Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ar5211/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ar5211/ar5211_keycache.c |
/* * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2002-2006 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5211/ar5211_keycache.c 204644 2010-03-03 17:32:32Z rpaulo $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ar5211/ar5211.h" #include "ar5211/ar5211reg.h" /* * Chips-specific key cache routines. */ #define AR_KEYTABLE_SIZE 128 #define KEY_XOR 0xaa /* * Return the size of the hardware key cache. */ uint32_t ar5211GetKeyCacheSize(struct ath_hal *ah) { return AR_KEYTABLE_SIZE; } /* * Return true if the specific key cache entry is valid. */ HAL_BOOL ar5211IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry) { if (entry < AR_KEYTABLE_SIZE) { uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry)); if (val & AR_KEYTABLE_VALID) return AH_TRUE; } return AH_FALSE; } /* * Clear the specified key cache entry */ HAL_BOOL ar5211ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry) { if (entry < AR_KEYTABLE_SIZE) { OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); return AH_TRUE; } return AH_FALSE; } /* * Sets the mac part of the specified key cache entry and mark it valid. */ HAL_BOOL ar5211SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac) { uint32_t macHi, macLo; if (entry >= AR_KEYTABLE_SIZE) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n", __func__, entry); return AH_FALSE; } /* * Set MAC address -- shifted right by 1. MacLo is * the 4 MSBs, and MacHi is the 2 LSBs. */ if (mac != AH_NULL) { macHi = (mac[5] << 8) | mac[4]; macLo = (mac[3] << 24)| (mac[2] << 16) | (mac[1] << 8) | mac[0]; macLo >>= 1; macLo |= (macHi & 1) << 31; /* carry */ macHi >>= 1; } else { macLo = macHi = 0; } OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID); return AH_TRUE; } /* * Sets the contents of the specified key cache entry. */ HAL_BOOL ar5211SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry, const HAL_KEYVAL *k, const uint8_t *mac, int xorKey) { uint32_t key0, key1, key2, key3, key4; uint32_t keyType; uint32_t xorMask= xorKey ? (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0; if (entry >= AR_KEYTABLE_SIZE) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n", __func__, entry); return AH_FALSE; } switch (k->kv_type) { case HAL_CIPHER_AES_OCB: keyType = AR_KEYTABLE_TYPE_AES; break; case HAL_CIPHER_WEP: if (k->kv_len < 40 / NBBY) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: WEP key length %u too small\n", __func__, k->kv_len); return AH_FALSE; } if (k->kv_len <= 40 / NBBY) keyType = AR_KEYTABLE_TYPE_40; else if (k->kv_len <= 104 / NBBY) keyType = AR_KEYTABLE_TYPE_104; else keyType = AR_KEYTABLE_TYPE_128; break; case HAL_CIPHER_CLR: keyType = AR_KEYTABLE_TYPE_CLR; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n", __func__, k->kv_type); return AH_FALSE; } key0 = LE_READ_4(k->kv_val+0) ^ xorMask; key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff; key2 = LE_READ_4(k->kv_val+6) ^ xorMask; key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff; key4 = LE_READ_4(k->kv_val+12) ^ xorMask; if (k->kv_len <= 104 / NBBY) key4 &= 0xff; /* * Note: WEP key cache hardware requires that each double-word * pair be written in even/odd order (since the destination is * a 64-bit register). Don't reorder these writes w/o * understanding this! */ OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); return ar5211SetKeyCacheEntryMac(ah, entry, mac); }