Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_xauth/@/cam/ctl/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_xauth/@/cam/ctl/ctl_backend_block.c |
/*- * Copyright (c) 2003 Silicon Graphics International Corp. * Copyright (c) 2009-2011 Spectra Logic Corporation * Copyright (c) 2012 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Edward Tomasz Napierala * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/users/kenm/FreeBSD-test2/sys/cam/ctl/ctl_backend_block.c#5 $ */ /* * CAM Target Layer driver backend for block devices. * * Author: Ken Merry <ken@FreeBSD.org> */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/cam/ctl/ctl_backend_block.c 237821 2012-06-29 21:19:24Z ken $"); #include <opt_kdtrace.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/types.h> #include <sys/kthread.h> #include <sys/bio.h> #include <sys/fcntl.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/condvar.h> #include <sys/malloc.h> #include <sys/conf.h> #include <sys/ioccom.h> #include <sys/queue.h> #include <sys/sbuf.h> #include <sys/endian.h> #include <sys/uio.h> #include <sys/buf.h> #include <sys/taskqueue.h> #include <sys/vnode.h> #include <sys/namei.h> #include <sys/mount.h> #include <sys/disk.h> #include <sys/fcntl.h> #include <sys/filedesc.h> #include <sys/proc.h> #include <sys/pcpu.h> #include <sys/module.h> #include <sys/sdt.h> #include <sys/devicestat.h> #include <sys/sysctl.h> #include <geom/geom.h> #include <cam/cam.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_da.h> #include <cam/ctl/ctl_io.h> #include <cam/ctl/ctl.h> #include <cam/ctl/ctl_backend.h> #include <cam/ctl/ctl_frontend_internal.h> #include <cam/ctl/ctl_ioctl.h> #include <cam/ctl/ctl_scsi_all.h> #include <cam/ctl/ctl_error.h> /* * The idea here is that we'll allocate enough S/G space to hold a 16MB * I/O. If we get an I/O larger than that, we'll reject it. */ #define CTLBLK_MAX_IO_SIZE (16 * 1024 * 1024) #define CTLBLK_MAX_SEGS (CTLBLK_MAX_IO_SIZE / MAXPHYS) + 1 #ifdef CTLBLK_DEBUG #define DPRINTF(fmt, args...) \ printf("cbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) #else #define DPRINTF(fmt, args...) do {} while(0) #endif SDT_PROVIDER_DEFINE(cbb); typedef enum { CTL_BE_BLOCK_LUN_UNCONFIGURED = 0x01, CTL_BE_BLOCK_LUN_CONFIG_ERR = 0x02, CTL_BE_BLOCK_LUN_WAITING = 0x04, CTL_BE_BLOCK_LUN_MULTI_THREAD = 0x08 } ctl_be_block_lun_flags; typedef enum { CTL_BE_BLOCK_NONE, CTL_BE_BLOCK_DEV, CTL_BE_BLOCK_FILE } ctl_be_block_type; struct ctl_be_block_devdata { struct cdev *cdev; struct cdevsw *csw; int dev_ref; }; struct ctl_be_block_filedata { struct ucred *cred; }; union ctl_be_block_bedata { struct ctl_be_block_devdata dev; struct ctl_be_block_filedata file; }; struct ctl_be_block_io; struct ctl_be_block_lun; typedef void (*cbb_dispatch_t)(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio); /* * Backend LUN structure. There is a 1:1 mapping between a block device * and a backend block LUN, and between a backend block LUN and a CTL LUN. */ struct ctl_be_block_lun { struct ctl_block_disk *disk; char lunname[32]; char *dev_path; ctl_be_block_type dev_type; struct vnode *vn; union ctl_be_block_bedata backend; cbb_dispatch_t dispatch; cbb_dispatch_t lun_flush; struct mtx lock; uma_zone_t lun_zone; uint64_t size_blocks; uint64_t size_bytes; uint32_t blocksize; int blocksize_shift; struct ctl_be_block_softc *softc; struct devstat *disk_stats; ctl_be_block_lun_flags flags; STAILQ_ENTRY(ctl_be_block_lun) links; struct ctl_be_lun ctl_be_lun; struct taskqueue *io_taskqueue; struct task io_task; int num_threads; STAILQ_HEAD(, ctl_io_hdr) input_queue; STAILQ_HEAD(, ctl_io_hdr) config_write_queue; STAILQ_HEAD(, ctl_io_hdr) datamove_queue; }; /* * Overall softc structure for the block backend module. */ struct ctl_be_block_softc { STAILQ_HEAD(, ctl_be_block_io) beio_free_queue; struct mtx lock; int prealloc_beio; int num_disks; STAILQ_HEAD(, ctl_block_disk) disk_list; int num_luns; STAILQ_HEAD(, ctl_be_block_lun) lun_list; }; static struct ctl_be_block_softc backend_block_softc; /* * Per-I/O information. */ struct ctl_be_block_io { union ctl_io *io; struct ctl_sg_entry sg_segs[CTLBLK_MAX_SEGS]; struct iovec xiovecs[CTLBLK_MAX_SEGS]; int bio_cmd; int bio_flags; int num_segs; int num_bios_sent; int num_bios_done; int send_complete; int num_errors; struct bintime ds_t0; devstat_tag_type ds_tag_type; devstat_trans_flags ds_trans_type; uint64_t io_len; uint64_t io_offset; struct ctl_be_block_softc *softc; struct ctl_be_block_lun *lun; STAILQ_ENTRY(ctl_be_block_io) links; }; static int cbb_num_threads = 14; TUNABLE_INT("kern.cam.ctl.block.num_threads", &cbb_num_threads); SYSCTL_NODE(_kern_cam_ctl, OID_AUTO, block, CTLFLAG_RD, 0, "CAM Target Layer Block Backend"); SYSCTL_INT(_kern_cam_ctl_block, OID_AUTO, num_threads, CTLFLAG_RW, &cbb_num_threads, 0, "Number of threads per backing file"); static struct ctl_be_block_io *ctl_alloc_beio(struct ctl_be_block_softc *softc); static void ctl_free_beio(struct ctl_be_block_io *beio); static int ctl_grow_beio(struct ctl_be_block_softc *softc, int count); #if 0 static void ctl_shrink_beio(struct ctl_be_block_softc *softc); #endif static void ctl_complete_beio(struct ctl_be_block_io *beio); static int ctl_be_block_move_done(union ctl_io *io); static void ctl_be_block_biodone(struct bio *bio); static void ctl_be_block_flush_file(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio); static void ctl_be_block_dispatch_file(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio); static void ctl_be_block_flush_dev(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio); static void ctl_be_block_dispatch_dev(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio); static void ctl_be_block_cw_dispatch(struct ctl_be_block_lun *be_lun, union ctl_io *io); static void ctl_be_block_dispatch(struct ctl_be_block_lun *be_lun, union ctl_io *io); static void ctl_be_block_worker(void *context, int pending); static int ctl_be_block_submit(union ctl_io *io); static int ctl_be_block_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td); static int ctl_be_block_open_file(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req); static int ctl_be_block_open_dev(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req); static int ctl_be_block_close(struct ctl_be_block_lun *be_lun); static int ctl_be_block_open(struct ctl_be_block_softc *softc, struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req); static int ctl_be_block_create(struct ctl_be_block_softc *softc, struct ctl_lun_req *req); static int ctl_be_block_rm(struct ctl_be_block_softc *softc, struct ctl_lun_req *req); static int ctl_be_block_modify_file(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req); static int ctl_be_block_modify_dev(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req); static int ctl_be_block_modify(struct ctl_be_block_softc *softc, struct ctl_lun_req *req); static void ctl_be_block_lun_shutdown(void *be_lun); static void ctl_be_block_lun_config_status(void *be_lun, ctl_lun_config_status status); static int ctl_be_block_config_write(union ctl_io *io); static int ctl_be_block_config_read(union ctl_io *io); static int ctl_be_block_lun_info(void *be_lun, struct sbuf *sb); int ctl_be_block_init(void); static struct ctl_backend_driver ctl_be_block_driver = { .name = "block", .flags = CTL_BE_FLAG_HAS_CONFIG, .init = ctl_be_block_init, .data_submit = ctl_be_block_submit, .data_move_done = ctl_be_block_move_done, .config_read = ctl_be_block_config_read, .config_write = ctl_be_block_config_write, .ioctl = ctl_be_block_ioctl, .lun_info = ctl_be_block_lun_info }; MALLOC_DEFINE(M_CTLBLK, "ctlblk", "Memory used for CTL block backend"); CTL_BACKEND_DECLARE(cbb, ctl_be_block_driver); static struct ctl_be_block_io * ctl_alloc_beio(struct ctl_be_block_softc *softc) { struct ctl_be_block_io *beio; int count; mtx_lock(&softc->lock); beio = STAILQ_FIRST(&softc->beio_free_queue); if (beio != NULL) { STAILQ_REMOVE(&softc->beio_free_queue, beio, ctl_be_block_io, links); } mtx_unlock(&softc->lock); if (beio != NULL) { bzero(beio, sizeof(*beio)); beio->softc = softc; return (beio); } for (;;) { count = ctl_grow_beio(softc, /*count*/ 10); /* * This shouldn't be possible, since ctl_grow_beio() uses a * blocking malloc. */ if (count == 0) return (NULL); /* * Since we have to drop the lock when we're allocating beio * structures, it's possible someone else can come along and * allocate the beio's we've just allocated. */ mtx_lock(&softc->lock); beio = STAILQ_FIRST(&softc->beio_free_queue); if (beio != NULL) { STAILQ_REMOVE(&softc->beio_free_queue, beio, ctl_be_block_io, links); } mtx_unlock(&softc->lock); if (beio != NULL) { bzero(beio, sizeof(*beio)); beio->softc = softc; break; } } return (beio); } static void ctl_free_beio(struct ctl_be_block_io *beio) { struct ctl_be_block_softc *softc; int duplicate_free; int i; softc = beio->softc; duplicate_free = 0; for (i = 0; i < beio->num_segs; i++) { if (beio->sg_segs[i].addr == NULL) duplicate_free++; uma_zfree(beio->lun->lun_zone, beio->sg_segs[i].addr); beio->sg_segs[i].addr = NULL; } if (duplicate_free > 0) { printf("%s: %d duplicate frees out of %d segments\n", __func__, duplicate_free, beio->num_segs); } mtx_lock(&softc->lock); STAILQ_INSERT_TAIL(&softc->beio_free_queue, beio, links); mtx_unlock(&softc->lock); } static int ctl_grow_beio(struct ctl_be_block_softc *softc, int count) { int i; for (i = 0; i < count; i++) { struct ctl_be_block_io *beio; beio = (struct ctl_be_block_io *)malloc(sizeof(*beio), M_CTLBLK, M_WAITOK | M_ZERO); if (beio == NULL) break; bzero(beio, sizeof(*beio)); beio->softc = softc; mtx_lock(&softc->lock); STAILQ_INSERT_TAIL(&softc->beio_free_queue, beio, links); mtx_unlock(&softc->lock); } return (i); } #if 0 static void ctl_shrink_beio(struct ctl_be_block_softc *softc) { struct ctl_be_block_io *beio, *beio_tmp; mtx_lock(&softc->lock); STAILQ_FOREACH_SAFE(beio, &softc->beio_free_queue, links, beio_tmp) { STAILQ_REMOVE(&softc->beio_free_queue, beio, ctl_be_block_io, links); free(beio, M_CTLBLK); } mtx_unlock(&softc->lock); } #endif static void ctl_complete_beio(struct ctl_be_block_io *beio) { union ctl_io *io; int io_len; io = beio->io; if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) io_len = beio->io_len; else io_len = 0; devstat_end_transaction(beio->lun->disk_stats, /*bytes*/ io_len, beio->ds_tag_type, beio->ds_trans_type, /*now*/ NULL, /*then*/&beio->ds_t0); ctl_free_beio(beio); ctl_done(io); } static int ctl_be_block_move_done(union ctl_io *io) { struct ctl_be_block_io *beio; struct ctl_be_block_lun *be_lun; #ifdef CTL_TIME_IO struct bintime cur_bt; #endif beio = (struct ctl_be_block_io *) io->io_hdr.ctl_private[CTL_PRIV_BACKEND].ptr; be_lun = beio->lun; DPRINTF("entered\n"); #ifdef CTL_TIME_IO getbintime(&cur_bt); bintime_sub(&cur_bt, &io->io_hdr.dma_start_bt); bintime_add(&io->io_hdr.dma_bt, &cur_bt); io->io_hdr.num_dmas++; #endif /* * We set status at this point for read commands, and write * commands with errors. */ if ((beio->bio_cmd == BIO_READ) && (io->io_hdr.port_status == 0) && ((io->io_hdr.flags & CTL_FLAG_ABORT) == 0) && ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE)) ctl_set_success(&io->scsiio); else if ((io->io_hdr.port_status != 0) && ((io->io_hdr.flags & CTL_FLAG_ABORT) == 0) && ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE)) { /* * For hardware error sense keys, the sense key * specific value is defined to be a retry count, * but we use it to pass back an internal FETD * error code. XXX KDM Hopefully the FETD is only * using 16 bits for an error code, since that's * all the space we have in the sks field. */ ctl_set_internal_failure(&io->scsiio, /*sks_valid*/ 1, /*retry_count*/ io->io_hdr.port_status); } /* * If this is a read, or a write with errors, it is done. */ if ((beio->bio_cmd == BIO_READ) || ((io->io_hdr.flags & CTL_FLAG_ABORT) != 0) || ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE)) { ctl_complete_beio(beio); return (0); } /* * At this point, we have a write and the DMA completed * successfully. We now have to queue it to the task queue to * execute the backend I/O. That is because we do blocking * memory allocations, and in the file backing case, blocking I/O. * This move done routine is generally called in the SIM's * interrupt context, and therefore we cannot block. */ mtx_lock(&be_lun->lock); /* * XXX KDM make sure that links is okay to use at this point. * Otherwise, we either need to add another field to ctl_io_hdr, * or deal with resource allocation here. */ STAILQ_INSERT_TAIL(&be_lun->datamove_queue, &io->io_hdr, links); mtx_unlock(&be_lun->lock); taskqueue_enqueue(be_lun->io_taskqueue, &be_lun->io_task); return (0); } static void ctl_be_block_biodone(struct bio *bio) { struct ctl_be_block_io *beio; struct ctl_be_block_lun *be_lun; union ctl_io *io; beio = bio->bio_caller1; be_lun = beio->lun; io = beio->io; DPRINTF("entered\n"); mtx_lock(&be_lun->lock); if (bio->bio_error != 0) beio->num_errors++; beio->num_bios_done++; /* * XXX KDM will this cause WITNESS to complain? Holding a lock * during the free might cause it to complain. */ g_destroy_bio(bio); /* * If the send complete bit isn't set, or we aren't the last I/O to * complete, then we're done. */ if ((beio->send_complete == 0) || (beio->num_bios_done < beio->num_bios_sent)) { mtx_unlock(&be_lun->lock); return; } /* * At this point, we've verified that we are the last I/O to * complete, so it's safe to drop the lock. */ mtx_unlock(&be_lun->lock); /* * If there are any errors from the backing device, we fail the * entire I/O with a medium error. */ if (beio->num_errors > 0) { if (beio->bio_cmd == BIO_FLUSH) { /* XXX KDM is there is a better error here? */ ctl_set_internal_failure(&io->scsiio, /*sks_valid*/ 1, /*retry_count*/ 0xbad2); } else ctl_set_medium_error(&io->scsiio); ctl_complete_beio(beio); return; } /* * If this is a write or a flush, we're all done. * If this is a read, we can now send the data to the user. */ if ((beio->bio_cmd == BIO_WRITE) || (beio->bio_cmd == BIO_FLUSH)) { ctl_set_success(&io->scsiio); ctl_complete_beio(beio); } else { io->scsiio.be_move_done = ctl_be_block_move_done; io->scsiio.kern_data_ptr = (uint8_t *)beio->sg_segs; io->scsiio.kern_data_len = beio->io_len; io->scsiio.kern_total_len = beio->io_len; io->scsiio.kern_rel_offset = 0; io->scsiio.kern_data_resid = 0; io->scsiio.kern_sg_entries = beio->num_segs; io->io_hdr.flags |= CTL_FLAG_ALLOCATED | CTL_FLAG_KDPTR_SGLIST; #ifdef CTL_TIME_IO getbintime(&io->io_hdr.dma_start_bt); #endif ctl_datamove(io); } } static void ctl_be_block_flush_file(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio) { union ctl_io *io; struct mount *mountpoint; int vfs_is_locked, error, lock_flags; DPRINTF("entered\n"); io = beio->io; vfs_is_locked = VFS_LOCK_GIANT(be_lun->vn->v_mount); (void) vn_start_write(be_lun->vn, &mountpoint, V_WAIT); if (MNT_SHARED_WRITES(mountpoint) || ((mountpoint == NULL) && MNT_SHARED_WRITES(be_lun->vn->v_mount))) lock_flags = LK_SHARED; else lock_flags = LK_EXCLUSIVE; vn_lock(be_lun->vn, lock_flags | LK_RETRY); binuptime(&beio->ds_t0); devstat_start_transaction(beio->lun->disk_stats, &beio->ds_t0); error = VOP_FSYNC(be_lun->vn, MNT_WAIT, curthread); VOP_UNLOCK(be_lun->vn, 0); vn_finished_write(mountpoint); VFS_UNLOCK_GIANT(vfs_is_locked); if (error == 0) ctl_set_success(&io->scsiio); else { /* XXX KDM is there is a better error here? */ ctl_set_internal_failure(&io->scsiio, /*sks_valid*/ 1, /*retry_count*/ 0xbad1); } ctl_complete_beio(beio); } SDT_PROBE_DEFINE1(cbb, kernel, read, file_start, file_start, "uint64_t"); SDT_PROBE_DEFINE1(cbb, kernel, write, file_start, file_start, "uint64_t"); SDT_PROBE_DEFINE1(cbb, kernel, read, file_done, file_done,"uint64_t"); SDT_PROBE_DEFINE1(cbb, kernel, write, file_done, file_done, "uint64_t"); static void ctl_be_block_dispatch_file(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio) { struct ctl_be_block_filedata *file_data; union ctl_io *io; struct uio xuio; struct iovec *xiovec; int vfs_is_locked, flags; int error, i; DPRINTF("entered\n"); file_data = &be_lun->backend.file; io = beio->io; flags = beio->bio_flags; if (beio->bio_cmd == BIO_READ) { SDT_PROBE(cbb, kernel, read, file_start, 0, 0, 0, 0, 0); } else { SDT_PROBE(cbb, kernel, write, file_start, 0, 0, 0, 0, 0); } bzero(&xuio, sizeof(xuio)); if (beio->bio_cmd == BIO_READ) xuio.uio_rw = UIO_READ; else xuio.uio_rw = UIO_WRITE; xuio.uio_offset = beio->io_offset; xuio.uio_resid = beio->io_len; xuio.uio_segflg = UIO_SYSSPACE; xuio.uio_iov = beio->xiovecs; xuio.uio_iovcnt = beio->num_segs; xuio.uio_td = curthread; for (i = 0, xiovec = xuio.uio_iov; i < xuio.uio_iovcnt; i++, xiovec++) { xiovec->iov_base = beio->sg_segs[i].addr; xiovec->iov_len = beio->sg_segs[i].len; } vfs_is_locked = VFS_LOCK_GIANT(be_lun->vn->v_mount); if (beio->bio_cmd == BIO_READ) { vn_lock(be_lun->vn, LK_SHARED | LK_RETRY); binuptime(&beio->ds_t0); devstat_start_transaction(beio->lun->disk_stats, &beio->ds_t0); /* * UFS pays attention to IO_DIRECT for reads. If the * DIRECTIO option is configured into the kernel, it calls * ffs_rawread(). But that only works for single-segment * uios with user space addresses. In our case, with a * kernel uio, it still reads into the buffer cache, but it * will just try to release the buffer from the cache later * on in ffs_read(). * * ZFS does not pay attention to IO_DIRECT for reads. * * UFS does not pay attention to IO_SYNC for reads. * * ZFS pays attention to IO_SYNC (which translates into the * Solaris define FRSYNC for zfs_read()) for reads. It * attempts to sync the file before reading. * * So, to attempt to provide some barrier semantics in the * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC. */ error = VOP_READ(be_lun->vn, &xuio, (flags & BIO_ORDERED) ? (IO_DIRECT|IO_SYNC) : 0, file_data->cred); VOP_UNLOCK(be_lun->vn, 0); } else { struct mount *mountpoint; int lock_flags; (void)vn_start_write(be_lun->vn, &mountpoint, V_WAIT); if (MNT_SHARED_WRITES(mountpoint) || ((mountpoint == NULL) && MNT_SHARED_WRITES(be_lun->vn->v_mount))) lock_flags = LK_SHARED; else lock_flags = LK_EXCLUSIVE; vn_lock(be_lun->vn, lock_flags | LK_RETRY); binuptime(&beio->ds_t0); devstat_start_transaction(beio->lun->disk_stats, &beio->ds_t0); /* * UFS pays attention to IO_DIRECT for writes. The write * is done asynchronously. (Normally the write would just * get put into cache. * * UFS pays attention to IO_SYNC for writes. It will * attempt to write the buffer out synchronously if that * flag is set. * * ZFS does not pay attention to IO_DIRECT for writes. * * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC) * for writes. It will flush the transaction from the * cache before returning. * * So if we've got the BIO_ORDERED flag set, we want * IO_SYNC in either the UFS or ZFS case. */ error = VOP_WRITE(be_lun->vn, &xuio, (flags & BIO_ORDERED) ? IO_SYNC : 0, file_data->cred); VOP_UNLOCK(be_lun->vn, 0); vn_finished_write(mountpoint); } VFS_UNLOCK_GIANT(vfs_is_locked); /* * If we got an error, set the sense data to "MEDIUM ERROR" and * return the I/O to the user. */ if (error != 0) { char path_str[32]; ctl_scsi_path_string(io, path_str, sizeof(path_str)); /* * XXX KDM ZFS returns ENOSPC when the underlying * filesystem fills up. What kind of SCSI error should we * return for that? */ printf("%s%s command returned errno %d\n", path_str, (beio->bio_cmd == BIO_READ) ? "READ" : "WRITE", error); ctl_set_medium_error(&io->scsiio); ctl_complete_beio(beio); return; } /* * If this is a write, we're all done. * If this is a read, we can now send the data to the user. */ if (beio->bio_cmd == BIO_WRITE) { ctl_set_success(&io->scsiio); SDT_PROBE(cbb, kernel, write, file_done, 0, 0, 0, 0, 0); ctl_complete_beio(beio); } else { SDT_PROBE(cbb, kernel, read, file_done, 0, 0, 0, 0, 0); io->scsiio.be_move_done = ctl_be_block_move_done; io->scsiio.kern_data_ptr = (uint8_t *)beio->sg_segs; io->scsiio.kern_data_len = beio->io_len; io->scsiio.kern_total_len = beio->io_len; io->scsiio.kern_rel_offset = 0; io->scsiio.kern_data_resid = 0; io->scsiio.kern_sg_entries = beio->num_segs; io->io_hdr.flags |= CTL_FLAG_ALLOCATED | CTL_FLAG_KDPTR_SGLIST; #ifdef CTL_TIME_IO getbintime(&io->io_hdr.dma_start_bt); #endif ctl_datamove(io); } } static void ctl_be_block_flush_dev(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio) { struct bio *bio; union ctl_io *io; struct ctl_be_block_devdata *dev_data; dev_data = &be_lun->backend.dev; io = beio->io; DPRINTF("entered\n"); /* This can't fail, it's a blocking allocation. */ bio = g_alloc_bio(); bio->bio_cmd = BIO_FLUSH; bio->bio_flags |= BIO_ORDERED; bio->bio_dev = dev_data->cdev; bio->bio_offset = 0; bio->bio_data = 0; bio->bio_done = ctl_be_block_biodone; bio->bio_caller1 = beio; bio->bio_pblkno = 0; /* * We don't need to acquire the LUN lock here, because we are only * sending one bio, and so there is no other context to synchronize * with. */ beio->num_bios_sent = 1; beio->send_complete = 1; binuptime(&beio->ds_t0); devstat_start_transaction(be_lun->disk_stats, &beio->ds_t0); (*dev_data->csw->d_strategy)(bio); } static void ctl_be_block_dispatch_dev(struct ctl_be_block_lun *be_lun, struct ctl_be_block_io *beio) { int i; struct bio *bio; struct ctl_be_block_devdata *dev_data; off_t cur_offset; int max_iosize; DPRINTF("entered\n"); dev_data = &be_lun->backend.dev; /* * We have to limit our I/O size to the maximum supported by the * backend device. Hopefully it is MAXPHYS. If the driver doesn't * set it properly, use DFLTPHYS. */ max_iosize = dev_data->cdev->si_iosize_max; if (max_iosize < PAGE_SIZE) max_iosize = DFLTPHYS; cur_offset = beio->io_offset; /* * XXX KDM need to accurately reflect the number of I/Os outstanding * to a device. */ binuptime(&beio->ds_t0); devstat_start_transaction(be_lun->disk_stats, &beio->ds_t0); for (i = 0; i < beio->num_segs; i++) { size_t cur_size; uint8_t *cur_ptr; cur_size = beio->sg_segs[i].len; cur_ptr = beio->sg_segs[i].addr; while (cur_size > 0) { /* This can't fail, it's a blocking allocation. */ bio = g_alloc_bio(); KASSERT(bio != NULL, ("g_alloc_bio() failed!\n")); bio->bio_cmd = beio->bio_cmd; bio->bio_flags |= beio->bio_flags; bio->bio_dev = dev_data->cdev; bio->bio_caller1 = beio; bio->bio_length = min(cur_size, max_iosize); bio->bio_offset = cur_offset; bio->bio_data = cur_ptr; bio->bio_done = ctl_be_block_biodone; bio->bio_pblkno = cur_offset / be_lun->blocksize; cur_offset += bio->bio_length; cur_ptr += bio->bio_length; cur_size -= bio->bio_length; /* * Make sure we set the complete bit just before we * issue the last bio so we don't wind up with a * race. * * Use the LUN mutex here instead of a combination * of atomic variables for simplicity. * * XXX KDM we could have a per-IO lock, but that * would cause additional per-IO setup and teardown * overhead. Hopefully there won't be too much * contention on the LUN lock. */ mtx_lock(&be_lun->lock); beio->num_bios_sent++; if ((i == beio->num_segs - 1) && (cur_size == 0)) beio->send_complete = 1; mtx_unlock(&be_lun->lock); (*dev_data->csw->d_strategy)(bio); } } } static void ctl_be_block_cw_dispatch(struct ctl_be_block_lun *be_lun, union ctl_io *io) { struct ctl_be_block_io *beio; struct ctl_be_block_softc *softc; DPRINTF("entered\n"); softc = be_lun->softc; beio = ctl_alloc_beio(softc); if (beio == NULL) { /* * This should not happen. ctl_alloc_beio() will call * ctl_grow_beio() with a blocking malloc as needed. * A malloc with M_WAITOK should not fail. */ ctl_set_busy(&io->scsiio); ctl_done(io); return; } beio->io = io; beio->softc = softc; beio->lun = be_lun; io->io_hdr.ctl_private[CTL_PRIV_BACKEND].ptr = beio; switch (io->scsiio.cdb[0]) { case SYNCHRONIZE_CACHE: case SYNCHRONIZE_CACHE_16: beio->ds_trans_type = DEVSTAT_NO_DATA; beio->ds_tag_type = DEVSTAT_TAG_ORDERED; beio->io_len = 0; be_lun->lun_flush(be_lun, beio); break; default: panic("Unhandled CDB type %#x", io->scsiio.cdb[0]); break; } } SDT_PROBE_DEFINE1(cbb, kernel, read, start, start, "uint64_t"); SDT_PROBE_DEFINE1(cbb, kernel, write, start, start, "uint64_t"); SDT_PROBE_DEFINE1(cbb, kernel, read, alloc_done, alloc_done, "uint64_t"); SDT_PROBE_DEFINE1(cbb, kernel, write, alloc_done, alloc_done, "uint64_t"); static void ctl_be_block_dispatch(struct ctl_be_block_lun *be_lun, union ctl_io *io) { struct ctl_be_block_io *beio; struct ctl_be_block_softc *softc; struct ctl_lba_len lbalen; uint64_t len_left, io_size_bytes; int i; softc = be_lun->softc; DPRINTF("entered\n"); if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN) { SDT_PROBE(cbb, kernel, read, start, 0, 0, 0, 0, 0); } else { SDT_PROBE(cbb, kernel, write, start, 0, 0, 0, 0, 0); } memcpy(&lbalen, io->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes, sizeof(lbalen)); io_size_bytes = lbalen.len * be_lun->blocksize; /* * XXX KDM this is temporary, until we implement chaining of beio * structures and multiple datamove calls to move all the data in * or out. */ if (io_size_bytes > CTLBLK_MAX_IO_SIZE) { printf("%s: IO length %ju > max io size %u\n", __func__, io_size_bytes, CTLBLK_MAX_IO_SIZE); ctl_set_invalid_field(&io->scsiio, /*sks_valid*/ 0, /*command*/ 1, /*field*/ 0, /*bit_valid*/ 0, /*bit*/ 0); ctl_done(io); return; } beio = ctl_alloc_beio(softc); if (beio == NULL) { /* * This should not happen. ctl_alloc_beio() will call * ctl_grow_beio() with a blocking malloc as needed. * A malloc with M_WAITOK should not fail. */ ctl_set_busy(&io->scsiio); ctl_done(io); return; } beio->io = io; beio->softc = softc; beio->lun = be_lun; io->io_hdr.ctl_private[CTL_PRIV_BACKEND].ptr = beio; /* * If the I/O came down with an ordered or head of queue tag, set * the BIO_ORDERED attribute. For head of queue tags, that's * pretty much the best we can do. * * XXX KDM we don't have a great way to easily know about the FUA * bit right now (it is decoded in ctl_read_write(), but we don't * pass that knowledge to the backend), and in any case we would * need to determine how to handle it. */ if ((io->scsiio.tag_type == CTL_TAG_ORDERED) || (io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)) beio->bio_flags = BIO_ORDERED; switch (io->scsiio.tag_type) { case CTL_TAG_ORDERED: beio->ds_tag_type = DEVSTAT_TAG_ORDERED; break; case CTL_TAG_HEAD_OF_QUEUE: beio->ds_tag_type = DEVSTAT_TAG_HEAD; break; case CTL_TAG_UNTAGGED: case CTL_TAG_SIMPLE: case CTL_TAG_ACA: default: beio->ds_tag_type = DEVSTAT_TAG_SIMPLE; break; } /* * This path handles read and write only. The config write path * handles flush operations. */ if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN) { beio->bio_cmd = BIO_READ; beio->ds_trans_type = DEVSTAT_READ; } else { beio->bio_cmd = BIO_WRITE; beio->ds_trans_type = DEVSTAT_WRITE; } beio->io_len = lbalen.len * be_lun->blocksize; beio->io_offset = lbalen.lba * be_lun->blocksize; DPRINTF("%s at LBA %jx len %u\n", (beio->bio_cmd == BIO_READ) ? "READ" : "WRITE", (uintmax_t)lbalen.lba, lbalen.len); for (i = 0, len_left = io_size_bytes; i < CTLBLK_MAX_SEGS && len_left > 0; i++) { /* * Setup the S/G entry for this chunk. */ beio->sg_segs[i].len = min(MAXPHYS, len_left); beio->sg_segs[i].addr = uma_zalloc(be_lun->lun_zone, M_WAITOK); /* * uma_zalloc() can in theory return NULL even with M_WAITOK * if it can't pull more memory into the zone. */ if (beio->sg_segs[i].addr == NULL) { ctl_set_busy(&io->scsiio); ctl_complete_beio(beio); return; } DPRINTF("segment %d addr %p len %zd\n", i, beio->sg_segs[i].addr, beio->sg_segs[i].len); beio->num_segs++; len_left -= beio->sg_segs[i].len; } /* * For the read case, we need to read the data into our buffers and * then we can send it back to the user. For the write case, we * need to get the data from the user first. */ if (beio->bio_cmd == BIO_READ) { SDT_PROBE(cbb, kernel, read, alloc_done, 0, 0, 0, 0, 0); be_lun->dispatch(be_lun, beio); } else { SDT_PROBE(cbb, kernel, write, alloc_done, 0, 0, 0, 0, 0); io->scsiio.be_move_done = ctl_be_block_move_done; io->scsiio.kern_data_ptr = (uint8_t *)beio->sg_segs; io->scsiio.kern_data_len = beio->io_len; io->scsiio.kern_total_len = beio->io_len; io->scsiio.kern_rel_offset = 0; io->scsiio.kern_data_resid = 0; io->scsiio.kern_sg_entries = beio->num_segs; io->io_hdr.flags |= CTL_FLAG_ALLOCATED | CTL_FLAG_KDPTR_SGLIST; #ifdef CTL_TIME_IO getbintime(&io->io_hdr.dma_start_bt); #endif ctl_datamove(io); } } static void ctl_be_block_worker(void *context, int pending) { struct ctl_be_block_lun *be_lun; struct ctl_be_block_softc *softc; union ctl_io *io; be_lun = (struct ctl_be_block_lun *)context; softc = be_lun->softc; DPRINTF("entered\n"); mtx_lock(&be_lun->lock); for (;;) { io = (union ctl_io *)STAILQ_FIRST(&be_lun->datamove_queue); if (io != NULL) { struct ctl_be_block_io *beio; DPRINTF("datamove queue\n"); STAILQ_REMOVE(&be_lun->datamove_queue, &io->io_hdr, ctl_io_hdr, links); mtx_unlock(&be_lun->lock); beio = (struct ctl_be_block_io *) io->io_hdr.ctl_private[CTL_PRIV_BACKEND].ptr; be_lun->dispatch(be_lun, beio); mtx_lock(&be_lun->lock); continue; } io = (union ctl_io *)STAILQ_FIRST(&be_lun->config_write_queue); if (io != NULL) { DPRINTF("config write queue\n"); STAILQ_REMOVE(&be_lun->config_write_queue, &io->io_hdr, ctl_io_hdr, links); mtx_unlock(&be_lun->lock); ctl_be_block_cw_dispatch(be_lun, io); mtx_lock(&be_lun->lock); continue; } io = (union ctl_io *)STAILQ_FIRST(&be_lun->input_queue); if (io != NULL) { DPRINTF("input queue\n"); STAILQ_REMOVE(&be_lun->input_queue, &io->io_hdr, ctl_io_hdr, links); mtx_unlock(&be_lun->lock); /* * We must drop the lock, since this routine and * its children may sleep. */ ctl_be_block_dispatch(be_lun, io); mtx_lock(&be_lun->lock); continue; } /* * If we get here, there is no work left in the queues, so * just break out and let the task queue go to sleep. */ break; } mtx_unlock(&be_lun->lock); } /* * Entry point from CTL to the backend for I/O. We queue everything to a * work thread, so this just puts the I/O on a queue and wakes up the * thread. */ static int ctl_be_block_submit(union ctl_io *io) { struct ctl_be_block_lun *be_lun; struct ctl_be_lun *ctl_be_lun; int retval; DPRINTF("entered\n"); retval = CTL_RETVAL_COMPLETE; ctl_be_lun = (struct ctl_be_lun *)io->io_hdr.ctl_private[ CTL_PRIV_BACKEND_LUN].ptr; be_lun = (struct ctl_be_block_lun *)ctl_be_lun->be_lun; /* * Make sure we only get SCSI I/O. */ KASSERT(io->io_hdr.io_type == CTL_IO_SCSI, ("Non-SCSI I/O (type " "%#x) encountered", io->io_hdr.io_type)); mtx_lock(&be_lun->lock); /* * XXX KDM make sure that links is okay to use at this point. * Otherwise, we either need to add another field to ctl_io_hdr, * or deal with resource allocation here. */ STAILQ_INSERT_TAIL(&be_lun->input_queue, &io->io_hdr, links); mtx_unlock(&be_lun->lock); taskqueue_enqueue(be_lun->io_taskqueue, &be_lun->io_task); return (retval); } static int ctl_be_block_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct ctl_be_block_softc *softc; int error; softc = &backend_block_softc; error = 0; switch (cmd) { case CTL_LUN_REQ: { struct ctl_lun_req *lun_req; lun_req = (struct ctl_lun_req *)addr; switch (lun_req->reqtype) { case CTL_LUNREQ_CREATE: error = ctl_be_block_create(softc, lun_req); break; case CTL_LUNREQ_RM: error = ctl_be_block_rm(softc, lun_req); break; case CTL_LUNREQ_MODIFY: error = ctl_be_block_modify(softc, lun_req); break; default: lun_req->status = CTL_LUN_ERROR; snprintf(lun_req->error_str, sizeof(lun_req->error_str), "%s: invalid LUN request type %d", __func__, lun_req->reqtype); break; } break; } default: error = ENOTTY; break; } return (error); } static int ctl_be_block_open_file(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req) { struct ctl_be_block_filedata *file_data; struct ctl_lun_create_params *params; struct vattr vattr; int error; error = 0; file_data = &be_lun->backend.file; params = &req->reqdata.create; be_lun->dev_type = CTL_BE_BLOCK_FILE; be_lun->dispatch = ctl_be_block_dispatch_file; be_lun->lun_flush = ctl_be_block_flush_file; error = VOP_GETATTR(be_lun->vn, &vattr, curthread->td_ucred); if (error != 0) { snprintf(req->error_str, sizeof(req->error_str), "error calling VOP_GETATTR() for file %s", be_lun->dev_path); return (error); } /* * Verify that we have the ability to upgrade to exclusive * access on this file so we can trap errors at open instead * of reporting them during first access. */ if (VOP_ISLOCKED(be_lun->vn) != LK_EXCLUSIVE) { vn_lock(be_lun->vn, LK_UPGRADE | LK_RETRY); if (be_lun->vn->v_iflag & VI_DOOMED) { error = EBADF; snprintf(req->error_str, sizeof(req->error_str), "error locking file %s", be_lun->dev_path); return (error); } } file_data->cred = crhold(curthread->td_ucred); if (params->lun_size_bytes != 0) be_lun->size_bytes = params->lun_size_bytes; else be_lun->size_bytes = vattr.va_size; /* * We set the multi thread flag for file operations because all * filesystems (in theory) are capable of allowing multiple readers * of a file at once. So we want to get the maximum possible * concurrency. */ be_lun->flags |= CTL_BE_BLOCK_LUN_MULTI_THREAD; /* * XXX KDM vattr.va_blocksize may be larger than 512 bytes here. * With ZFS, it is 131072 bytes. Block sizes that large don't work * with disklabel and UFS on FreeBSD at least. Large block sizes * may not work with other OSes as well. So just export a sector * size of 512 bytes, which should work with any OS or * application. Since our backing is a file, any block size will * work fine for the backing store. */ #if 0 be_lun->blocksize= vattr.va_blocksize; #endif if (params->blocksize_bytes != 0) be_lun->blocksize = params->blocksize_bytes; else be_lun->blocksize = 512; /* * Sanity check. The media size has to be at least one * sector long. */ if (be_lun->size_bytes < be_lun->blocksize) { error = EINVAL; snprintf(req->error_str, sizeof(req->error_str), "file %s size %ju < block size %u", be_lun->dev_path, (uintmax_t)be_lun->size_bytes, be_lun->blocksize); } return (error); } static int ctl_be_block_open_dev(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req) { struct ctl_lun_create_params *params; struct vattr vattr; struct cdev *dev; struct cdevsw *devsw; int error; params = &req->reqdata.create; be_lun->dev_type = CTL_BE_BLOCK_DEV; be_lun->dispatch = ctl_be_block_dispatch_dev; be_lun->lun_flush = ctl_be_block_flush_dev; be_lun->backend.dev.cdev = be_lun->vn->v_rdev; be_lun->backend.dev.csw = dev_refthread(be_lun->backend.dev.cdev, &be_lun->backend.dev.dev_ref); if (be_lun->backend.dev.csw == NULL) panic("Unable to retrieve device switch"); error = VOP_GETATTR(be_lun->vn, &vattr, NOCRED); if (error) { snprintf(req->error_str, sizeof(req->error_str), "%s: error getting vnode attributes for device %s", __func__, be_lun->dev_path); return (error); } dev = be_lun->vn->v_rdev; devsw = dev->si_devsw; if (!devsw->d_ioctl) { snprintf(req->error_str, sizeof(req->error_str), "%s: no d_ioctl for device %s!", __func__, be_lun->dev_path); return (ENODEV); } error = devsw->d_ioctl(dev, DIOCGSECTORSIZE, (caddr_t)&be_lun->blocksize, FREAD, curthread); if (error) { snprintf(req->error_str, sizeof(req->error_str), "%s: error %d returned for DIOCGSECTORSIZE ioctl " "on %s!", __func__, error, be_lun->dev_path); return (error); } /* * If the user has asked for a blocksize that is greater than the * backing device's blocksize, we can do it only if the blocksize * the user is asking for is an even multiple of the underlying * device's blocksize. */ if ((params->blocksize_bytes != 0) && (params->blocksize_bytes > be_lun->blocksize)) { uint32_t bs_multiple, tmp_blocksize; bs_multiple = params->blocksize_bytes / be_lun->blocksize; tmp_blocksize = bs_multiple * be_lun->blocksize; if (tmp_blocksize == params->blocksize_bytes) { be_lun->blocksize = params->blocksize_bytes; } else { snprintf(req->error_str, sizeof(req->error_str), "%s: requested blocksize %u is not an even " "multiple of backing device blocksize %u", __func__, params->blocksize_bytes, be_lun->blocksize); return (EINVAL); } } else if ((params->blocksize_bytes != 0) && (params->blocksize_bytes != be_lun->blocksize)) { snprintf(req->error_str, sizeof(req->error_str), "%s: requested blocksize %u < backing device " "blocksize %u", __func__, params->blocksize_bytes, be_lun->blocksize); return (EINVAL); } error = devsw->d_ioctl(dev, DIOCGMEDIASIZE, (caddr_t)&be_lun->size_bytes, FREAD, curthread); if (error) { snprintf(req->error_str, sizeof(req->error_str), "%s: error %d returned for DIOCGMEDIASIZE " " ioctl on %s!", __func__, error, be_lun->dev_path); return (error); } if (params->lun_size_bytes != 0) { if (params->lun_size_bytes > be_lun->size_bytes) { snprintf(req->error_str, sizeof(req->error_str), "%s: requested LUN size %ju > backing device " "size %ju", __func__, (uintmax_t)params->lun_size_bytes, (uintmax_t)be_lun->size_bytes); return (EINVAL); } be_lun->size_bytes = params->lun_size_bytes; } return (0); } static int ctl_be_block_close(struct ctl_be_block_lun *be_lun) { DROP_GIANT(); if (be_lun->vn) { int flags = FREAD | FWRITE; int vfs_is_locked = 0; switch (be_lun->dev_type) { case CTL_BE_BLOCK_DEV: if (be_lun->backend.dev.csw) { dev_relthread(be_lun->backend.dev.cdev, be_lun->backend.dev.dev_ref); be_lun->backend.dev.csw = NULL; be_lun->backend.dev.cdev = NULL; } break; case CTL_BE_BLOCK_FILE: vfs_is_locked = VFS_LOCK_GIANT(be_lun->vn->v_mount); break; case CTL_BE_BLOCK_NONE: default: panic("Unexpected backend type."); break; } (void)vn_close(be_lun->vn, flags, NOCRED, curthread); be_lun->vn = NULL; switch (be_lun->dev_type) { case CTL_BE_BLOCK_DEV: break; case CTL_BE_BLOCK_FILE: VFS_UNLOCK_GIANT(vfs_is_locked); if (be_lun->backend.file.cred != NULL) { crfree(be_lun->backend.file.cred); be_lun->backend.file.cred = NULL; } break; case CTL_BE_BLOCK_NONE: default: panic("Unexpected backend type."); break; } } PICKUP_GIANT(); return (0); } static int ctl_be_block_open(struct ctl_be_block_softc *softc, struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req) { struct nameidata nd; int flags; int error; int vfs_is_locked; /* * XXX KDM allow a read-only option? */ flags = FREAD | FWRITE; error = 0; if (rootvnode == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: Root filesystem is not mounted", __func__); return (1); } if (!curthread->td_proc->p_fd->fd_cdir) { curthread->td_proc->p_fd->fd_cdir = rootvnode; VREF(rootvnode); } if (!curthread->td_proc->p_fd->fd_rdir) { curthread->td_proc->p_fd->fd_rdir = rootvnode; VREF(rootvnode); } if (!curthread->td_proc->p_fd->fd_jdir) { curthread->td_proc->p_fd->fd_jdir = rootvnode; VREF(rootvnode); } again: NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, be_lun->dev_path, curthread); error = vn_open(&nd, &flags, 0, NULL); if (error) { /* * This is the only reasonable guess we can make as far as * path if the user doesn't give us a fully qualified path. * If they want to specify a file, they need to specify the * full path. */ if (be_lun->dev_path[0] != '/') { char *dev_path = "/dev/"; char *dev_name; /* Try adding device path at beginning of name */ dev_name = malloc(strlen(be_lun->dev_path) + strlen(dev_path) + 1, M_CTLBLK, M_WAITOK); if (dev_name) { sprintf(dev_name, "%s%s", dev_path, be_lun->dev_path); free(be_lun->dev_path, M_CTLBLK); be_lun->dev_path = dev_name; goto again; } } snprintf(req->error_str, sizeof(req->error_str), "%s: error opening %s", __func__, be_lun->dev_path); return (error); } vfs_is_locked = NDHASGIANT(&nd); NDFREE(&nd, NDF_ONLY_PNBUF); be_lun->vn = nd.ni_vp; /* We only support disks and files. */ if (vn_isdisk(be_lun->vn, &error)) { error = ctl_be_block_open_dev(be_lun, req); } else if (be_lun->vn->v_type == VREG) { error = ctl_be_block_open_file(be_lun, req); } else { error = EINVAL; snprintf(req->error_str, sizeof(req->error_str), "%s is not a disk or file", be_lun->dev_path); } VOP_UNLOCK(be_lun->vn, 0); VFS_UNLOCK_GIANT(vfs_is_locked); if (error != 0) { ctl_be_block_close(be_lun); return (error); } be_lun->blocksize_shift = fls(be_lun->blocksize) - 1; be_lun->size_blocks = be_lun->size_bytes >> be_lun->blocksize_shift; return (0); } static int ctl_be_block_mem_ctor(void *mem, int size, void *arg, int flags) { return (0); } static void ctl_be_block_mem_dtor(void *mem, int size, void *arg) { bzero(mem, size); } static int ctl_be_block_create(struct ctl_be_block_softc *softc, struct ctl_lun_req *req) { struct ctl_be_block_lun *be_lun; struct ctl_lun_create_params *params; struct ctl_be_arg *file_arg; char tmpstr[32]; int retval, num_threads; int i; params = &req->reqdata.create; retval = 0; num_threads = cbb_num_threads; file_arg = NULL; be_lun = malloc(sizeof(*be_lun), M_CTLBLK, M_ZERO | M_WAITOK); if (be_lun == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: error allocating %zd bytes", __func__, sizeof(*be_lun)); goto bailout_error; } be_lun->softc = softc; STAILQ_INIT(&be_lun->input_queue); STAILQ_INIT(&be_lun->config_write_queue); STAILQ_INIT(&be_lun->datamove_queue); sprintf(be_lun->lunname, "cblk%d", softc->num_luns); mtx_init(&be_lun->lock, be_lun->lunname, NULL, MTX_DEF); be_lun->lun_zone = uma_zcreate(be_lun->lunname, MAXPHYS, ctl_be_block_mem_ctor, ctl_be_block_mem_dtor, NULL, NULL, /*align*/ 0, /*flags*/0); if (be_lun->lun_zone == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: error allocating UMA zone", __func__); goto bailout_error; } if (params->flags & CTL_LUN_FLAG_DEV_TYPE) be_lun->ctl_be_lun.lun_type = params->device_type; else be_lun->ctl_be_lun.lun_type = T_DIRECT; if (be_lun->ctl_be_lun.lun_type == T_DIRECT) { for (i = 0; i < req->num_be_args; i++) { if (strcmp(req->kern_be_args[i].name, "file") == 0) { file_arg = &req->kern_be_args[i]; break; } } if (file_arg == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: no file argument specified", __func__); goto bailout_error; } be_lun->dev_path = malloc(file_arg->vallen, M_CTLBLK, M_WAITOK | M_ZERO); if (be_lun->dev_path == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: error allocating %d bytes", __func__, file_arg->vallen); goto bailout_error; } strlcpy(be_lun->dev_path, (char *)file_arg->value, file_arg->vallen); retval = ctl_be_block_open(softc, be_lun, req); if (retval != 0) { retval = 0; goto bailout_error; } /* * Tell the user the size of the file/device. */ params->lun_size_bytes = be_lun->size_bytes; /* * The maximum LBA is the size - 1. */ be_lun->ctl_be_lun.maxlba = be_lun->size_blocks - 1; } else { /* * For processor devices, we don't have any size. */ be_lun->blocksize = 0; be_lun->size_blocks = 0; be_lun->size_bytes = 0; be_lun->ctl_be_lun.maxlba = 0; params->lun_size_bytes = 0; /* * Default to just 1 thread for processor devices. */ num_threads = 1; } /* * XXX This searching loop might be refactored to be combined with * the loop above, */ for (i = 0; i < req->num_be_args; i++) { if (strcmp(req->kern_be_args[i].name, "num_threads") == 0) { struct ctl_be_arg *thread_arg; char num_thread_str[16]; int tmp_num_threads; thread_arg = &req->kern_be_args[i]; strlcpy(num_thread_str, (char *)thread_arg->value, min(thread_arg->vallen, sizeof(num_thread_str))); tmp_num_threads = strtol(num_thread_str, NULL, 0); /* * We don't let the user specify less than one * thread, but hope he's clueful enough not to * specify 1000 threads. */ if (tmp_num_threads < 1) { snprintf(req->error_str, sizeof(req->error_str), "%s: invalid number of threads %s", __func__, num_thread_str); goto bailout_error; } num_threads = tmp_num_threads; } } be_lun->flags = CTL_BE_BLOCK_LUN_UNCONFIGURED; be_lun->ctl_be_lun.flags = CTL_LUN_FLAG_PRIMARY; be_lun->ctl_be_lun.be_lun = be_lun; be_lun->ctl_be_lun.blocksize = be_lun->blocksize; /* Tell the user the blocksize we ended up using */ params->blocksize_bytes = be_lun->blocksize; if (params->flags & CTL_LUN_FLAG_ID_REQ) { be_lun->ctl_be_lun.req_lun_id = params->req_lun_id; be_lun->ctl_be_lun.flags |= CTL_LUN_FLAG_ID_REQ; } else be_lun->ctl_be_lun.req_lun_id = 0; be_lun->ctl_be_lun.lun_shutdown = ctl_be_block_lun_shutdown; be_lun->ctl_be_lun.lun_config_status = ctl_be_block_lun_config_status; be_lun->ctl_be_lun.be = &ctl_be_block_driver; if ((params->flags & CTL_LUN_FLAG_SERIAL_NUM) == 0) { snprintf(tmpstr, sizeof(tmpstr), "MYSERIAL%4d", softc->num_luns); strncpy((char *)be_lun->ctl_be_lun.serial_num, tmpstr, ctl_min(sizeof(be_lun->ctl_be_lun.serial_num), sizeof(tmpstr))); /* Tell the user what we used for a serial number */ strncpy((char *)params->serial_num, tmpstr, ctl_min(sizeof(params->serial_num), sizeof(tmpstr))); } else { strncpy((char *)be_lun->ctl_be_lun.serial_num, params->serial_num, ctl_min(sizeof(be_lun->ctl_be_lun.serial_num), sizeof(params->serial_num))); } if ((params->flags & CTL_LUN_FLAG_DEVID) == 0) { snprintf(tmpstr, sizeof(tmpstr), "MYDEVID%4d", softc->num_luns); strncpy((char *)be_lun->ctl_be_lun.device_id, tmpstr, ctl_min(sizeof(be_lun->ctl_be_lun.device_id), sizeof(tmpstr))); /* Tell the user what we used for a device ID */ strncpy((char *)params->device_id, tmpstr, ctl_min(sizeof(params->device_id), sizeof(tmpstr))); } else { strncpy((char *)be_lun->ctl_be_lun.device_id, params->device_id, ctl_min(sizeof(be_lun->ctl_be_lun.device_id), sizeof(params->device_id))); } TASK_INIT(&be_lun->io_task, /*priority*/0, ctl_be_block_worker, be_lun); be_lun->io_taskqueue = taskqueue_create(be_lun->lunname, M_WAITOK, taskqueue_thread_enqueue, /*context*/&be_lun->io_taskqueue); if (be_lun->io_taskqueue == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: Unable to create taskqueue", __func__); goto bailout_error; } /* * Note that we start the same number of threads by default for * both the file case and the block device case. For the file * case, we need multiple threads to allow concurrency, because the * vnode interface is designed to be a blocking interface. For the * block device case, ZFS zvols at least will block the caller's * context in many instances, and so we need multiple threads to * overcome that problem. Other block devices don't need as many * threads, but they shouldn't cause too many problems. * * If the user wants to just have a single thread for a block * device, he can specify that when the LUN is created, or change * the tunable/sysctl to alter the default number of threads. */ retval = taskqueue_start_threads(&be_lun->io_taskqueue, /*num threads*/num_threads, /*priority*/PWAIT, /*thread name*/ "%s taskq", be_lun->lunname); if (retval != 0) goto bailout_error; be_lun->num_threads = num_threads; mtx_lock(&softc->lock); softc->num_luns++; STAILQ_INSERT_TAIL(&softc->lun_list, be_lun, links); mtx_unlock(&softc->lock); retval = ctl_add_lun(&be_lun->ctl_be_lun); if (retval != 0) { mtx_lock(&softc->lock); STAILQ_REMOVE(&softc->lun_list, be_lun, ctl_be_block_lun, links); softc->num_luns--; mtx_unlock(&softc->lock); snprintf(req->error_str, sizeof(req->error_str), "%s: ctl_add_lun() returned error %d, see dmesg for " "details", __func__, retval); retval = 0; goto bailout_error; } mtx_lock(&softc->lock); /* * Tell the config_status routine that we're waiting so it won't * clean up the LUN in the event of an error. */ be_lun->flags |= CTL_BE_BLOCK_LUN_WAITING; while (be_lun->flags & CTL_BE_BLOCK_LUN_UNCONFIGURED) { retval = msleep(be_lun, &softc->lock, PCATCH, "ctlblk", 0); if (retval == EINTR) break; } be_lun->flags &= ~CTL_BE_BLOCK_LUN_WAITING; if (be_lun->flags & CTL_BE_BLOCK_LUN_CONFIG_ERR) { snprintf(req->error_str, sizeof(req->error_str), "%s: LUN configuration error, see dmesg for details", __func__); STAILQ_REMOVE(&softc->lun_list, be_lun, ctl_be_block_lun, links); softc->num_luns--; mtx_unlock(&softc->lock); goto bailout_error; } else { params->req_lun_id = be_lun->ctl_be_lun.lun_id; } mtx_unlock(&softc->lock); be_lun->disk_stats = devstat_new_entry("cbb", params->req_lun_id, be_lun->blocksize, DEVSTAT_ALL_SUPPORTED, be_lun->ctl_be_lun.lun_type | DEVSTAT_TYPE_IF_OTHER, DEVSTAT_PRIORITY_OTHER); req->status = CTL_LUN_OK; return (retval); bailout_error: req->status = CTL_LUN_ERROR; ctl_be_block_close(be_lun); free(be_lun->dev_path, M_CTLBLK); free(be_lun, M_CTLBLK); return (retval); } static int ctl_be_block_rm(struct ctl_be_block_softc *softc, struct ctl_lun_req *req) { struct ctl_lun_rm_params *params; struct ctl_be_block_lun *be_lun; int retval; params = &req->reqdata.rm; mtx_lock(&softc->lock); be_lun = NULL; STAILQ_FOREACH(be_lun, &softc->lun_list, links) { if (be_lun->ctl_be_lun.lun_id == params->lun_id) break; } mtx_unlock(&softc->lock); if (be_lun == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: LUN %u is not managed by the block backend", __func__, params->lun_id); goto bailout_error; } retval = ctl_disable_lun(&be_lun->ctl_be_lun); if (retval != 0) { snprintf(req->error_str, sizeof(req->error_str), "%s: error %d returned from ctl_disable_lun() for " "LUN %d", __func__, retval, params->lun_id); goto bailout_error; } retval = ctl_invalidate_lun(&be_lun->ctl_be_lun); if (retval != 0) { snprintf(req->error_str, sizeof(req->error_str), "%s: error %d returned from ctl_invalidate_lun() for " "LUN %d", __func__, retval, params->lun_id); goto bailout_error; } mtx_lock(&softc->lock); be_lun->flags |= CTL_BE_BLOCK_LUN_WAITING; while ((be_lun->flags & CTL_BE_BLOCK_LUN_UNCONFIGURED) == 0) { retval = msleep(be_lun, &softc->lock, PCATCH, "ctlblk", 0); if (retval == EINTR) break; } be_lun->flags &= ~CTL_BE_BLOCK_LUN_WAITING; if ((be_lun->flags & CTL_BE_BLOCK_LUN_UNCONFIGURED) == 0) { snprintf(req->error_str, sizeof(req->error_str), "%s: interrupted waiting for LUN to be freed", __func__); mtx_unlock(&softc->lock); goto bailout_error; } STAILQ_REMOVE(&softc->lun_list, be_lun, ctl_be_block_lun, links); softc->num_luns--; mtx_unlock(&softc->lock); taskqueue_drain(be_lun->io_taskqueue, &be_lun->io_task); taskqueue_free(be_lun->io_taskqueue); ctl_be_block_close(be_lun); if (be_lun->disk_stats != NULL) devstat_remove_entry(be_lun->disk_stats); uma_zdestroy(be_lun->lun_zone); free(be_lun->dev_path, M_CTLBLK); free(be_lun, M_CTLBLK); req->status = CTL_LUN_OK; return (0); bailout_error: req->status = CTL_LUN_ERROR; return (0); } static int ctl_be_block_modify_file(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req) { struct vattr vattr; int error; struct ctl_lun_modify_params *params; params = &req->reqdata.modify; if (params->lun_size_bytes != 0) { be_lun->size_bytes = params->lun_size_bytes; } else { error = VOP_GETATTR(be_lun->vn, &vattr, curthread->td_ucred); if (error != 0) { snprintf(req->error_str, sizeof(req->error_str), "error calling VOP_GETATTR() for file %s", be_lun->dev_path); return (error); } be_lun->size_bytes = vattr.va_size; } return (0); } static int ctl_be_block_modify_dev(struct ctl_be_block_lun *be_lun, struct ctl_lun_req *req) { struct cdev *dev; struct cdevsw *devsw; int error; struct ctl_lun_modify_params *params; uint64_t size_bytes; params = &req->reqdata.modify; dev = be_lun->vn->v_rdev; devsw = dev->si_devsw; if (!devsw->d_ioctl) { snprintf(req->error_str, sizeof(req->error_str), "%s: no d_ioctl for device %s!", __func__, be_lun->dev_path); return (ENODEV); } error = devsw->d_ioctl(dev, DIOCGMEDIASIZE, (caddr_t)&size_bytes, FREAD, curthread); if (error) { snprintf(req->error_str, sizeof(req->error_str), "%s: error %d returned for DIOCGMEDIASIZE ioctl " "on %s!", __func__, error, be_lun->dev_path); return (error); } if (params->lun_size_bytes != 0) { if (params->lun_size_bytes > size_bytes) { snprintf(req->error_str, sizeof(req->error_str), "%s: requested LUN size %ju > backing device " "size %ju", __func__, (uintmax_t)params->lun_size_bytes, (uintmax_t)size_bytes); return (EINVAL); } be_lun->size_bytes = params->lun_size_bytes; } else { be_lun->size_bytes = size_bytes; } return (0); } static int ctl_be_block_modify(struct ctl_be_block_softc *softc, struct ctl_lun_req *req) { struct ctl_lun_modify_params *params; struct ctl_be_block_lun *be_lun; int vfs_is_locked, error; params = &req->reqdata.modify; mtx_lock(&softc->lock); be_lun = NULL; STAILQ_FOREACH(be_lun, &softc->lun_list, links) { if (be_lun->ctl_be_lun.lun_id == params->lun_id) break; } mtx_unlock(&softc->lock); if (be_lun == NULL) { snprintf(req->error_str, sizeof(req->error_str), "%s: LUN %u is not managed by the block backend", __func__, params->lun_id); goto bailout_error; } if (params->lun_size_bytes != 0) { if (params->lun_size_bytes < be_lun->blocksize) { snprintf(req->error_str, sizeof(req->error_str), "%s: LUN size %ju < blocksize %u", __func__, params->lun_size_bytes, be_lun->blocksize); goto bailout_error; } } vfs_is_locked = VFS_LOCK_GIANT(be_lun->vn->v_mount); vn_lock(be_lun->vn, LK_SHARED | LK_RETRY); if (be_lun->vn->v_type == VREG) error = ctl_be_block_modify_file(be_lun, req); else error = ctl_be_block_modify_dev(be_lun, req); VOP_UNLOCK(be_lun->vn, 0); VFS_UNLOCK_GIANT(vfs_is_locked); if (error != 0) goto bailout_error; be_lun->size_blocks = be_lun->size_bytes >> be_lun->blocksize_shift; /* * The maximum LBA is the size - 1. * * XXX: Note that this field is being updated without locking, * which might cause problems on 32-bit architectures. */ be_lun->ctl_be_lun.maxlba = be_lun->size_blocks - 1; ctl_lun_capacity_changed(&be_lun->ctl_be_lun); /* Tell the user the exact size we ended up using */ params->lun_size_bytes = be_lun->size_bytes; req->status = CTL_LUN_OK; return (0); bailout_error: req->status = CTL_LUN_ERROR; return (0); } static void ctl_be_block_lun_shutdown(void *be_lun) { struct ctl_be_block_lun *lun; struct ctl_be_block_softc *softc; lun = (struct ctl_be_block_lun *)be_lun; softc = lun->softc; mtx_lock(&softc->lock); lun->flags |= CTL_BE_BLOCK_LUN_UNCONFIGURED; if (lun->flags & CTL_BE_BLOCK_LUN_WAITING) wakeup(lun); mtx_unlock(&softc->lock); } static void ctl_be_block_lun_config_status(void *be_lun, ctl_lun_config_status status) { struct ctl_be_block_lun *lun; struct ctl_be_block_softc *softc; lun = (struct ctl_be_block_lun *)be_lun; softc = lun->softc; if (status == CTL_LUN_CONFIG_OK) { mtx_lock(&softc->lock); lun->flags &= ~CTL_BE_BLOCK_LUN_UNCONFIGURED; if (lun->flags & CTL_BE_BLOCK_LUN_WAITING) wakeup(lun); mtx_unlock(&softc->lock); /* * We successfully added the LUN, attempt to enable it. */ if (ctl_enable_lun(&lun->ctl_be_lun) != 0) { printf("%s: ctl_enable_lun() failed!\n", __func__); if (ctl_invalidate_lun(&lun->ctl_be_lun) != 0) { printf("%s: ctl_invalidate_lun() failed!\n", __func__); } } return; } mtx_lock(&softc->lock); lun->flags &= ~CTL_BE_BLOCK_LUN_UNCONFIGURED; lun->flags |= CTL_BE_BLOCK_LUN_CONFIG_ERR; wakeup(lun); mtx_unlock(&softc->lock); } static int ctl_be_block_config_write(union ctl_io *io) { struct ctl_be_block_lun *be_lun; struct ctl_be_lun *ctl_be_lun; int retval; retval = 0; DPRINTF("entered\n"); ctl_be_lun = (struct ctl_be_lun *)io->io_hdr.ctl_private[ CTL_PRIV_BACKEND_LUN].ptr; be_lun = (struct ctl_be_block_lun *)ctl_be_lun->be_lun; switch (io->scsiio.cdb[0]) { case SYNCHRONIZE_CACHE: case SYNCHRONIZE_CACHE_16: /* * The upper level CTL code will filter out any CDBs with * the immediate bit set and return the proper error. * * We don't really need to worry about what LBA range the * user asked to be synced out. When they issue a sync * cache command, we'll sync out the whole thing. */ mtx_lock(&be_lun->lock); STAILQ_INSERT_TAIL(&be_lun->config_write_queue, &io->io_hdr, links); mtx_unlock(&be_lun->lock); taskqueue_enqueue(be_lun->io_taskqueue, &be_lun->io_task); break; case START_STOP_UNIT: { struct scsi_start_stop_unit *cdb; cdb = (struct scsi_start_stop_unit *)io->scsiio.cdb; if (cdb->how & SSS_START) retval = ctl_start_lun(ctl_be_lun); else { retval = ctl_stop_lun(ctl_be_lun); /* * XXX KDM Copan-specific offline behavior. * Figure out a reasonable way to port this? */ #ifdef NEEDTOPORT if ((retval == 0) && (cdb->byte2 & SSS_ONOFFLINE)) retval = ctl_lun_offline(ctl_be_lun); #endif } /* * In general, the above routines should not fail. They * just set state for the LUN. So we've got something * pretty wrong here if we can't start or stop the LUN. */ if (retval != 0) { ctl_set_internal_failure(&io->scsiio, /*sks_valid*/ 1, /*retry_count*/ 0xf051); retval = CTL_RETVAL_COMPLETE; } else { ctl_set_success(&io->scsiio); } ctl_config_write_done(io); break; } default: ctl_set_invalid_opcode(&io->scsiio); ctl_config_write_done(io); retval = CTL_RETVAL_COMPLETE; break; } return (retval); } static int ctl_be_block_config_read(union ctl_io *io) { return (0); } static int ctl_be_block_lun_info(void *be_lun, struct sbuf *sb) { struct ctl_be_block_lun *lun; int retval; lun = (struct ctl_be_block_lun *)be_lun; retval = 0; retval = sbuf_printf(sb, "<num_threads>"); if (retval != 0) goto bailout; retval = sbuf_printf(sb, "%d", lun->num_threads); if (retval != 0) goto bailout; retval = sbuf_printf(sb, "</num_threads>"); /* * For processor devices, we don't have a path variable. */ if ((retval != 0) || (lun->dev_path == NULL)) goto bailout; retval = sbuf_printf(sb, "<file>"); if (retval != 0) goto bailout; retval = ctl_sbuf_printf_esc(sb, lun->dev_path); if (retval != 0) goto bailout; retval = sbuf_printf(sb, "</file>\n"); bailout: return (retval); } int ctl_be_block_init(void) { struct ctl_be_block_softc *softc; int retval; softc = &backend_block_softc; retval = 0; mtx_init(&softc->lock, "ctlblk", NULL, MTX_DEF); STAILQ_INIT(&softc->beio_free_queue); STAILQ_INIT(&softc->disk_list); STAILQ_INIT(&softc->lun_list); ctl_grow_beio(softc, 200); return (retval); }