Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_ccmp/@/dev/sfxge/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_ccmp/@/dev/sfxge/common/efx_sram.c |
/*- * Copyright 2007-2009 Solarflare Communications Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sfxge/common/efx_sram.c 228100 2011-11-28 20:28:23Z philip $"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" __checkReturn int efx_sram_buf_tbl_set( __in efx_nic_t *enp, __in uint32_t id, __in efsys_mem_t *esmp, __in size_t n) { efx_qword_t qword; uint32_t start = id; uint32_t stop = start + n; efsys_dma_addr_t addr; efx_oword_t oword; unsigned int count; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); if (stop >= EFX_BUF_TBL_SIZE) { rc = EFBIG; goto fail1; } /* Add the entries into the buffer table */ addr = EFSYS_MEM_ADDR(esmp); for (id = start; id != stop; id++) { EFX_POPULATE_QWORD_5(qword, FRF_AZ_IP_DAT_BUF_SIZE, 0, FRF_AZ_BUF_ADR_REGION, 0, FRF_AZ_BUF_ADR_FBUF_DW0, (uint32_t)((addr >> 12) & 0xffffffff), FRF_AZ_BUF_ADR_FBUF_DW1, (uint32_t)((addr >> 12) >> 32), FRF_AZ_BUF_OWNER_ID_FBUF, 0); EFX_BAR_TBL_WRITEQ(enp, FR_AZ_BUF_FULL_TBL, id, &qword); addr += EFX_BUF_SIZE; } EFSYS_PROBE2(buf, uint32_t, start, uint32_t, stop - 1); /* Flush the write buffer */ EFX_POPULATE_OWORD_2(oword, FRF_AZ_BUF_UPD_CMD, 1, FRF_AZ_BUF_CLR_CMD, 0); EFX_BAR_WRITEO(enp, FR_AZ_BUF_TBL_UPD_REG, &oword); /* Poll for the last entry being written to the buffer table */ EFSYS_ASSERT3U(id, ==, stop); addr -= EFX_BUF_SIZE; count = 0; do { EFSYS_PROBE1(wait, unsigned int, count); /* Spin for 1 ms */ EFSYS_SPIN(1000); EFX_BAR_TBL_READQ(enp, FR_AZ_BUF_FULL_TBL, id - 1, &qword); if (EFX_QWORD_FIELD(qword, FRF_AZ_BUF_ADR_FBUF_DW0) == (uint32_t)((addr >> 12) & 0xffffffff) && EFX_QWORD_FIELD(qword, FRF_AZ_BUF_ADR_FBUF_DW1) == (uint32_t)((addr >> 12) >> 32)) goto verify; } while (++count < 100); rc = ETIMEDOUT; goto fail2; verify: /* Verify the rest of the entries in the buffer table */ while (--id != start) { addr -= EFX_BUF_SIZE; /* Read the buffer table entry */ EFX_BAR_TBL_READQ(enp, FR_AZ_BUF_FULL_TBL, id - 1, &qword); if (EFX_QWORD_FIELD(qword, FRF_AZ_BUF_ADR_FBUF_DW0) != (uint32_t)((addr >> 12) & 0xffffffff) || EFX_QWORD_FIELD(qword, FRF_AZ_BUF_ADR_FBUF_DW1) != (uint32_t)((addr >> 12) >> 32)) { rc = EFAULT; goto fail3; } } return (0); fail3: EFSYS_PROBE(fail3); id = stop; fail2: EFSYS_PROBE(fail2); EFX_POPULATE_OWORD_4(oword, FRF_AZ_BUF_UPD_CMD, 0, FRF_AZ_BUF_CLR_CMD, 1, FRF_AZ_BUF_CLR_END_ID, id - 1, FRF_AZ_BUF_CLR_START_ID, start); EFX_BAR_WRITEO(enp, FR_AZ_BUF_TBL_UPD_REG, &oword); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } void efx_sram_buf_tbl_clear( __in efx_nic_t *enp, __in uint32_t id, __in size_t n) { efx_oword_t oword; uint32_t start = id; uint32_t stop = start + n; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); EFSYS_ASSERT3U(stop, <, EFX_BUF_TBL_SIZE); EFSYS_PROBE2(buf, uint32_t, start, uint32_t, stop - 1); EFX_POPULATE_OWORD_4(oword, FRF_AZ_BUF_UPD_CMD, 0, FRF_AZ_BUF_CLR_CMD, 1, FRF_AZ_BUF_CLR_END_ID, stop - 1, FRF_AZ_BUF_CLR_START_ID, start); EFX_BAR_WRITEO(enp, FR_AZ_BUF_TBL_UPD_REG, &oword); } #if EFSYS_OPT_DIAG static void efx_sram_byte_increment_set( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp) { size_t offset = row * FR_AZ_SRM_DBG_REG_STEP; unsigned int index; _NOTE(ARGUNUSED(negate)) for (index = 0; index < sizeof (efx_qword_t); index++) eqp->eq_u8[index] = offset + index; } static void efx_sram_all_the_same_set( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp) { _NOTE(ARGUNUSED(row)) if (negate) EFX_SET_QWORD(*eqp); else EFX_ZERO_QWORD(*eqp); } static void efx_sram_bit_alternate_set( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp) { _NOTE(ARGUNUSED(row)) EFX_POPULATE_QWORD_2(*eqp, EFX_DWORD_0, (negate) ? 0x55555555 : 0xaaaaaaaa, EFX_DWORD_1, (negate) ? 0x55555555 : 0xaaaaaaaa); } static void efx_sram_byte_alternate_set( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp) { _NOTE(ARGUNUSED(row)) EFX_POPULATE_QWORD_2(*eqp, EFX_DWORD_0, (negate) ? 0x00ff00ff : 0xff00ff00, EFX_DWORD_1, (negate) ? 0x00ff00ff : 0xff00ff00); } static void efx_sram_byte_changing_set( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp) { size_t offset = row * FR_AZ_SRM_DBG_REG_STEP; unsigned int index; for (index = 0; index < sizeof (efx_qword_t); index++) { uint8_t byte; if (offset / 256 == 0) byte = (uint8_t)((offset % 257) % 256); else byte = (uint8_t)(~((offset - 8) % 257) % 256); eqp->eq_u8[index] = (negate) ? ~byte : byte; } } static void efx_sram_bit_sweep_set( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp) { size_t offset = row * FR_AZ_SRM_DBG_REG_STEP; if (negate) { EFX_SET_QWORD(*eqp); EFX_CLEAR_QWORD_BIT(*eqp, (offset / sizeof (efx_qword_t)) % 64); } else { EFX_ZERO_QWORD(*eqp); EFX_SET_QWORD_BIT(*eqp, (offset / sizeof (efx_qword_t)) % 64); } } efx_sram_pattern_fn_t __cs __efx_sram_pattern_fns[] = { efx_sram_byte_increment_set, efx_sram_all_the_same_set, efx_sram_bit_alternate_set, efx_sram_byte_alternate_set, efx_sram_byte_changing_set, efx_sram_bit_sweep_set }; __checkReturn int efx_sram_test( __in efx_nic_t *enp, __in efx_pattern_type_t type) { efx_nic_ops_t *enop = enp->en_enop; efx_sram_pattern_fn_t func; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV)); /* Select pattern generator */ EFSYS_ASSERT3U(type, <, EFX_PATTERN_NTYPES); func = __efx_sram_pattern_fns[type]; return (enop->eno_sram_test(enp, func)); } #endif /* EFSYS_OPT_DIAG */