Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ah_internal.h |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ah_internal.h 225444 2011-09-08 01:23:05Z adrian $ */ #ifndef _ATH_AH_INTERAL_H_ #define _ATH_AH_INTERAL_H_ /* * Atheros Device Hardware Access Layer (HAL). * * Internal definitions. */ #define AH_NULL 0 #define AH_MIN(a,b) ((a)<(b)?(a):(b)) #define AH_MAX(a,b) ((a)>(b)?(a):(b)) #include <net80211/_ieee80211.h> #include "opt_ah.h" /* needed for AH_SUPPORT_AR5416 */ #ifndef NBBY #define NBBY 8 /* number of bits/byte */ #endif #ifndef roundup #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #endif #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #ifndef offsetof #define offsetof(type, field) ((size_t)(&((type *)0)->field)) #endif typedef struct { uint16_t start; /* first register */ uint16_t end; /* ending register or zero */ } HAL_REGRANGE; typedef struct { uint32_t addr; /* regiser address/offset */ uint32_t value; /* value to write */ } HAL_REGWRITE; /* * Transmit power scale factor. * * NB: This is not public because we want to discourage the use of * scaling; folks should use the tx power limit interface. */ typedef enum { HAL_TP_SCALE_MAX = 0, /* no scaling (default) */ HAL_TP_SCALE_50 = 1, /* 50% of max (-3 dBm) */ HAL_TP_SCALE_25 = 2, /* 25% of max (-6 dBm) */ HAL_TP_SCALE_12 = 3, /* 12% of max (-9 dBm) */ HAL_TP_SCALE_MIN = 4, /* min, but still on */ } HAL_TP_SCALE; typedef enum { HAL_CAP_RADAR = 0, /* Radar capability */ HAL_CAP_AR = 1, /* AR capability */ } HAL_PHYDIAG_CAPS; /* * Each chip or class of chips registers to offer support. */ struct ath_hal_chip { const char *name; const char *(*probe)(uint16_t vendorid, uint16_t devid); struct ath_hal *(*attach)(uint16_t devid, HAL_SOFTC, HAL_BUS_TAG, HAL_BUS_HANDLE, uint16_t *eepromdata, HAL_STATUS *error); }; #ifndef AH_CHIP #define AH_CHIP(_name, _probe, _attach) \ static struct ath_hal_chip _name##_chip = { \ .name = #_name, \ .probe = _probe, \ .attach = _attach \ }; \ OS_DATA_SET(ah_chips, _name##_chip) #endif /* * Each RF backend registers to offer support; this is mostly * used by multi-chip 5212 solutions. Single-chip solutions * have a fixed idea about which RF to use. */ struct ath_hal_rf { const char *name; HAL_BOOL (*probe)(struct ath_hal *ah); HAL_BOOL (*attach)(struct ath_hal *ah, HAL_STATUS *ecode); }; #ifndef AH_RF #define AH_RF(_name, _probe, _attach) \ static struct ath_hal_rf _name##_rf = { \ .name = __STRING(_name), \ .probe = _probe, \ .attach = _attach \ }; \ OS_DATA_SET(ah_rfs, _name##_rf) #endif struct ath_hal_rf *ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode); /* * Maximum number of internal channels. Entries are per unique * frequency so this might be need to be increased to handle all * usage cases; typically no more than 32 are really needed but * dynamically allocating the data structures is a bit painful * right now. */ #ifndef AH_MAXCHAN #define AH_MAXCHAN 96 #endif /* * Internal per-channel state. These are found * using ic_devdata in the ieee80211_channel. */ typedef struct { uint16_t channel; /* h/w frequency, NB: may be mapped */ uint8_t privFlags; #define CHANNEL_IQVALID 0x01 /* IQ calibration valid */ #define CHANNEL_ANI_INIT 0x02 /* ANI state initialized */ #define CHANNEL_ANI_SETUP 0x04 /* ANI state setup */ #define CHANNEL_MIMO_NF_VALID 0x04 /* Mimo NF values are valid */ uint8_t calValid; /* bitmask of cal types */ int8_t iCoff; int8_t qCoff; int16_t rawNoiseFloor; int16_t noiseFloorAdjust; #ifdef AH_SUPPORT_AR5416 int16_t noiseFloorCtl[AH_MIMO_MAX_CHAINS]; int16_t noiseFloorExt[AH_MIMO_MAX_CHAINS]; #endif /* AH_SUPPORT_AR5416 */ uint16_t mainSpur; /* cached spur value for this channel */ } HAL_CHANNEL_INTERNAL; /* channel requires noise floor check */ #define CHANNEL_NFCREQUIRED IEEE80211_CHAN_PRIV0 /* all full-width channels */ #define IEEE80211_CHAN_ALLFULL \ (IEEE80211_CHAN_ALL - (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) #define IEEE80211_CHAN_ALLTURBOFULL \ (IEEE80211_CHAN_ALLTURBO - \ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) typedef struct { uint32_t halChanSpreadSupport : 1, halSleepAfterBeaconBroken : 1, halCompressSupport : 1, halBurstSupport : 1, halFastFramesSupport : 1, halChapTuningSupport : 1, halTurboGSupport : 1, halTurboPrimeSupport : 1, halMicAesCcmSupport : 1, halMicCkipSupport : 1, halMicTkipSupport : 1, halTkipMicTxRxKeySupport : 1, halCipherAesCcmSupport : 1, halCipherCkipSupport : 1, halCipherTkipSupport : 1, halPSPollBroken : 1, halVEOLSupport : 1, halBssIdMaskSupport : 1, halMcastKeySrchSupport : 1, halTsfAddSupport : 1, halChanHalfRate : 1, halChanQuarterRate : 1, halHTSupport : 1, halHTSGI20Support : 1, halRfSilentSupport : 1, halHwPhyCounterSupport : 1, halWowSupport : 1, halWowMatchPatternExact : 1, halAutoSleepSupport : 1, halFastCCSupport : 1, halBtCoexSupport : 1; uint32_t halRxStbcSupport : 1, halTxStbcSupport : 1, halGTTSupport : 1, halCSTSupport : 1, halRifsRxSupport : 1, halRifsTxSupport : 1, hal4AddrAggrSupport : 1, halExtChanDfsSupport : 1, halUseCombinedRadarRssi : 1, halForcePpmSupport : 1, halEnhancedPmSupport : 1, halEnhancedDfsSupport : 1, halMbssidAggrSupport : 1, halBssidMatchSupport : 1, hal4kbSplitTransSupport : 1, halHasRxSelfLinkedTail : 1, halSupportsFastClock5GHz : 1, /* Hardware supports 5ghz fast clock; check eeprom/channel before using */ halHasLongRxDescTsf : 1; uint32_t halWirelessModes; uint16_t halTotalQueues; uint16_t halKeyCacheSize; uint16_t halLow5GhzChan, halHigh5GhzChan; uint16_t halLow2GhzChan, halHigh2GhzChan; int halTstampPrecision; int halRtsAggrLimit; uint8_t halTxChainMask; uint8_t halRxChainMask; uint8_t halNumGpioPins; uint8_t halNumAntCfg2GHz; uint8_t halNumAntCfg5GHz; uint32_t halIntrMask; uint8_t halTxStreams; uint8_t halRxStreams; } HAL_CAPABILITIES; struct regDomain; /* * The ``private area'' follows immediately after the ``public area'' * in the data structure returned by ath_hal_attach. Private data are * used by device-independent code such as the regulatory domain support. * In general, code within the HAL should never depend on data in the * public area. Instead any public data needed internally should be * shadowed here. * * When declaring a device-specific ath_hal data structure this structure * is assumed to at the front; e.g. * * struct ath_hal_5212 { * struct ath_hal_private ah_priv; * ... * }; * * It might be better to manage the method pointers in this structure * using an indirect pointer to a read-only data structure but this would * disallow class-style method overriding. */ struct ath_hal_private { struct ath_hal h; /* public area */ /* NB: all methods go first to simplify initialization */ HAL_BOOL (*ah_getChannelEdges)(struct ath_hal*, uint16_t channelFlags, uint16_t *lowChannel, uint16_t *highChannel); u_int (*ah_getWirelessModes)(struct ath_hal*); HAL_BOOL (*ah_eepromRead)(struct ath_hal *, u_int off, uint16_t *data); HAL_BOOL (*ah_eepromWrite)(struct ath_hal *, u_int off, uint16_t data); HAL_BOOL (*ah_getChipPowerLimits)(struct ath_hal *, struct ieee80211_channel *); int16_t (*ah_getNfAdjust)(struct ath_hal *, const HAL_CHANNEL_INTERNAL*); void (*ah_getNoiseFloor)(struct ath_hal *, int16_t nfarray[]); void *ah_eeprom; /* opaque EEPROM state */ uint16_t ah_eeversion; /* EEPROM version */ void (*ah_eepromDetach)(struct ath_hal *); HAL_STATUS (*ah_eepromGet)(struct ath_hal *, int, void *); HAL_STATUS (*ah_eepromSet)(struct ath_hal *, int, int); uint16_t (*ah_getSpurChan)(struct ath_hal *, int, HAL_BOOL); HAL_BOOL (*ah_eepromDiag)(struct ath_hal *, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize); /* * Device revision information. */ uint16_t ah_devid; /* PCI device ID */ uint16_t ah_subvendorid; /* PCI subvendor ID */ uint32_t ah_macVersion; /* MAC version id */ uint16_t ah_macRev; /* MAC revision */ uint16_t ah_phyRev; /* PHY revision */ uint16_t ah_analog5GhzRev; /* 2GHz radio revision */ uint16_t ah_analog2GhzRev; /* 5GHz radio revision */ uint8_t ah_ispcie; /* PCIE, special treatment */ HAL_OPMODE ah_opmode; /* operating mode from reset */ const struct ieee80211_channel *ah_curchan;/* operating channel */ HAL_CAPABILITIES ah_caps; /* device capabilities */ uint32_t ah_diagreg; /* user-specified AR_DIAG_SW */ int16_t ah_powerLimit; /* tx power cap */ uint16_t ah_maxPowerLevel; /* calculated max tx power */ u_int ah_tpScale; /* tx power scale factor */ uint32_t ah_11nCompat; /* 11n compat controls */ /* * State for regulatory domain handling. */ HAL_REG_DOMAIN ah_currentRD; /* EEPROM regulatory domain */ HAL_REG_DOMAIN ah_currentRDext; /* EEPROM extended regdomain flags */ HAL_DFS_DOMAIN ah_dfsDomain; /* current DFS domain */ HAL_CHANNEL_INTERNAL ah_channels[AH_MAXCHAN]; /* private chan state */ u_int ah_nchan; /* valid items in ah_channels */ const struct regDomain *ah_rd2GHz; /* reg state for 2G band */ const struct regDomain *ah_rd5GHz; /* reg state for 5G band */ uint8_t ah_coverageClass; /* coverage class */ /* * RF Silent handling; setup according to the EEPROM. */ uint16_t ah_rfsilent; /* GPIO pin + polarity */ HAL_BOOL ah_rfkillEnabled; /* enable/disable RfKill */ /* * Diagnostic support for discriminating HIUERR reports. */ uint32_t ah_fatalState[6]; /* AR_ISR+shadow regs */ int ah_rxornIsFatal; /* how to treat HAL_INT_RXORN */ }; #define AH_PRIVATE(_ah) ((struct ath_hal_private *)(_ah)) #define ath_hal_getChannelEdges(_ah, _cf, _lc, _hc) \ AH_PRIVATE(_ah)->ah_getChannelEdges(_ah, _cf, _lc, _hc) #define ath_hal_getWirelessModes(_ah) \ AH_PRIVATE(_ah)->ah_getWirelessModes(_ah) #define ath_hal_eepromRead(_ah, _off, _data) \ AH_PRIVATE(_ah)->ah_eepromRead(_ah, _off, _data) #define ath_hal_eepromWrite(_ah, _off, _data) \ AH_PRIVATE(_ah)->ah_eepromWrite(_ah, _off, _data) #define ath_hal_gpioCfgOutput(_ah, _gpio, _type) \ (_ah)->ah_gpioCfgOutput(_ah, _gpio, _type) #define ath_hal_gpioCfgInput(_ah, _gpio) \ (_ah)->ah_gpioCfgInput(_ah, _gpio) #define ath_hal_gpioGet(_ah, _gpio) \ (_ah)->ah_gpioGet(_ah, _gpio) #define ath_hal_gpioSet(_ah, _gpio, _val) \ (_ah)->ah_gpioSet(_ah, _gpio, _val) #define ath_hal_gpioSetIntr(_ah, _gpio, _ilevel) \ (_ah)->ah_gpioSetIntr(_ah, _gpio, _ilevel) #define ath_hal_getpowerlimits(_ah, _chan) \ AH_PRIVATE(_ah)->ah_getChipPowerLimits(_ah, _chan) #define ath_hal_getNfAdjust(_ah, _c) \ AH_PRIVATE(_ah)->ah_getNfAdjust(_ah, _c) #define ath_hal_getNoiseFloor(_ah, _nfArray) \ AH_PRIVATE(_ah)->ah_getNoiseFloor(_ah, _nfArray) #define ath_hal_configPCIE(_ah, _reset) \ (_ah)->ah_configPCIE(_ah, _reset) #define ath_hal_disablePCIE(_ah) \ (_ah)->ah_disablePCIE(_ah) #define ath_hal_setInterrupts(_ah, _mask) \ (_ah)->ah_setInterrupts(_ah, _mask) #define ath_hal_eepromDetach(_ah) do { \ if (AH_PRIVATE(_ah)->ah_eepromDetach != AH_NULL) \ AH_PRIVATE(_ah)->ah_eepromDetach(_ah); \ } while (0) #define ath_hal_eepromGet(_ah, _param, _val) \ AH_PRIVATE(_ah)->ah_eepromGet(_ah, _param, _val) #define ath_hal_eepromSet(_ah, _param, _val) \ AH_PRIVATE(_ah)->ah_eepromSet(_ah, _param, _val) #define ath_hal_eepromGetFlag(_ah, _param) \ (AH_PRIVATE(_ah)->ah_eepromGet(_ah, _param, AH_NULL) == HAL_OK) #define ath_hal_getSpurChan(_ah, _ix, _is2G) \ AH_PRIVATE(_ah)->ah_getSpurChan(_ah, _ix, _is2G) #define ath_hal_eepromDiag(_ah, _request, _a, _asize, _r, _rsize) \ AH_PRIVATE(_ah)->ah_eepromDiag(_ah, _request, _a, _asize, _r, _rsize) #ifndef _NET_IF_IEEE80211_H_ /* * Stuff that would naturally come from _ieee80211.h */ #define IEEE80211_ADDR_LEN 6 #define IEEE80211_WEP_IVLEN 3 /* 24bit */ #define IEEE80211_WEP_KIDLEN 1 /* 1 octet */ #define IEEE80211_WEP_CRCLEN 4 /* CRC-32 */ #define IEEE80211_CRC_LEN 4 #define IEEE80211_MAX_LEN (2300 + IEEE80211_CRC_LEN + \ (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN)) #endif /* _NET_IF_IEEE80211_H_ */ #define HAL_TXQ_USE_LOCKOUT_BKOFF_DIS 0x00000001 #define INIT_AIFS 2 #define INIT_CWMIN 15 #define INIT_CWMIN_11B 31 #define INIT_CWMAX 1023 #define INIT_SH_RETRY 10 #define INIT_LG_RETRY 10 #define INIT_SSH_RETRY 32 #define INIT_SLG_RETRY 32 typedef struct { uint32_t tqi_ver; /* HAL TXQ verson */ HAL_TX_QUEUE tqi_type; /* hw queue type*/ HAL_TX_QUEUE_SUBTYPE tqi_subtype; /* queue subtype, if applicable */ HAL_TX_QUEUE_FLAGS tqi_qflags; /* queue flags */ uint32_t tqi_priority; uint32_t tqi_aifs; /* aifs */ uint32_t tqi_cwmin; /* cwMin */ uint32_t tqi_cwmax; /* cwMax */ uint16_t tqi_shretry; /* frame short retry limit */ uint16_t tqi_lgretry; /* frame long retry limit */ uint32_t tqi_cbrPeriod; uint32_t tqi_cbrOverflowLimit; uint32_t tqi_burstTime; uint32_t tqi_readyTime; uint32_t tqi_physCompBuf; uint32_t tqi_intFlags; /* flags for internal use */ } HAL_TX_QUEUE_INFO; extern HAL_BOOL ath_hal_setTxQProps(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo); extern HAL_BOOL ath_hal_getTxQProps(struct ath_hal *ah, HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi); #define HAL_SPUR_VAL_MASK 0x3FFF #define HAL_SPUR_CHAN_WIDTH 87 #define HAL_BIN_WIDTH_BASE_100HZ 3125 #define HAL_BIN_WIDTH_TURBO_100HZ 6250 #define HAL_MAX_BINS_ALLOWED 28 #define IS_CHAN_5GHZ(_c) ((_c)->channel > 4900) #define IS_CHAN_2GHZ(_c) (!IS_CHAN_5GHZ(_c)) #define IS_CHAN_IN_PUBLIC_SAFETY_BAND(_c) ((_c) > 4940 && (_c) < 4990) /* * Deduce if the host cpu has big- or litt-endian byte order. */ static __inline__ int isBigEndian(void) { union { int32_t i; char c[4]; } u; u.i = 1; return (u.c[0] == 0); } /* unalligned little endian access */ #define LE_READ_2(p) \ ((uint16_t) \ ((((const uint8_t *)(p))[0] ) | (((const uint8_t *)(p))[1]<< 8))) #define LE_READ_4(p) \ ((uint32_t) \ ((((const uint8_t *)(p))[0] ) | (((const uint8_t *)(p))[1]<< 8) |\ (((const uint8_t *)(p))[2]<<16) | (((const uint8_t *)(p))[3]<<24))) /* * Register manipulation macros that expect bit field defines * to follow the convention that an _S suffix is appended for * a shift count, while the field mask has no suffix. */ #define SM(_v, _f) (((_v) << _f##_S) & (_f)) #define MS(_v, _f) (((_v) & (_f)) >> _f##_S) #define OS_REG_RMW(_a, _r, _set, _clr) \ OS_REG_WRITE(_a, _r, (OS_REG_READ(_a, _r) & ~(_clr)) | (_set)) #define OS_REG_RMW_FIELD(_a, _r, _f, _v) \ OS_REG_WRITE(_a, _r, \ (OS_REG_READ(_a, _r) &~ (_f)) | (((_v) << _f##_S) & (_f))) #define OS_REG_SET_BIT(_a, _r, _f) \ OS_REG_WRITE(_a, _r, OS_REG_READ(_a, _r) | (_f)) #define OS_REG_CLR_BIT(_a, _r, _f) \ OS_REG_WRITE(_a, _r, OS_REG_READ(_a, _r) &~ (_f)) /* Analog register writes may require a delay between each one (eg Merlin?) */ #define OS_A_REG_RMW_FIELD(_a, _r, _f, _v) \ do { OS_REG_WRITE(_a, _r, (OS_REG_READ(_a, _r) &~ (_f)) | (((_v) << _f##_S) & (_f))) ; OS_DELAY(100); } while (0) /* wait for the register contents to have the specified value */ extern HAL_BOOL ath_hal_wait(struct ath_hal *, u_int reg, uint32_t mask, uint32_t val); extern HAL_BOOL ath_hal_waitfor(struct ath_hal *, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout); /* return the first n bits in val reversed */ extern uint32_t ath_hal_reverseBits(uint32_t val, uint32_t n); /* printf interfaces */ extern void ath_hal_printf(struct ath_hal *, const char*, ...) __printflike(2,3); extern void ath_hal_vprintf(struct ath_hal *, const char*, __va_list) __printflike(2, 0); extern const char* ath_hal_ether_sprintf(const uint8_t *mac); /* allocate and free memory */ extern void *ath_hal_malloc(size_t); extern void ath_hal_free(void *); /* common debugging interfaces */ #ifdef AH_DEBUG #include "ah_debug.h" extern int ath_hal_debug; /* Global debug flags */ /* * This is used for global debugging, when ahp doesn't yet have the * related debugging state. For example, during probe/attach. */ #define HALDEBUG_G(_ah, __m, ...) \ do { \ if ((__m) == HAL_DEBUG_UNMASKABLE || \ ath_hal_debug & (__m)) { \ DO_HALDEBUG((_ah), (__m), __VA_ARGS__); \ } \ } while (0); /* * This is used for local debugging, when ahp isn't NULL and * thus may have debug flags set. */ #define HALDEBUG(_ah, __m, ...) \ do { \ if ((__m) == HAL_DEBUG_UNMASKABLE || \ ath_hal_debug & (__m) || \ (_ah)->ah_config.ah_debug & (__m)) { \ DO_HALDEBUG((_ah), (__m), __VA_ARGS__); \ } \ } while(0); extern void DO_HALDEBUG(struct ath_hal *ah, u_int mask, const char* fmt, ...) __printflike(3,4); #else #define HALDEBUG(_ah, __m, ...) #define HALDEBUG_G(_ah, __m, ...) #endif /* AH_DEBUG */ /* * Register logging definitions shared with ardecode. */ #include "ah_decode.h" /* * Common assertion interface. Note: it is a bad idea to generate * an assertion failure for any recoverable event. Instead catch * the violation and, if possible, fix it up or recover from it; either * with an error return value or a diagnostic messages. System software * does not panic unless the situation is hopeless. */ #ifdef AH_ASSERT extern void ath_hal_assert_failed(const char* filename, int lineno, const char* msg); #define HALASSERT(_x) do { \ if (!(_x)) { \ ath_hal_assert_failed(__FILE__, __LINE__, #_x); \ } \ } while (0) #else #define HALASSERT(_x) #endif /* AH_ASSERT */ /* * Regulatory domain support. */ /* * Return the max allowed antenna gain and apply any regulatory * domain specific changes. */ u_int ath_hal_getantennareduction(struct ath_hal *ah, const struct ieee80211_channel *chan, u_int twiceGain); /* * Return the test group for the specific channel based on * the current regulatory setup. */ u_int ath_hal_getctl(struct ath_hal *, const struct ieee80211_channel *); /* * Map a public channel definition to the corresponding * internal data structure. This implicitly specifies * whether or not the specified channel is ok to use * based on the current regulatory domain constraints. */ #ifndef AH_DEBUG static OS_INLINE HAL_CHANNEL_INTERNAL * ath_hal_checkchannel(struct ath_hal *ah, const struct ieee80211_channel *c) { HAL_CHANNEL_INTERNAL *cc; HALASSERT(c->ic_devdata < AH_PRIVATE(ah)->ah_nchan); cc = &AH_PRIVATE(ah)->ah_channels[c->ic_devdata]; HALASSERT(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c)); return cc; } #else /* NB: non-inline version that checks state */ HAL_CHANNEL_INTERNAL *ath_hal_checkchannel(struct ath_hal *, const struct ieee80211_channel *); #endif /* AH_DEBUG */ /* * Return the h/w frequency for a channel. This may be * different from ic_freq if this is a GSM device that * takes 2.4GHz frequencies and down-converts them. */ static OS_INLINE uint16_t ath_hal_gethwchannel(struct ath_hal *ah, const struct ieee80211_channel *c) { return ath_hal_checkchannel(ah, c)->channel; } /* * Convert between microseconds and core system clocks. */ extern u_int ath_hal_mac_clks(struct ath_hal *ah, u_int usecs); extern u_int ath_hal_mac_usec(struct ath_hal *ah, u_int clks); /* * Generic get/set capability support. Each chip overrides * this routine to support chip-specific capabilities. */ extern HAL_STATUS ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t *result); extern HAL_BOOL ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t setting, HAL_STATUS *status); /* The diagnostic codes used to be internally defined here -adrian */ #include "ah_diagcodes.h" enum { HAL_BB_HANG_DFS = 0x0001, HAL_BB_HANG_RIFS = 0x0002, HAL_BB_HANG_RX_CLEAR = 0x0004, HAL_BB_HANG_UNKNOWN = 0x0080, HAL_MAC_HANG_SIG1 = 0x0100, HAL_MAC_HANG_SIG2 = 0x0200, HAL_MAC_HANG_UNKNOWN = 0x8000, HAL_BB_HANGS = HAL_BB_HANG_DFS | HAL_BB_HANG_RIFS | HAL_BB_HANG_RX_CLEAR | HAL_BB_HANG_UNKNOWN, HAL_MAC_HANGS = HAL_MAC_HANG_SIG1 | HAL_MAC_HANG_SIG2 | HAL_MAC_HANG_UNKNOWN, }; /* * Device revision information. */ typedef struct { uint16_t ah_devid; /* PCI device ID */ uint16_t ah_subvendorid; /* PCI subvendor ID */ uint32_t ah_macVersion; /* MAC version id */ uint16_t ah_macRev; /* MAC revision */ uint16_t ah_phyRev; /* PHY revision */ uint16_t ah_analog5GhzRev; /* 2GHz radio revision */ uint16_t ah_analog2GhzRev; /* 5GHz radio revision */ } HAL_REVS; /* * Argument payload for HAL_DIAG_SETKEY. */ typedef struct { HAL_KEYVAL dk_keyval; uint16_t dk_keyix; /* key index */ uint8_t dk_mac[IEEE80211_ADDR_LEN]; int dk_xor; /* XOR key data */ } HAL_DIAG_KEYVAL; /* * Argument payload for HAL_DIAG_EEWRITE. */ typedef struct { uint16_t ee_off; /* eeprom offset */ uint16_t ee_data; /* write data */ } HAL_DIAG_EEVAL; typedef struct { u_int offset; /* reg offset */ uint32_t val; /* reg value */ } HAL_DIAG_REGVAL; /* * 11n compatibility tweaks. */ #define HAL_DIAG_11N_SERVICES 0x00000003 #define HAL_DIAG_11N_SERVICES_S 0 #define HAL_DIAG_11N_TXSTOMP 0x0000000c #define HAL_DIAG_11N_TXSTOMP_S 2 typedef struct { int maxNoiseImmunityLevel; /* [0..4] */ int totalSizeDesired[5]; int coarseHigh[5]; int coarseLow[5]; int firpwr[5]; int maxSpurImmunityLevel; /* [0..7] */ int cycPwrThr1[8]; int maxFirstepLevel; /* [0..2] */ int firstep[3]; uint32_t ofdmTrigHigh; uint32_t ofdmTrigLow; int32_t cckTrigHigh; int32_t cckTrigLow; int32_t rssiThrLow; int32_t rssiThrHigh; int period; /* update listen period */ } HAL_ANI_PARAMS; extern HAL_BOOL ath_hal_getdiagstate(struct ath_hal *ah, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize); /* * Setup a h/w rate table for use. */ extern void ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt); /* * Common routine for implementing getChanNoise api. */ int16_t ath_hal_getChanNoise(struct ath_hal *, const struct ieee80211_channel *); /* * Initialization support. */ typedef struct { const uint32_t *data; int rows, cols; } HAL_INI_ARRAY; #define HAL_INI_INIT(_ia, _data, _cols) do { \ (_ia)->data = (const uint32_t *)(_data); \ (_ia)->rows = sizeof(_data) / sizeof((_data)[0]); \ (_ia)->cols = (_cols); \ } while (0) #define HAL_INI_VAL(_ia, _r, _c) \ ((_ia)->data[((_r)*(_ia)->cols) + (_c)]) /* * OS_DELAY() does a PIO READ on the PCI bus which allows * other cards' DMA reads to complete in the middle of our reset. */ #define DMA_YIELD(x) do { \ if ((++(x) % 64) == 0) \ OS_DELAY(1); \ } while (0) #define HAL_INI_WRITE_ARRAY(ah, regArray, col, regWr) do { \ int r; \ for (r = 0; r < N(regArray); r++) { \ OS_REG_WRITE(ah, (regArray)[r][0], (regArray)[r][col]); \ DMA_YIELD(regWr); \ } \ } while (0) #define HAL_INI_WRITE_BANK(ah, regArray, bankData, regWr) do { \ int r; \ for (r = 0; r < N(regArray); r++) { \ OS_REG_WRITE(ah, (regArray)[r][0], (bankData)[r]); \ DMA_YIELD(regWr); \ } \ } while (0) extern int ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia, int col, int regWr); extern void ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col); extern int ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia, const uint32_t data[], int regWr); #define CCK_SIFS_TIME 10 #define CCK_PREAMBLE_BITS 144 #define CCK_PLCP_BITS 48 #define OFDM_SIFS_TIME 16 #define OFDM_PREAMBLE_TIME 20 #define OFDM_PLCP_BITS 22 #define OFDM_SYMBOL_TIME 4 #define OFDM_HALF_SIFS_TIME 32 #define OFDM_HALF_PREAMBLE_TIME 40 #define OFDM_HALF_PLCP_BITS 22 #define OFDM_HALF_SYMBOL_TIME 8 #define OFDM_QUARTER_SIFS_TIME 64 #define OFDM_QUARTER_PREAMBLE_TIME 80 #define OFDM_QUARTER_PLCP_BITS 22 #define OFDM_QUARTER_SYMBOL_TIME 16 #define TURBO_SIFS_TIME 8 #define TURBO_PREAMBLE_TIME 14 #define TURBO_PLCP_BITS 22 #define TURBO_SYMBOL_TIME 4 #define WLAN_CTRL_FRAME_SIZE (2+2+6+4) /* ACK+FCS */ /* Generic EEPROM board value functions */ extern HAL_BOOL ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize, uint16_t *indexL, uint16_t *indexR); extern HAL_BOOL ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList, uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList); extern int16_t ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight, int16_t targetLeft, int16_t targetRight); /* Whether 5ghz fast clock is needed */ /* * The chipset (Merlin, AR9300/later) should set the capability flag below; * this flag simply says that the hardware can do it, not that the EEPROM * says it can. * * Merlin 2.0/2.1 chips with an EEPROM version > 16 do 5ghz fast clock * if the relevant eeprom flag is set. * Merlin 2.0/2.1 chips with an EEPROM version <= 16 do 5ghz fast clock * by default. */ #define IS_5GHZ_FAST_CLOCK_EN(_ah, _c) \ (IEEE80211_IS_CHAN_5GHZ(_c) && \ AH_PRIVATE((_ah))->ah_caps.halSupportsFastClock5GHz && \ ath_hal_eepromGetFlag((_ah), AR_EEP_FSTCLK_5G)) #endif /* _ATH_AH_INTERAL_H_ */