Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/acpica/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/acpica/acpi_cpu.c |
/*- * Copyright (c) 2003-2005 Nate Lawson (SDG) * Copyright (c) 2001 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/acpica/acpi_cpu.c 239819 2012-08-29 11:28:59Z avg $"); #include "opt_acpi.h" #include <sys/param.h> #include <sys/bus.h> #include <sys/cpu.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/pcpu.h> #include <sys/power.h> #include <sys/proc.h> #include <sys/sbuf.h> #include <sys/smp.h> #include <dev/pci/pcivar.h> #include <machine/atomic.h> #include <machine/bus.h> #if defined(__amd64__) || defined(__i386__) #include <machine/clock.h> #endif #include <sys/rman.h> #include <contrib/dev/acpica/include/acpi.h> #include <contrib/dev/acpica/include/accommon.h> #include <dev/acpica/acpivar.h> /* * Support for ACPI Processor devices, including C[1-3] sleep states. */ /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_PROCESSOR ACPI_MODULE_NAME("PROCESSOR") struct acpi_cx { struct resource *p_lvlx; /* Register to read to enter state. */ uint32_t type; /* C1-3 (C4 and up treated as C3). */ uint32_t trans_lat; /* Transition latency (usec). */ uint32_t power; /* Power consumed (mW). */ int res_type; /* Resource type for p_lvlx. */ }; #define MAX_CX_STATES 8 struct acpi_cpu_softc { device_t cpu_dev; ACPI_HANDLE cpu_handle; struct pcpu *cpu_pcpu; uint32_t cpu_acpi_id; /* ACPI processor id */ uint32_t cpu_p_blk; /* ACPI P_BLK location */ uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ struct acpi_cx cpu_cx_states[MAX_CX_STATES]; int cpu_cx_count; /* Number of valid Cx states. */ int cpu_prev_sleep;/* Last idle sleep duration. */ int cpu_features; /* Child driver supported features. */ /* Runtime state. */ int cpu_non_c3; /* Index of lowest non-C3 state. */ u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ /* Values for sysctl. */ struct sysctl_ctx_list cpu_sysctl_ctx; struct sysctl_oid *cpu_sysctl_tree; int cpu_cx_lowest; int cpu_cx_lowest_lim; char cpu_cx_supported[64]; int cpu_rid; }; struct acpi_cpu_device { struct resource_list ad_rl; }; #define CPU_GET_REG(reg, width) \ (bus_space_read_ ## width(rman_get_bustag((reg)), \ rman_get_bushandle((reg)), 0)) #define CPU_SET_REG(reg, width, val) \ (bus_space_write_ ## width(rman_get_bustag((reg)), \ rman_get_bushandle((reg)), 0, (val))) #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ #define PCI_VENDOR_INTEL 0x8086 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ #define PCI_REVISION_A_STEP 0 #define PCI_REVISION_B_STEP 1 #define PCI_REVISION_4E 2 #define PCI_REVISION_4M 3 #define PIIX4_DEVACTB_REG 0x58 #define PIIX4_BRLD_EN_IRQ0 (1<<0) #define PIIX4_BRLD_EN_IRQ (1<<1) #define PIIX4_BRLD_EN_IRQ8 (1<<5) #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8) #define PIIX4_PCNTRL_BST_EN (1<<10) /* Allow users to ignore processor orders in MADT. */ static int cpu_unordered; TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered); SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN, &cpu_unordered, 0, "Do not use the MADT to match ACPI Processor objects to CPUs."); /* Platform hardware resource information. */ static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ static int cpu_quirks; /* Indicate any hardware bugs. */ /* Runtime state. */ static int cpu_disable_idle; /* Disable entry to idle function */ /* Values for sysctl. */ static struct sysctl_ctx_list cpu_sysctl_ctx; static struct sysctl_oid *cpu_sysctl_tree; static int cpu_cx_generic; static int cpu_cx_lowest_lim; static device_t *cpu_devices; static int cpu_ndevices; static struct acpi_cpu_softc **cpu_softc; ACPI_SERIAL_DECL(cpu, "ACPI CPU"); static int acpi_cpu_probe(device_t dev); static int acpi_cpu_attach(device_t dev); static int acpi_cpu_suspend(device_t dev); static int acpi_cpu_resume(device_t dev); static int acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id); static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child); static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit); static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result); static int acpi_cpu_shutdown(device_t dev); static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc); static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); static void acpi_cpu_startup(void *arg); static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc); static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc); static void acpi_cpu_idle(void); static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); static int acpi_cpu_quirks(void); static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc); static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); static device_method_t acpi_cpu_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_cpu_probe), DEVMETHOD(device_attach, acpi_cpu_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, acpi_cpu_shutdown), DEVMETHOD(device_suspend, acpi_cpu_suspend), DEVMETHOD(device_resume, acpi_cpu_resume), /* Bus interface */ DEVMETHOD(bus_add_child, acpi_cpu_add_child), DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar), DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD_END }; static driver_t acpi_cpu_driver = { "cpu", acpi_cpu_methods, sizeof(struct acpi_cpu_softc), }; static devclass_t acpi_cpu_devclass; DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0); MODULE_DEPEND(cpu, acpi, 1, 1, 1); static int acpi_cpu_probe(device_t dev) { int acpi_id, cpu_id; ACPI_BUFFER buf; ACPI_HANDLE handle; ACPI_OBJECT *obj; ACPI_STATUS status; if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR) return (ENXIO); handle = acpi_get_handle(dev); if (cpu_softc == NULL) cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); /* Get our Processor object. */ buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "probe failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; if (obj->Type != ACPI_TYPE_PROCESSOR) { device_printf(dev, "Processor object has bad type %d\n", obj->Type); AcpiOsFree(obj); return (ENXIO); } /* * Find the processor associated with our unit. We could use the * ProcId as a key, however, some boxes do not have the same values * in their Processor object as the ProcId values in the MADT. */ acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0) return (ENXIO); /* * Check if we already probed this processor. We scan the bus twice * so it's possible we've already seen this one. */ if (cpu_softc[cpu_id] != NULL) return (ENXIO); /* Mark this processor as in-use and save our derived id for attach. */ cpu_softc[cpu_id] = (void *)1; acpi_set_private(dev, (void*)(intptr_t)cpu_id); device_set_desc(dev, "ACPI CPU"); return (0); } static int acpi_cpu_attach(device_t dev) { ACPI_BUFFER buf; ACPI_OBJECT arg[4], *obj; ACPI_OBJECT_LIST arglist; struct pcpu *pcpu_data; struct acpi_cpu_softc *sc; struct acpi_softc *acpi_sc; ACPI_STATUS status; u_int features; int cpu_id, drv_count, i; driver_t **drivers; uint32_t cap_set[3]; /* UUID needed by _OSC evaluation */ static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70, 0x58, 0x71, 0x39, 0x53 }; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->cpu_dev = dev; sc->cpu_handle = acpi_get_handle(dev); cpu_id = (int)(intptr_t)acpi_get_private(dev); cpu_softc[cpu_id] = sc; pcpu_data = pcpu_find(cpu_id); pcpu_data->pc_device = dev; sc->cpu_pcpu = pcpu_data; cpu_smi_cmd = AcpiGbl_FADT.SmiCommand; cpu_cst_cnt = AcpiGbl_FADT.CstControl; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "attach failed to get Processor obj - %s\n", AcpiFormatException(status)); return (ENXIO); } obj = (ACPI_OBJECT *)buf.Pointer; sc->cpu_p_blk = obj->Processor.PblkAddress; sc->cpu_p_blk_len = obj->Processor.PblkLength; sc->cpu_acpi_id = obj->Processor.ProcId; AcpiOsFree(obj); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); /* * If this is the first cpu we attach, create and initialize the generic * resources that will be used by all acpi cpu devices. */ if (device_get_unit(dev) == 0) { /* Assume we won't be using generic Cx mode by default */ cpu_cx_generic = FALSE; /* Install hw.acpi.cpu sysctl tree */ acpi_sc = acpi_device_get_parent_softc(dev); sysctl_ctx_init(&cpu_sysctl_ctx); cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx, SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", CTLFLAG_RD, 0, "node for CPU children"); /* Queue post cpu-probing task handler */ AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL); } /* * Before calling any CPU methods, collect child driver feature hints * and notify ACPI of them. We support unified SMP power control * so advertise this ourselves. Note this is not the same as independent * SMP control where each CPU can have different settings. */ sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3; if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) { for (i = 0; i < drv_count; i++) { if (ACPI_GET_FEATURES(drivers[i], &features) == 0) sc->cpu_features |= features; } free(drivers, M_TEMP); } /* * CPU capabilities are specified in * Intel Processor Vendor-Specific ACPI Interface Specification. */ if (sc->cpu_features) { arglist.Pointer = arg; arglist.Count = 4; arg[0].Type = ACPI_TYPE_BUFFER; arg[0].Buffer.Length = sizeof(cpu_oscuuid); arg[0].Buffer.Pointer = cpu_oscuuid; /* UUID */ arg[1].Type = ACPI_TYPE_INTEGER; arg[1].Integer.Value = 1; /* revision */ arg[2].Type = ACPI_TYPE_INTEGER; arg[2].Integer.Value = 1; /* count */ arg[3].Type = ACPI_TYPE_BUFFER; arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */ arg[3].Buffer.Pointer = (uint8_t *)cap_set; cap_set[0] = 0; /* status */ cap_set[1] = sc->cpu_features; status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL); if (ACPI_SUCCESS(status)) { if (cap_set[0] != 0) device_printf(dev, "_OSC returned status %#x\n", cap_set[0]); } else { arglist.Pointer = arg; arglist.Count = 1; arg[0].Type = ACPI_TYPE_BUFFER; arg[0].Buffer.Length = sizeof(cap_set); arg[0].Buffer.Pointer = (uint8_t *)cap_set; cap_set[0] = 1; /* revision */ cap_set[1] = 1; /* number of capabilities integers */ cap_set[2] = sc->cpu_features; AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL); } } /* Probe for Cx state support. */ acpi_cpu_cx_probe(sc); return (0); } static void acpi_cpu_postattach(void *unused __unused) { device_t *devices; int err; int i, n; err = devclass_get_devices(acpi_cpu_devclass, &devices, &n); if (err != 0) { printf("devclass_get_devices(acpi_cpu_devclass) failed\n"); return; } for (i = 0; i < n; i++) bus_generic_probe(devices[i]); for (i = 0; i < n; i++) bus_generic_attach(devices[i]); free(devices, M_TEMP); } SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, acpi_cpu_postattach, NULL); /* * Disable any entry to the idle function during suspend and re-enable it * during resume. */ static int acpi_cpu_suspend(device_t dev) { int error; error = bus_generic_suspend(dev); if (error) return (error); cpu_disable_idle = TRUE; return (0); } static int acpi_cpu_resume(device_t dev) { cpu_disable_idle = FALSE; return (bus_generic_resume(dev)); } /* * Find the processor associated with a given ACPI ID. By default, * use the MADT to map ACPI IDs to APIC IDs and use that to locate a * processor. Some systems have inconsistent ASL and MADT however. * For these systems the cpu_unordered tunable can be set in which * case we assume that Processor objects are listed in the same order * in both the MADT and ASL. */ static int acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id) { struct pcpu *pc; uint32_t i, idx; KASSERT(acpi_id != NULL, ("Null acpi_id")); KASSERT(cpu_id != NULL, ("Null cpu_id")); idx = device_get_unit(dev); /* * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC * UP box) use the ACPI ID from the first processor we find. */ if (idx == 0 && mp_ncpus == 1) { pc = pcpu_find(0); if (pc->pc_acpi_id == 0xffffffff) pc->pc_acpi_id = *acpi_id; *cpu_id = 0; return (0); } CPU_FOREACH(i) { pc = pcpu_find(i); KASSERT(pc != NULL, ("no pcpu data for %d", i)); if (cpu_unordered) { if (idx-- == 0) { /* * If pc_acpi_id doesn't match the ACPI ID from the * ASL, prefer the MADT-derived value. */ if (pc->pc_acpi_id != *acpi_id) *acpi_id = pc->pc_acpi_id; *cpu_id = pc->pc_cpuid; return (0); } } else { if (pc->pc_acpi_id == *acpi_id) { if (bootverbose) device_printf(dev, "Processor %s (ACPI ID %u) -> APIC ID %d\n", acpi_name(acpi_get_handle(dev)), *acpi_id, pc->pc_cpuid); *cpu_id = pc->pc_cpuid; return (0); } } } if (bootverbose) printf("ACPI: Processor %s (ACPI ID %u) ignored\n", acpi_name(acpi_get_handle(dev)), *acpi_id); return (ESRCH); } static struct resource_list * acpi_cpu_get_rlist(device_t dev, device_t child) { struct acpi_cpu_device *ad; ad = device_get_ivars(child); if (ad == NULL) return (NULL); return (&ad->ad_rl); } static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit) { struct acpi_cpu_device *ad; device_t child; if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) return (NULL); resource_list_init(&ad->ad_rl); child = device_add_child_ordered(dev, order, name, unit); if (child != NULL) device_set_ivars(child, ad); else free(ad, M_TEMP); return (child); } static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct acpi_cpu_softc *sc; sc = device_get_softc(dev); switch (index) { case ACPI_IVAR_HANDLE: *result = (uintptr_t)sc->cpu_handle; break; case CPU_IVAR_PCPU: *result = (uintptr_t)sc->cpu_pcpu; break; #if defined(__amd64__) || defined(__i386__) case CPU_IVAR_NOMINAL_MHZ: if (tsc_is_invariant) { *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000); break; } /* FALLTHROUGH */ #endif default: return (ENOENT); } return (0); } static int acpi_cpu_shutdown(device_t dev) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Allow children to shutdown first. */ bus_generic_shutdown(dev); /* * Disable any entry to the idle function. There is a small race where * an idle thread have passed this check but not gone to sleep. This * is ok since device_shutdown() does not free the softc, otherwise * we'd have to be sure all threads were evicted before returning. */ cpu_disable_idle = TRUE; return_VALUE (0); } static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Use initial sleep value of 1 sec. to start with lowest idle state. */ sc->cpu_prev_sleep = 1000000; sc->cpu_cx_lowest = 0; sc->cpu_cx_lowest_lim = 0; /* * Check for the ACPI 2.0 _CST sleep states object. If we can't find * any, we'll revert to generic FADT/P_BLK Cx control method which will * be handled by acpi_cpu_startup. We need to defer to after having * probed all the cpus in the system before probing for generic Cx * states as we may already have found cpus with valid _CST packages */ if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) { /* * We were unable to find a _CST package for this cpu or there * was an error parsing it. Switch back to generic mode. */ cpu_cx_generic = TRUE; if (bootverbose) device_printf(sc->cpu_dev, "switching to generic Cx mode\n"); } /* * TODO: _CSD Package should be checked here. */ } static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc) { ACPI_GENERIC_ADDRESS gas; struct acpi_cx *cx_ptr; sc->cpu_cx_count = 0; cx_ptr = sc->cpu_cx_states; /* Use initial sleep value of 1 sec. to start with lowest idle state. */ sc->cpu_prev_sleep = 1000000; /* C1 has been required since just after ACPI 1.0 */ cx_ptr->type = ACPI_STATE_C1; cx_ptr->trans_lat = 0; cx_ptr++; sc->cpu_cx_count++; /* * The spec says P_BLK must be 6 bytes long. However, some systems * use it to indicate a fractional set of features present so we * take 5 as C2. Some may also have a value of 7 to indicate * another C3 but most use _CST for this (as required) and having * "only" C1-C3 is not a hardship. */ if (sc->cpu_p_blk_len < 5) return; /* Validate and allocate resources for C2 (P_LVL2). */ gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; gas.BitWidth = 8; if (AcpiGbl_FADT.C2Latency <= 100) { gas.Address = sc->cpu_p_blk + 4; acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); if (cx_ptr->p_lvlx != NULL) { sc->cpu_rid++; cx_ptr->type = ACPI_STATE_C2; cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency; cx_ptr++; sc->cpu_cx_count++; } } if (sc->cpu_p_blk_len < 6) return; /* Validate and allocate resources for C3 (P_LVL3). */ if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) { gas.Address = sc->cpu_p_blk + 5; acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); if (cx_ptr->p_lvlx != NULL) { sc->cpu_rid++; cx_ptr->type = ACPI_STATE_C3; cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency; cx_ptr++; sc->cpu_cx_count++; } } } /* * Parse a _CST package and set up its Cx states. Since the _CST object * can change dynamically, our notify handler may call this function * to clean up and probe the new _CST package. */ static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) { struct acpi_cx *cx_ptr; ACPI_STATUS status; ACPI_BUFFER buf; ACPI_OBJECT *top; ACPI_OBJECT *pkg; uint32_t count; int i; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); if (ACPI_FAILURE(status)) return (ENXIO); /* _CST is a package with a count and at least one Cx package. */ top = (ACPI_OBJECT *)buf.Pointer; if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { device_printf(sc->cpu_dev, "invalid _CST package\n"); AcpiOsFree(buf.Pointer); return (ENXIO); } if (count != top->Package.Count - 1) { device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n", count, top->Package.Count - 1); count = top->Package.Count - 1; } if (count > MAX_CX_STATES) { device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); count = MAX_CX_STATES; } sc->cpu_non_c3 = 0; sc->cpu_cx_count = 0; cx_ptr = sc->cpu_cx_states; /* * C1 has been required since just after ACPI 1.0. * Reserve the first slot for it. */ cx_ptr->type = ACPI_STATE_C0; cx_ptr++; sc->cpu_cx_count++; /* Set up all valid states. */ for (i = 0; i < count; i++) { pkg = &top->Package.Elements[i + 1]; if (!ACPI_PKG_VALID(pkg, 4) || acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); continue; } /* Validate the state to see if we should use it. */ switch (cx_ptr->type) { case ACPI_STATE_C1: if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) { /* This is the first C1 state. Use the reserved slot. */ sc->cpu_cx_states[0] = *cx_ptr; } else { sc->cpu_non_c3 = i; cx_ptr++; sc->cpu_cx_count++; } continue; case ACPI_STATE_C2: sc->cpu_non_c3 = i; break; case ACPI_STATE_C3: default: if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: C3[%d] not available.\n", device_get_unit(sc->cpu_dev), i)); continue; } break; } #ifdef notyet /* Free up any previous register. */ if (cx_ptr->p_lvlx != NULL) { bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx); cx_ptr->p_lvlx = NULL; } #endif /* Allocate the control register for C2 or C3. */ acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid, &cx_ptr->p_lvlx, RF_SHAREABLE); if (cx_ptr->p_lvlx) { sc->cpu_rid++; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: Got C%d - %d latency\n", device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat)); cx_ptr++; sc->cpu_cx_count++; } } AcpiOsFree(buf.Pointer); /* If C1 state was not found, we need one now. */ cx_ptr = sc->cpu_cx_states; if (cx_ptr->type == ACPI_STATE_C0) { cx_ptr->type = ACPI_STATE_C1; cx_ptr->trans_lat = 0; } return (0); } /* * Call this *after* all CPUs have been attached. */ static void acpi_cpu_startup(void *arg) { struct acpi_cpu_softc *sc; int i; /* Get set of CPU devices */ devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices); /* * Setup any quirks that might necessary now that we have probed * all the CPUs */ acpi_cpu_quirks(); if (cpu_cx_generic) { /* * We are using generic Cx mode, probe for available Cx states * for all processors. */ for (i = 0; i < cpu_ndevices; i++) { sc = device_get_softc(cpu_devices[i]); acpi_cpu_generic_cx_probe(sc); } } else { /* * We are using _CST mode, remove C3 state if necessary. * As we now know for sure that we will be using _CST mode * install our notify handler. */ for (i = 0; i < cpu_ndevices; i++) { sc = device_get_softc(cpu_devices[i]); if (cpu_quirks & CPU_QUIRK_NO_C3) { sc->cpu_cx_count = sc->cpu_non_c3 + 1; } AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, acpi_cpu_notify, sc); } } /* Perform Cx final initialization. */ for (i = 0; i < cpu_ndevices; i++) { sc = device_get_softc(cpu_devices[i]); acpi_cpu_startup_cx(sc); } /* Add a sysctl handler to handle global Cx lowest setting */ SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A", "Global lowest Cx sleep state to use"); /* Take over idling from cpu_idle_default(). */ cpu_cx_lowest_lim = 0; cpu_disable_idle = FALSE; cpu_idle_hook = acpi_cpu_idle; } static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc) { struct sbuf sb; int i; /* * Set up the list of Cx states */ sc->cpu_non_c3 = 0; sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported), SBUF_FIXEDLEN); for (i = 0; i < sc->cpu_cx_count; i++) { sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat); if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) sc->cpu_non_c3 = i; else cpu_can_deep_sleep = 1; } sbuf_trim(&sb); sbuf_finish(&sb); } static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc) { acpi_cpu_cx_list(sc); SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_supported", CTLFLAG_RD, sc->cpu_cx_supported, 0, "Cx/microsecond values for supported Cx states"); SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A", "lowest Cx sleep state to use"); SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD, (void *)sc, 0, acpi_cpu_usage_sysctl, "A", "percent usage for each Cx state"); #ifdef notyet /* Signal platform that we can handle _CST notification. */ if (!cpu_cx_generic && cpu_cst_cnt != 0) { ACPI_LOCK(acpi); AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); ACPI_UNLOCK(acpi); } #endif } /* * Idle the CPU in the lowest state possible. This function is called with * interrupts disabled. Note that once it re-enables interrupts, a task * switch can occur so do not access shared data (i.e. the softc) after * interrupts are re-enabled. */ static void acpi_cpu_idle() { struct acpi_cpu_softc *sc; struct acpi_cx *cx_next; uint32_t start_time, end_time; int bm_active, cx_next_idx, i; /* If disabled, return immediately. */ if (cpu_disable_idle) { ACPI_ENABLE_IRQS(); return; } /* * Look up our CPU id to get our softc. If it's NULL, we'll use C1 * since there is no ACPI processor object for this CPU. This occurs * for logical CPUs in the HTT case. */ sc = cpu_softc[PCPU_GET(cpuid)]; if (sc == NULL) { acpi_cpu_c1(); return; } /* Find the lowest state that has small enough latency. */ cx_next_idx = 0; if (cpu_disable_deep_sleep) i = min(sc->cpu_cx_lowest, sc->cpu_non_c3); else i = sc->cpu_cx_lowest; for (; i >= 0; i--) { if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) { cx_next_idx = i; break; } } /* * Check for bus master activity. If there was activity, clear * the bit and use the lowest non-C3 state. Note that the USB * driver polling for new devices keeps this bit set all the * time if USB is loaded. */ if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active); if (bm_active != 0) { AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); cx_next_idx = min(cx_next_idx, sc->cpu_non_c3); } } /* Select the next state and update statistics. */ cx_next = &sc->cpu_cx_states[cx_next_idx]; sc->cpu_cx_stats[cx_next_idx]++; KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); /* * Execute HLT (or equivalent) and wait for an interrupt. We can't * precisely calculate the time spent in C1 since the place we wake up * is an ISR. Assume we slept no more then half of quantum, unless * we are called inside critical section, delaying context switch. */ if (cx_next->type == ACPI_STATE_C1) { AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock); acpi_cpu_c1(); AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); end_time = PM_USEC(acpi_TimerDelta(end_time, start_time)); if (curthread->td_critnest == 0) end_time = min(end_time, 500000 / hz); sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; return; } /* * For C3, disable bus master arbitration and enable bus master wake * if BM control is available, otherwise flush the CPU cache. */ if (cx_next->type == ACPI_STATE_C3) { if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); } else ACPI_FLUSH_CPU_CACHE(); } /* * Read from P_LVLx to enter C2(+), checking time spent asleep. * Use the ACPI timer for measuring sleep time. Since we need to * get the time very close to the CPU start/stop clock logic, this * is the only reliable time source. */ AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock); CPU_GET_REG(cx_next->p_lvlx, 1); /* * Read the end time twice. Since it may take an arbitrary time * to enter the idle state, the first read may be executed before * the processor has stopped. Doing it again provides enough * margin that we are certain to have a correct value. */ AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); /* Enable bus master arbitration and disable bus master wakeup. */ if (cx_next->type == ACPI_STATE_C3 && (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); } ACPI_ENABLE_IRQS(); /* Find the actual time asleep in microseconds. */ end_time = acpi_TimerDelta(end_time, start_time); sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4; } /* * Re-evaluate the _CST object when we are notified that it changed. * * XXX Re-evaluation disabled until locking is done. */ static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) { struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; if (notify != ACPI_NOTIFY_CX_STATES) return; /* Update the list of Cx states. */ acpi_cpu_cx_cst(sc); acpi_cpu_cx_list(sc); ACPI_SERIAL_BEGIN(cpu); acpi_cpu_set_cx_lowest(sc); ACPI_SERIAL_END(cpu); } static int acpi_cpu_quirks(void) { device_t acpi_dev; uint32_t val; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * Bus mastering arbitration control is needed to keep caches coherent * while sleeping in C3. If it's not present but a working flush cache * instruction is present, flush the caches before entering C3 instead. * Otherwise, just disable C3 completely. */ if (AcpiGbl_FADT.Pm2ControlBlock == 0 || AcpiGbl_FADT.Pm2ControlLength == 0) { if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) && (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) { cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: no BM control, using flush cache method\n")); } else { cpu_quirks |= CPU_QUIRK_NO_C3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: no BM control, C3 not available\n")); } } /* * If we are using generic Cx mode, C3 on multiple CPUs requires using * the expensive flush cache instruction. */ if (cpu_cx_generic && mp_ncpus > 1) { cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: SMP, using flush cache mode for C3\n")); } /* Look for various quirks of the PIIX4 part. */ acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); if (acpi_dev != NULL) { switch (pci_get_revid(acpi_dev)) { /* * Disable C3 support for all PIIX4 chipsets. Some of these parts * do not report the BMIDE status to the BM status register and * others have a livelock bug if Type-F DMA is enabled. Linux * works around the BMIDE bug by reading the BM status directly * but we take the simpler approach of disabling C3 for these * parts. * * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA * Livelock") from the January 2002 PIIX4 specification update. * Applies to all PIIX4 models. * * Also, make sure that all interrupts cause a "Stop Break" * event to exit from C2 state. * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak) * should be set to zero, otherwise it causes C2 to short-sleep. * PIIX4 doesn't properly support C3 and bus master activity * need not break out of C2. */ case PCI_REVISION_A_STEP: case PCI_REVISION_B_STEP: case PCI_REVISION_4E: case PCI_REVISION_4M: cpu_quirks |= CPU_QUIRK_NO_C3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: working around PIIX4 bug, disabling C3\n")); val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4); if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n")); val |= PIIX4_STOP_BREAK_MASK; pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4); } AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val); if (val) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu: PIIX4: reset BRLD_EN_BM\n")); AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); } break; default: break; } } return (0); } static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc; struct sbuf sb; char buf[128]; int i; uintmax_t fract, sum, whole; sc = (struct acpi_cpu_softc *) arg1; sum = 0; for (i = 0; i < sc->cpu_cx_count; i++) sum += sc->cpu_cx_stats[i]; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); for (i = 0; i < sc->cpu_cx_count; i++) { if (sum > 0) { whole = (uintmax_t)sc->cpu_cx_stats[i] * 100; fract = (whole % sum) * 100; sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), (u_int)(fract / sum)); } else sbuf_printf(&sb, "0.00%% "); } sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep); sbuf_trim(&sb); sbuf_finish(&sb); sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (0); } static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc) { int i; ACPI_SERIAL_ASSERT(cpu); sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1); /* If not disabling, cache the new lowest non-C3 state. */ sc->cpu_non_c3 = 0; for (i = sc->cpu_cx_lowest; i >= 0; i--) { if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { sc->cpu_non_c3 = i; break; } } /* Reset the statistics counters. */ bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats)); return (0); } static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc; char state[8]; int val, error; sc = (struct acpi_cpu_softc *) arg1; snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1); error = sysctl_handle_string(oidp, state, sizeof(state), req); if (error != 0 || req->newptr == NULL) return (error); if (strlen(state) < 2 || toupper(state[0]) != 'C') return (EINVAL); if (strcasecmp(state, "Cmax") == 0) val = MAX_CX_STATES; else { val = (int) strtol(state + 1, NULL, 10); if (val < 1 || val > MAX_CX_STATES) return (EINVAL); } ACPI_SERIAL_BEGIN(cpu); sc->cpu_cx_lowest_lim = val - 1; acpi_cpu_set_cx_lowest(sc); ACPI_SERIAL_END(cpu); return (0); } static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_cpu_softc *sc; char state[8]; int val, error, i; snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1); error = sysctl_handle_string(oidp, state, sizeof(state), req); if (error != 0 || req->newptr == NULL) return (error); if (strlen(state) < 2 || toupper(state[0]) != 'C') return (EINVAL); if (strcasecmp(state, "Cmax") == 0) val = MAX_CX_STATES; else { val = (int) strtol(state + 1, NULL, 10); if (val < 1 || val > MAX_CX_STATES) return (EINVAL); } /* Update the new lowest useable Cx state for all CPUs. */ ACPI_SERIAL_BEGIN(cpu); cpu_cx_lowest_lim = val - 1; for (i = 0; i < cpu_ndevices; i++) { sc = device_get_softc(cpu_devices[i]); sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim; acpi_cpu_set_cx_lowest(sc); } ACPI_SERIAL_END(cpu); return (0); }