rndx_s cn56xxp1; struct cvmx_pow_qos_rndx_s cn58xx; struct cvmx_pow_qos_rndx_s cn58xxp1; struct cvmx_pow_qos_rndx_s cn63xx; struct cvmx_pow_qos_rndx_s cn63xxp1; }; typedef union cvmx_pow_qos_rndx cvmx_pow_qos_rndx_t; /** * cvmx_pow_qos_thr# * * POW_QOS_THRX = POW QOS Threshold Register (1 per QOS level) * * Contains the thresholds for allocating POW internal storage buffers. If the number of remaining * free buffers drops below the minimum threshold (MIN_THR) or the number of allocated buffers for * this QOS level rises above the maximum threshold (MAX_THR), future incoming work queue entries * will be buffered externally rather than internally. This register also contains a read-only count * of the current number of free buffers (FREE_CNT), the number of internal buffers currently * allocated to this QOS level (BUF_CNT), and the total number of buffers on the de-schedule list * (DES_CNT) (which is not the same as the total number of de-scheduled buffers). */ union cvmx_pow_qos_thrx { uint64_t u64; struct cvmx_pow_qos_thrx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_60_63 : 4; uint64_t des_cnt : 12; /**< # of buffers on de-schedule list */ uint64_t buf_cnt : 12; /**< # of internal buffers allocated to QOS level X */ uint64_t free_cnt : 12; /**< # of total free buffers */ uint64_t reserved_23_23 : 1; uint64_t max_thr : 11; /**< Max threshold for QOS level X */ uint64_t reserved_11_11 : 1; uint64_t min_thr : 11; /**< Min threshold for QOS level X */ #else uint64_t min_thr : 11; uint64_t reserved_11_11 : 1; uint64_t max_thr : 11; uint64_t reserved_23_23 : 1; uint64_t free_cnt : 12; uint64_t buf_cnt : 12; uint64_t des_cnt : 12; uint64_t reserved_60_63 : 4; #endif } s; struct cvmx_pow_qos_thrx_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_55_63 : 9; uint64_t des_cnt : 7; /**< # of buffers on de-schedule list */ uint64_t reserved_43_47 : 5; uint64_t buf_cnt : 7; /**< # of internal buffers allocated to QOS level X */ uint64_t reserved_31_35 : 5; uint64_t free_cnt : 7; /**< # of total free buffers */ uint64_t reserved_18_23 : 6; uint64_t max_thr : 6; /**< Max threshold for QOS level X */ uint64_t reserved_6_11 : 6; uint64_t min_thr : 6; /**< Min threshold for QOS level X */ #else uint64_t min_thr : 6; uint64_t reserved_6_11 : 6; uint64_t max_thr : 6; uint64_t reserved_18_23 : 6; uint64_t free_cnt : 7; uint64_t reserved_31_35 : 5; uint64_t buf_cnt : 7; uint64_t reserved_43_47 : 5; uint64_t des_cnt : 7; uint64_t reserved_55_63 : 9; #endif } cn30xx; struct cvmx_pow_qos_thrx_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_57_63 : 7; uint64_t des_cnt : 9; /**< # of buffers on de-schedule list */ uint64_t reserved_45_47 : 3; uint64_t buf_cnt : 9; /**< # of internal buffers allocated to QOS level X */ uint64_t reserved_33_35 : 3; uint64_t free_cnt : 9; /**< # of total free buffers */ uint64_t reserved_20_23 : 4; uint64_t max_thr : 8; /**< Max threshold for QOS level X */ uint64_t reserved_8_11 : 4; uint64_t min_thr : 8; /**< Min threshold for QOS level X */ #else uint64_t min_thr : 8; uint64_t reserved_8_11 : 4; uint64_t max_thr : 8; uint64_t reserved_20_23 : 4; uint64_t free_cnt : 9; uint64_t reserved_33_35 : 3; uint64_t buf_cnt : 9; uint64_t reserved_45_47 : 3; uint64_t des_cnt : 9; uint64_t reserved_57_63 : 7; #endif } cn31xx; struct cvmx_pow_qos_thrx_s cn38xx; struct cvmx_pow_qos_thrx_s cn38xxp2; struct cvmx_pow_qos_thrx_cn31xx cn50xx; struct cvmx_pow_qos_thrx_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_58_63 : 6; uint64_t des_cnt : 10; /**< # of buffers on de-schedule list */ uint64_t reserved_46_47 : 2; uint64_t buf_cnt : 10; /**< # of internal buffers allocated to QOS level X */ uint64_t reserved_34_35 : 2; uint64_t free_cnt : 10; /**< # of total free buffers */ uint64_t reserved_21_23 : 3; uint64_t max_thr : 9; /**< Max threshold for QOS level X */ uint64_t reserved_9_11 : 3; uint64_t min_thr : 9; /**< Min threshold for QOS level X */ #else uint64_t min_thr : 9; uint64_t reserved_9_11 : 3; uint64_t max_thr : 9; uint64_t reserved_21_23 : 3; uint64_t free_cnt : 10; uint64_t reserved_34_35 : 2; uint64_t buf_cnt : 10; uint64_t reserved_46_47 : 2; uint64_t des_cnt : 10; uint64_t reserved_58_63 : 6; #endif } cn52xx; struct cvmx_pow_qos_thrx_cn52xx cn52xxp1; struct cvmx_pow_qos_thrx_s cn56xx; struct cvmx_pow_qos_thrx_s cn56xxp1; struct cvmx_pow_qos_thrx_s cn58xx; struct cvmx_pow_qos_thrx_s cn58xxp1; struct cvmx_pow_qos_thrx_cn63xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_59_63 : 5; uint64_t des_cnt : 11; /**< # of buffers on de-schedule list */ uint64_t reserved_47_47 : 1; uint64_t buf_cnt : 11; /**< # of internal buffers allocated to QOS level X */ uint64_t reserved_35_35 : 1; uint64_t free_cnt : 11; /**< # of total free buffers */ uint64_t reserved_22_23 : 2; uint64_t max_thr : 10; /**< Max threshold for QOS level X */ uint64_t reserved_10_11 : 2; uint64_t min_thr : 10; /**< Min threshold for QOS level X */ #else uint64_t min_thr : 10; uint64_t reserved_10_11 : 2; uint64_t max_thr : 10; uint64_t reserved_22_23 : 2; uint64_t free_cnt : 11; uint64_t reserved_35_35 : 1; uint64_t buf_cnt : 11; uint64_t reserved_47_47 : 1; uint64_t des_cnt : 11; uint64_t reserved_59_63 : 5; #endif } cn63xx; struct cvmx_pow_qos_thrx_cn63xx cn63xxp1; }; typedef union cvmx_pow_qos_thrx cvmx_pow_qos_thrx_t; /** * cvmx_pow_ts_pc * * POW_TS_PC = POW Tag Switch Performance Counter * * Counts the number of tag switch requests. Write to clear. */ union cvmx_pow_ts_pc { uint64_t u64; struct cvmx_pow_ts_pc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t ts_pc : 32; /**< Tag switch performance counter */ #else uint64_t ts_pc : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_ts_pc_s cn30xx; struct cvmx_pow_ts_pc_s cn31xx; struct cvmx_pow_ts_pc_s cn38xx; struct cvmx_pow_ts_pc_s cn38xxp2; struct cvmx_pow_ts_pc_s cn50xx; struct cvmx_pow_ts_pc_s cn52xx; struct cvmx_pow_ts_pc_s cn52xxp1; struct cvmx_pow_ts_pc_s cn56xx; struct cvmx_pow_ts_pc_s cn56xxp1; struct cvmx_pow_ts_pc_s cn58xx; struct cvmx_pow_ts_pc_s cn58xxp1; struct cvmx_pow_ts_pc_s cn63xx; struct cvmx_pow_ts_pc_s cn63xxp1; }; typedef union cvmx_pow_ts_pc cvmx_pow_ts_pc_t; /** * cvmx_pow_wa_com_pc * * POW_WA_COM_PC = POW Work Add Combined Performance Counter * * Counts the number of add new work requests for all QOS levels. Write to clear. */ union cvmx_pow_wa_com_pc { uint64_t u64; struct cvmx_pow_wa_com_pc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t wa_pc : 32; /**< Work add combined performance counter */ #else uint64_t wa_pc : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_wa_com_pc_s cn30xx; struct cvmx_pow_wa_com_pc_s cn31xx; struct cvmx_pow_wa_com_pc_s cn38xx; struct cvmx_pow_wa_com_pc_s cn38xxp2; struct cvmx_pow_wa_com_pc_s cn50xx; struct cvmx_pow_wa_com_pc_s cn52xx; struct cvmx_pow_wa_com_pc_s cn52xxp1; struct cvmx_pow_wa_com_pc_s cn56xx; struct cvmx_pow_wa_com_pc_s cn56xxp1; struct cvmx_pow_wa_com_pc_s cn58xx; struct cvmx_pow_wa_com_pc_s cn58xxp1; struct cvmx_pow_wa_com_pc_s cn63xx; struct cvmx_pow_wa_com_pc_s cn63xxp1; }; typedef union cvmx_pow_wa_com_pc cvmx_pow_wa_com_pc_t; /** * cvmx_pow_wa_pc# * * POW_WA_PCX = POW Work Add Performance Counter (1 per QOS level) * * Counts the number of add new work requests for each QOS level. Write to clear. */ union cvmx_pow_wa_pcx { uint64_t u64; struct cvmx_pow_wa_pcx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t wa_pc : 32; /**< Work add performance counter for QOS level X */ #else uint64_t wa_pc : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_wa_pcx_s cn30xx; struct cvmx_pow_wa_pcx_s cn31xx; struct cvmx_pow_wa_pcx_s cn38xx; struct cvmx_pow_wa_pcx_s cn38xxp2; struct cvmx_pow_wa_pcx_s cn50xx; struct cvmx_pow_wa_pcx_s cn52xx; struct cvmx_pow_wa_pcx_s cn52xxp1; struct cvmx_pow_wa_pcx_s cn56xx; struct cvmx_pow_wa_pcx_s cn56xxp1; struct cvmx_pow_wa_pcx_s cn58xx; struct cvmx_pow_wa_pcx_s cn58xxp1; struct cvmx_pow_wa_pcx_s cn63xx; struct cvmx_pow_wa_pcx_s cn63xxp1; }; typedef union cvmx_pow_wa_pcx cvmx_pow_wa_pcx_t; /** * cvmx_pow_wq_int * * POW_WQ_INT = POW Work Queue Interrupt Register * * Contains the bits (1 per group) that set work queue interrupts and are used to clear these * interrupts. Also contains the input queue interrupt temporary disable bits (1 per group). For * more information regarding this register, see the interrupt section. */ union cvmx_pow_wq_int { uint64_t u64; struct cvmx_pow_wq_int_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t iq_dis : 16; /**< Input queue interrupt temporary disable mask Corresponding WQ_INT<*> bit cannot be set due to IQ_CNT/IQ_THR check when this bit is set. Corresponding IQ_DIS bit is cleared by HW whenever: - POW_WQ_INT_CNT*[IQ_CNT] is zero, or - POW_WQ_INT_CNT*[TC_CNT]==1 when periodic counter POW_WQ_INT_PC[PC]==0 */ uint64_t wq_int : 16; /**< Work queue interrupt bits Corresponding WQ_INT bit is set by HW whenever: - POW_WQ_INT_CNT*[IQ_CNT] >= POW_WQ_INT_THR*[IQ_THR] and the threshold interrupt is not disabled. IQ_DIS<*>==1 disables the interrupt. POW_WQ_INT_THR*[IQ_THR]==0 disables the int. - POW_WQ_INT_CNT*[DS_CNT] >= POW_WQ_INT_THR*[DS_THR] and the threshold interrupt is not disabled POW_WQ_INT_THR*[DS_THR]==0 disables the int. - POW_WQ_INT_CNT*[TC_CNT]==1 when periodic counter POW_WQ_INT_PC[PC]==0 and POW_WQ_INT_THR*[TC_EN]==1 and at least one of: - POW_WQ_INT_CNT*[IQ_CNT] > 0 - POW_WQ_INT_CNT*[DS_CNT] > 0 */ #else uint64_t wq_int : 16; uint64_t iq_dis : 16; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_wq_int_s cn30xx; struct cvmx_pow_wq_int_s cn31xx; struct cvmx_pow_wq_int_s cn38xx; struct cvmx_pow_wq_int_s cn38xxp2; struct cvmx_pow_wq_int_s cn50xx; struct cvmx_pow_wq_int_s cn52xx; struct cvmx_pow_wq_int_s cn52xxp1; struct cvmx_pow_wq_int_s cn56xx; struct cvmx_pow_wq_int_s cn56xxp1; struct cvmx_pow_wq_int_s cn58xx; struct cvmx_pow_wq_int_s cn58xxp1; struct cvmx_pow_wq_int_s cn63xx; struct cvmx_pow_wq_int_s cn63xxp1; }; typedef union cvmx_pow_wq_int cvmx_pow_wq_int_t; /** * cvmx_pow_wq_int_cnt# * * POW_WQ_INT_CNTX = POW Work Queue Interrupt Count Register (1 per group) * * Contains a read-only copy of the counts used to trigger work queue interrupts. For more * information regarding this register, see the interrupt section. */ union cvmx_pow_wq_int_cntx { uint64_t u64; struct cvmx_pow_wq_int_cntx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t tc_cnt : 4; /**< Time counter current value for group X HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever: - corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and corresponding POW_WQ_INT_CNT*[DS_CNT]==0 - corresponding POW_WQ_INT[WQ_INT<*>] is written with a 1 by SW - corresponding POW_WQ_INT[IQ_DIS<*>] is written with a 1 by SW - corresponding POW_WQ_INT_THR* is written by SW - TC_CNT==1 and periodic counter POW_WQ_INT_PC[PC]==0 Otherwise, HW decrements TC_CNT whenever the periodic counter POW_WQ_INT_PC[PC]==0. TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */ uint64_t ds_cnt : 12; /**< De-schedule executable count for group X */ uint64_t iq_cnt : 12; /**< Input queue executable count for group X */ #else uint64_t iq_cnt : 12; uint64_t ds_cnt : 12; uint64_t tc_cnt : 4; uint64_t reserved_28_63 : 36; #endif } s; struct cvmx_pow_wq_int_cntx_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t tc_cnt : 4; /**< Time counter current value for group X HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever: - corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and corresponding POW_WQ_INT_CNT*[DS_CNT]==0 - corresponding POW_WQ_INT[WQ_INT<*>] is written with a 1 by SW - corresponding POW_WQ_INT[IQ_DIS<*>] is written with a 1 by SW - corresponding POW_WQ_INT_THR* is written by SW - TC_CNT==1 and periodic counter POW_WQ_INT_PC[PC]==0 Otherwise, HW decrements TC_CNT whenever the periodic counter POW_WQ_INT_PC[PC]==0. TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */ uint64_t reserved_19_23 : 5; uint64_t ds_cnt : 7; /**< De-schedule executable count for group X */ uint64_t reserved_7_11 : 5; uint64_t iq_cnt : 7; /**< Input queue executable count for group X */ #else uint64_t iq_cnt : 7; uint64_t reserved_7_11 : 5; uint64_t ds_cnt : 7; uint64_t reserved_19_23 : 5; uint64_t tc_cnt : 4; uint64_t reserved_28_63 : 36; #endif } cn30xx; struct cvmx_pow_wq_int_cntx_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t tc_cnt : 4; /**< Time counter current value for group X HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever: - corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and corresponding POW_WQ_INT_CNT*[DS_CNT]==0 - corresponding POW_WQ_INT[WQ_INT<*>] is written with a 1 by SW - corresponding POW_WQ_INT[IQ_DIS<*>] is written with a 1 by SW - corresponding POW_WQ_INT_THR* is written by SW - TC_CNT==1 and periodic counter POW_WQ_INT_PC[PC]==0 Otherwise, HW decrements TC_CNT whenever the periodic counter POW_WQ_INT_PC[PC]==0. TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */ uint64_t reserved_21_23 : 3; uint64_t ds_cnt : 9; /**< De-schedule executable count for group X */ uint64_t reserved_9_11 : 3; uint64_t iq_cnt : 9; /**< Input queue executable count for group X */ #else uint64_t iq_cnt : 9; uint64_t reserved_9_11 : 3; uint64_t ds_cnt : 9; uint64_t reserved_21_23 : 3; uint64_t tc_cnt : 4; uint64_t reserved_28_63 : 36; #endif } cn31xx; struct cvmx_pow_wq_int_cntx_s cn38xx; struct cvmx_pow_wq_int_cntx_s cn38xxp2; struct cvmx_pow_wq_int_cntx_cn31xx cn50xx; struct cvmx_pow_wq_int_cntx_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t tc_cnt : 4; /**< Time counter current value for group X HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever: - corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and corresponding POW_WQ_INT_CNT*[DS_CNT]==0 - corresponding POW_WQ_INT[WQ_INT<*>] is written with a 1 by SW - corresponding POW_WQ_INT[IQ_DIS<*>] is written with a 1 by SW - corresponding POW_WQ_INT_THR* is written by SW - TC_CNT==1 and periodic counter POW_WQ_INT_PC[PC]==0 Otherwise, HW decrements TC_CNT whenever the periodic counter POW_WQ_INT_PC[PC]==0. TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */ uint64_t reserved_22_23 : 2; uint64_t ds_cnt : 10; /**< De-schedule executable count for group X */ uint64_t reserved_10_11 : 2; uint64_t iq_cnt : 10; /**< Input queue executable count for group X */ #else uint64_t iq_cnt : 10; uint64_t reserved_10_11 : 2; uint64_t ds_cnt : 10; uint64_t reserved_22_23 : 2; uint64_t tc_cnt : 4; uint64_t reserved_28_63 : 36; #endif } cn52xx; struct cvmx_pow_wq_int_cntx_cn52xx cn52xxp1; struct cvmx_pow_wq_int_cntx_s cn56xx; struct cvmx_pow_wq_int_cntx_s cn56xxp1; struct cvmx_pow_wq_int_cntx_s cn58xx; struct cvmx_pow_wq_int_cntx_s cn58xxp1; struct cvmx_pow_wq_int_cntx_cn63xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t tc_cnt : 4; /**< Time counter current value for group X HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever: - corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and corresponding POW_WQ_INT_CNT*[DS_CNT]==0 - corresponding POW_WQ_INT[WQ_INT<*>] is written with a 1 by SW - corresponding POW_WQ_INT[IQ_DIS<*>] is written with a 1 by SW - corresponding POW_WQ_INT_THR* is written by SW - TC_CNT==1 and periodic counter POW_WQ_INT_PC[PC]==0 Otherwise, HW decrements TC_CNT whenever the periodic counter POW_WQ_INT_PC[PC]==0. TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */ uint64_t reserved_23_23 : 1; uint64_t ds_cnt : 11; /**< De-schedule executable count for group X */ uint64_t reserved_11_11 : 1; uint64_t iq_cnt : 11; /**< Input queue executable count for group X */ #else uint64_t iq_cnt : 11; uint64_t reserved_11_11 : 1; uint64_t ds_cnt : 11; uint64_t reserved_23_23 : 1; uint64_t tc_cnt : 4; uint64_t reserved_28_63 : 36; #endif } cn63xx; struct cvmx_pow_wq_int_cntx_cn63xx cn63xxp1; }; typedef union cvmx_pow_wq_int_cntx cvmx_pow_wq_int_cntx_t; /** * cvmx_pow_wq_int_pc * * POW_WQ_INT_PC = POW Work Queue Interrupt Periodic Counter Register * * Contains the threshold value for the work queue interrupt periodic counter and also a read-only * copy of the periodic counter. For more information regarding this register, see the interrupt * section. */ union cvmx_pow_wq_int_pc { uint64_t u64; struct cvmx_pow_wq_int_pc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_60_63 : 4; uint64_t pc : 28; /**< Work queue interrupt periodic counter */ uint64_t reserved_28_31 : 4; uint64_t pc_thr : 20; /**< Work queue interrupt periodic counter threshold */ uint64_t reserved_0_7 : 8; #else uint64_t reserved_0_7 : 8; uint64_t pc_thr : 20; uint64_t reserved_28_31 : 4; uint64_t pc : 28; uint64_t reserved_60_63 : 4; #endif } s; struct cvmx_pow_wq_int_pc_s cn30xx; struct cvmx_pow_wq_int_pc_s cn31xx; struct cvmx_pow_wq_int_pc_s cn38xx; struct cvmx_pow_wq_int_pc_s cn38xxp2; struct cvmx_pow_wq_int_pc_s cn50xx; struct cvmx_pow_wq_int_pc_s cn52xx; struct cvmx_pow_wq_int_pc_s cn52xxp1; struct cvmx_pow_wq_int_pc_s cn56xx; struct cvmx_pow_wq_int_pc_s cn56xxp1; struct cvmx_pow_wq_int_pc_s cn58xx; struct cvmx_pow_wq_int_pc_s cn58xxp1; struct cvmx_pow_wq_int_pc_s cn63xx; struct cvmx_pow_wq_int_pc_s cn63xxp1; }; typedef union cvmx_pow_wq_int_pc cvmx_pow_wq_int_pc_t; /** * cvmx_pow_wq_int_thr# * * POW_WQ_INT_THRX = POW Work Queue Interrupt Threshold Register (1 per group) * * Contains the thresholds for enabling and setting work queue interrupts. For more information * regarding this register, see the interrupt section. * * Note: Up to 8 of the POW's internal storage buffers can be allocated for hardware use and are * therefore not available for incoming work queue entries. Additionally, any PP that is not in the * NULL_NULL state consumes a buffer. Thus in a 6 PP system, it is not advisable to set either * IQ_THR or DS_THR to greater than 1024 - 8 - 6 = 1010. Doing so may prevent the interrupt from * ever triggering. */ union cvmx_pow_wq_int_thrx { uint64_t u64; struct cvmx_pow_wq_int_thrx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_29_63 : 35; uint64_t tc_en : 1; /**< Time counter interrupt enable for group X TC_EN must be zero when TC_THR==0 */ uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */ uint64_t reserved_23_23 : 1; uint64_t ds_thr : 11; /**< De-schedule count threshold for group X DS_THR==0 disables the threshold interrupt */ uint64_t reserved_11_11 : 1; uint64_t iq_thr : 11; /**< Input queue count threshold for group X IQ_THR==0 disables the threshold interrupt */ #else uint64_t iq_thr : 11; uint64_t reserved_11_11 : 1; uint64_t ds_thr : 11; uint64_t reserved_23_23 : 1; uint64_t tc_thr : 4; uint64_t tc_en : 1; uint64_t reserved_29_63 : 35; #endif } s; struct cvmx_pow_wq_int_thrx_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_29_63 : 35; uint64_t tc_en : 1; /**< Time counter interrupt enable for group X TC_EN must be zero when TC_THR==0 */ uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */ uint64_t reserved_18_23 : 6; uint64_t ds_thr : 6; /**< De-schedule count threshold for group X DS_THR==0 disables the threshold interrupt */ uint64_t reserved_6_11 : 6; uint64_t iq_thr : 6; /**< Input queue count threshold for group X IQ_THR==0 disables the threshold interrupt */ #else uint64_t iq_thr : 6; uint64_t reserved_6_11 : 6; uint64_t ds_thr : 6; uint64_t reserved_18_23 : 6; uint64_t tc_thr : 4; uint64_t tc_en : 1; uint64_t reserved_29_63 : 35; #endif } cn30xx; struct cvmx_pow_wq_int_thrx_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_29_63 : 35; uint64_t tc_en : 1; /**< Time counter interrupt enable for group X TC_EN must be zero when TC_THR==0 */ uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */ uint64_t reserved_20_23 : 4; uint64_t ds_thr : 8; /**< De-schedule count threshold for group X DS_THR==0 disables the threshold interrupt */ uint64_t reserved_8_11 : 4; uint64_t iq_thr : 8; /**< Input queue count threshold for group X IQ_THR==0 disables the threshold interrupt */ #else uint64_t iq_thr : 8; uint64_t reserved_8_11 : 4; uint64_t ds_thr : 8; uint64_t reserved_20_23 : 4; uint64_t tc_thr : 4; uint64_t tc_en : 1; uint64_t reserved_29_63 : 35; #endif } cn31xx; struct cvmx_pow_wq_int_thrx_s cn38xx; struct cvmx_pow_wq_int_thrx_s cn38xxp2; struct cvmx_pow_wq_int_thrx_cn31xx cn50xx; struct cvmx_pow_wq_int_thrx_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_29_63 : 35; uint64_t tc_en : 1; /**< Time counter interrupt enable for group X TC_EN must be zero when TC_THR==0 */ uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */ uint64_t reserved_21_23 : 3; uint64_t ds_thr : 9; /**< De-schedule count threshold for group X DS_THR==0 disables the threshold interrupt */ uint64_t reserved_9_11 : 3; uint64_t iq_thr : 9; /**< Input queue count threshold for group X IQ_THR==0 disables the threshold interrupt */ #else uint64_t iq_thr : 9; uint64_t reserved_9_11 : 3; uint64_t ds_thr : 9; uint64_t reserved_21_23 : 3; uint64_t tc_thr : 4; uint64_t tc_en : 1; uint64_t reserved_29_63 : 35; #endif } cn52xx; struct cvmx_pow_wq_int_thrx_cn52xx cn52xxp1; struct cvmx_pow_wq_int_thrx_s cn56xx; struct cvmx_pow_wq_int_thrx_s cn56xxp1; struct cvmx_pow_wq_int_thrx_s cn58xx; struct cvmx_pow_wq_int_thrx_s cn58xxp1; struct cvmx_pow_wq_int_thrx_cn63xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_29_63 : 35; uint64_t tc_en : 1; /**< Time counter interrupt enable for group X TC_EN must be zero when TC_THR==0 */ uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */ uint64_t reserved_22_23 : 2; uint64_t ds_thr : 10; /**< De-schedule count threshold for group X DS_THR==0 disables the threshold interrupt */ uint64_t reserved_10_11 : 2; uint64_t iq_thr : 10; /**< Input queue count threshold for group X IQ_THR==0 disables the threshold interrupt */ #else uint64_t iq_thr : 10; uint64_t reserved_10_11 : 2; uint64_t ds_thr : 10; uint64_t reserved_22_23 : 2; uint64_t tc_thr : 4; uint64_t tc_en : 1; uint64_t reserved_29_63 : 35; #endif } cn63xx; struct cvmx_pow_wq_int_thrx_cn63xx cn63xxp1; }; typedef union cvmx_pow_wq_int_thrx cvmx_pow_wq_int_thrx_t; /** * cvmx_pow_ws_pc# * * POW_WS_PCX = POW Work Schedule Performance Counter (1 per group) * * Counts the number of work schedules for each group. Write to clear. */ union cvmx_pow_ws_pcx { uint64_t u64; struct cvmx_pow_ws_pcx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t ws_pc : 32; /**< Work schedule performance counter for group X */ #else uint64_t ws_pc : 32; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_pow_ws_pcx_s cn30xx; struct cvmx_pow_ws_pcx_s cn31xx; struct cvmx_pow_ws_pcx_s cn38xx; struct cvmx_pow_ws_pcx_s cn38xxp2; struct cvmx_pow_ws_pcx_s cn50xx; struct cvmx_pow_ws_pcx_s cn52xx; struct cvmx_pow_ws_pcx_s cn52xxp1; struct cvmx_pow_ws_pcx_s cn56xx; struct cvmx_pow_ws_pcx_s cn56xxp1; struct cvmx_pow_ws_pcx_s cn58xx; struct cvmx_pow_ws_pcx_s cn58xxp1; struct cvmx_pow_ws_pcx_s cn63xx; struct cvmx_pow_ws_pcx_s cn63xxp1; }; typedef union cvmx_pow_ws_pcx cvmx_pow_ws_pcx_t; #endif