Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ar5212/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ar5212/ar5212_misc.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5212/ar5212_misc.c 229740 2012-01-06 22:18:13Z dim $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ah_desc.h" /* NB: for HAL_PHYERR* */ #include "ar5212/ar5212.h" #include "ar5212/ar5212reg.h" #include "ar5212/ar5212phy.h" #include "ah_eeprom_v3.h" #define AR_NUM_GPIO 6 /* 6 GPIO pins */ #define AR_GPIOD_MASK 0x0000002F /* GPIO data reg r/w mask */ void ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac) { struct ath_hal_5212 *ahp = AH5212(ah); OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN); } HAL_BOOL ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac) { struct ath_hal_5212 *ahp = AH5212(ah); OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN); return AH_TRUE; } void ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask) { struct ath_hal_5212 *ahp = AH5212(ah); OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN); } HAL_BOOL ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask) { struct ath_hal_5212 *ahp = AH5212(ah); /* save it since it must be rewritten on reset */ OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN); OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); return AH_TRUE; } /* * Attempt to change the cards operating regulatory domain to the given value */ HAL_BOOL ar5212SetRegulatoryDomain(struct ath_hal *ah, uint16_t regDomain, HAL_STATUS *status) { HAL_STATUS ecode; if (AH_PRIVATE(ah)->ah_currentRD == regDomain) { ecode = HAL_EINVAL; goto bad; } if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) { ecode = HAL_EEWRITE; goto bad; } #ifdef AH_SUPPORT_WRITE_REGDOMAIN if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: set regulatory domain to %u (0x%x)\n", __func__, regDomain, regDomain); AH_PRIVATE(ah)->ah_currentRD = regDomain; return AH_TRUE; } #endif ecode = HAL_EIO; bad: if (status) *status = ecode; return AH_FALSE; } /* * Return the wireless modes (a,b,g,t) supported by hardware. * * This value is what is actually supported by the hardware * and is unaffected by regulatory/country code settings. */ u_int ar5212GetWirelessModes(struct ath_hal *ah) { u_int mode = 0; if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) { mode = HAL_MODE_11A; if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE)) mode |= HAL_MODE_TURBO | HAL_MODE_108A; if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate) mode |= HAL_MODE_11A_HALF_RATE; if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate) mode |= HAL_MODE_11A_QUARTER_RATE; } if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) mode |= HAL_MODE_11B; if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) && AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) { mode |= HAL_MODE_11G; if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE)) mode |= HAL_MODE_108G; if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate) mode |= HAL_MODE_11G_HALF_RATE; if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate) mode |= HAL_MODE_11G_QUARTER_RATE; } return mode; } /* * Set the interrupt and GPIO values so the ISR can disable RF * on a switch signal. Assumes GPIO port and interrupt polarity * are set prior to call. */ void ar5212EnableRfKill(struct ath_hal *ah) { uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent; int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL); int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY); /* * Configure the desired GPIO port for input * and enable baseband rf silence. */ ath_hal_gpioCfgInput(ah, select); OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000); /* * If radio disable switch connection to GPIO bit x is enabled * program GPIO interrupt. * If rfkill bit on eeprom is 1, setupeeprommap routine has already * verified that it is a later version of eeprom, it has a place for * rfkill bit and it is set to 1, indicating that GPIO bit x hardware * connection is present. */ ath_hal_gpioSetIntr(ah, select, (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity)); } /* * Change the LED blinking pattern to correspond to the connectivity */ void ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state) { static const uint32_t ledbits[8] = { AR_PCICFG_LEDCTL_NONE, /* HAL_LED_INIT */ AR_PCICFG_LEDCTL_PEND, /* HAL_LED_SCAN */ AR_PCICFG_LEDCTL_PEND, /* HAL_LED_AUTH */ AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_ASSOC*/ AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_RUN */ AR_PCICFG_LEDCTL_NONE, AR_PCICFG_LEDCTL_NONE, AR_PCICFG_LEDCTL_NONE, }; uint32_t bits; bits = OS_REG_READ(ah, AR_PCICFG); if (IS_2417(ah)) { /* * Enable LED for Nala. There is a bit marked reserved * that must be set and we also turn on the power led. * Because we mark s/w LED control setting the control * status bits below is meangless (the driver must flash * the LED(s) using the GPIO lines). */ bits = (bits &~ AR_PCICFG_LEDMODE) | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE) #if 0 | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE) #endif | 0x08000000; } bits = (bits &~ AR_PCICFG_LEDCTL) | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL); OS_REG_WRITE(ah, AR_PCICFG, bits); } /* * Change association related fields programmed into the hardware. * Writing a valid BSSID to the hardware effectively enables the hardware * to synchronize its TSF to the correct beacons and receive frames coming * from that BSSID. It is called by the SME JOIN operation. */ void ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId) { struct ath_hal_5212 *ahp = AH5212(ah); /* XXX save bssid for possible re-use on reset */ OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN); OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) | ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S)); } /* * Get the current hardware tsf for stamlme */ uint64_t ar5212GetTsf64(struct ath_hal *ah) { uint32_t low1, low2, u32; /* sync multi-word read */ low1 = OS_REG_READ(ah, AR_TSF_L32); u32 = OS_REG_READ(ah, AR_TSF_U32); low2 = OS_REG_READ(ah, AR_TSF_L32); if (low2 < low1) { /* roll over */ /* * If we are not preempted this will work. If we are * then we re-reading AR_TSF_U32 does no good as the * low bits will be meaningless. Likewise reading * L32, U32, U32, then comparing the last two reads * to check for rollover doesn't help if preempted--so * we take this approach as it costs one less PCI read * which can be noticeable when doing things like * timestamping packets in monitor mode. */ u32++; } return (((uint64_t) u32) << 32) | ((uint64_t) low2); } /* * Get the current hardware tsf for stamlme */ uint32_t ar5212GetTsf32(struct ath_hal *ah) { return OS_REG_READ(ah, AR_TSF_L32); } void ar5212SetTsf64(struct ath_hal *ah, uint64_t tsf64) { OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); } /* * Reset the current hardware tsf for stamlme. */ void ar5212ResetTsf(struct ath_hal *ah) { uint32_t val = OS_REG_READ(ah, AR_BEACON); OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF); /* * When resetting the TSF, write twice to the * corresponding register; each write to the RESET_TSF bit toggles * the internal signal to cause a reset of the TSF - but if the signal * is left high, it will reset the TSF on the next chip reset also! * writing the bit an even number of times fixes this issue */ OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF); } /* * Set or clear hardware basic rate bit * Set hardware basic rate set if basic rate is found * and basic rate is equal or less than 2Mbps */ void ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs) { const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; uint32_t reg; uint8_t xset; int i; if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) return; xset = 0; for (i = 0; i < rs->rs_count; i++) { uint8_t rset = rs->rs_rates[i]; /* Basic rate defined? */ if ((rset & 0x80) && (rset &= 0x7f) >= xset) xset = rset; } /* * Set the h/w bit to reflect whether or not the basic * rate is found to be equal or less than 2Mbps. */ reg = OS_REG_READ(ah, AR_STA_ID1); if (xset && xset/2 <= 2) OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B); else OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B); } /* * Grab a semi-random value from hardware registers - may not * change often */ uint32_t ar5212GetRandomSeed(struct ath_hal *ah) { uint32_t nf; nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); return (OS_REG_READ(ah, AR_TSF_U32) ^ OS_REG_READ(ah, AR_TSF_L32) ^ nf); } /* * Detect if our card is present */ HAL_BOOL ar5212DetectCardPresent(struct ath_hal *ah) { uint16_t macVersion, macRev; uint32_t v; /* * Read the Silicon Revision register and compare that * to what we read at attach time. If the same, we say * a card/device is present. */ v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID; macVersion = v >> AR_SREV_ID_S; macRev = v & AR_SREV_REVISION; return (AH_PRIVATE(ah)->ah_macVersion == macVersion && AH_PRIVATE(ah)->ah_macRev == macRev); } void ar5212EnableMibCounters(struct ath_hal *ah) { /* NB: this just resets the mib counter machinery */ OS_REG_WRITE(ah, AR_MIBC, ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f); } void ar5212DisableMibCounters(struct ath_hal *ah) { OS_REG_WRITE(ah, AR_MIBC, AR_MIBC | AR_MIBC_CMC); } /* * Update MIB Counters */ void ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats) { stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL); stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL); stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL); stats->rts_good += OS_REG_READ(ah, AR_RTS_OK); stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT); } /* * Detect if the HW supports spreading a CCK signal on channel 14 */ HAL_BOOL ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah) { return AH_TRUE; } /* * Get the rssi of frame curently being received. */ uint32_t ar5212GetCurRssi(struct ath_hal *ah) { return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); } u_int ar5212GetDefAntenna(struct ath_hal *ah) { return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7); } void ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna) { OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } HAL_ANT_SETTING ar5212GetAntennaSwitch(struct ath_hal *ah) { return AH5212(ah)->ah_antControl; } HAL_BOOL ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting) { struct ath_hal_5212 *ahp = AH5212(ah); const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; if (!ahp->ah_phyPowerOn || chan == AH_NULL) { /* PHY powered off, just stash settings */ ahp->ah_antControl = setting; ahp->ah_diversity = (setting == HAL_ANT_VARIABLE); return AH_TRUE; } return ar5212SetAntennaSwitchInternal(ah, setting, chan); } HAL_BOOL ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah) { return AH_TRUE; } HAL_BOOL ar5212SetSifsTime(struct ath_hal *ah, u_int us) { struct ath_hal_5212 *ahp = AH5212(ah); if (us > ath_hal_mac_usec(ah, 0xffff)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n", __func__, us); ahp->ah_sifstime = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us-2)); ahp->ah_sifstime = us; return AH_TRUE; } } u_int ar5212GetSifsTime(struct ath_hal *ah) { u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff; return ath_hal_mac_usec(ah, clks)+2; /* convert from system clocks */ } HAL_BOOL ar5212SetSlotTime(struct ath_hal *ah, u_int us) { struct ath_hal_5212 *ahp = AH5212(ah); if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n", __func__, us); ahp->ah_slottime = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us)); ahp->ah_slottime = us; return AH_TRUE; } } u_int ar5212GetSlotTime(struct ath_hal *ah) { u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff; return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } HAL_BOOL ar5212SetAckTimeout(struct ath_hal *ah, u_int us) { struct ath_hal_5212 *ahp = AH5212(ah); if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n", __func__, us); ahp->ah_acktimeout = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us)); ahp->ah_acktimeout = us; return AH_TRUE; } } u_int ar5212GetAckTimeout(struct ath_hal *ah) { u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK); return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } u_int ar5212GetAckCTSRate(struct ath_hal *ah) { return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0); } HAL_BOOL ar5212SetAckCTSRate(struct ath_hal *ah, u_int high) { struct ath_hal_5212 *ahp = AH5212(ah); if (high) { OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB; } else { OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB; } return AH_TRUE; } HAL_BOOL ar5212SetCTSTimeout(struct ath_hal *ah, u_int us) { struct ath_hal_5212 *ahp = AH5212(ah); if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n", __func__, us); ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us)); ahp->ah_ctstimeout = us; return AH_TRUE; } } u_int ar5212GetCTSTimeout(struct ath_hal *ah) { u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS); return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } /* Setup decompression for given key index */ HAL_BOOL ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en) { struct ath_hal_5212 *ahp = AH5212(ah); if (keyidx >= HAL_DECOMP_MASK_SIZE) return AH_FALSE; OS_REG_WRITE(ah, AR_DCM_A, keyidx); OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0); ahp->ah_decompMask[keyidx] = en; return AH_TRUE; } /* Setup coverage class */ void ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now) { uint32_t slot, timeout, eifs; u_int clkRate; AH_PRIVATE(ah)->ah_coverageClass = coverageclass; if (now) { if (AH_PRIVATE(ah)->ah_coverageClass == 0) return; /* Don't apply coverage class to non A channels */ if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan)) return; /* Get core clock rate */ clkRate = ath_hal_mac_clks(ah, 1); /* Compute EIFS */ slot = coverageclass * 3 * clkRate; eifs = coverageclass * 6 * clkRate; if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) { slot += IFS_SLOT_HALF_RATE; eifs += IFS_EIFS_HALF_RATE; } else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) { slot += IFS_SLOT_QUARTER_RATE; eifs += IFS_EIFS_QUARTER_RATE; } else { /* full rate */ slot += IFS_SLOT_FULL_RATE; eifs += IFS_EIFS_FULL_RATE; } /* * Add additional time for air propagation for ACK and CTS * timeouts. This value is in core clocks. */ timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate); /* * Write the values: slot, eifs, ack/cts timeouts. */ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); OS_REG_WRITE(ah, AR_TIME_OUT, SM(timeout, AR_TIME_OUT_CTS) | SM(timeout, AR_TIME_OUT_ACK)); } } HAL_STATUS ar5212SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration, uint32_t nextStart, HAL_QUIET_FLAG flag) { OS_REG_WRITE(ah, AR_QUIET2, period | (duration << AR_QUIET2_QUIET_DUR_S)); if (flag & HAL_QUIET_ENABLE) { OS_REG_WRITE(ah, AR_QUIET1, nextStart | (1 << 16)); } else { OS_REG_WRITE(ah, AR_QUIET1, nextStart); } return HAL_OK; } void ar5212SetPCUConfig(struct ath_hal *ah) { ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); } /* * Return whether an external 32KHz crystal should be used * to reduce power consumption when sleeping. We do so if * the crystal is present (obtained from EEPROM) and if we * are not running as an AP and are configured to use it. */ HAL_BOOL ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode) { if (opmode != HAL_M_HOSTAP) { struct ath_hal_5212 *ahp = AH5212(ah); return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) && (ahp->ah_enable32kHzClock == USE_32KHZ || ahp->ah_enable32kHzClock == AUTO_32KHZ); } else return AH_FALSE; } /* * If 32KHz clock exists, use it to lower power consumption during sleep * * Note: If clock is set to 32 KHz, delays on accessing certain * baseband registers (27-31, 124-127) are required. */ void ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode) { if (ar5212Use32KHzclock(ah, opmode)) { /* * Enable clocks to be turned OFF in BB during sleep * and also enable turning OFF 32MHz/40MHz Refclk * from A2. */ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f); OS_REG_WRITE(ah, AR_PHY_REFCLKPD, IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18); OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1); OS_REG_WRITE(ah, AR_TSF_PARM, 61); /* 32 KHz TSF incr */ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1); if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) { OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x26); OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0d); OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x07); OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x3f); /* # Set sleep clock rate to 32 KHz. */ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2); } else { OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x0a); OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0c); OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x03); OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x20); OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3); } } else { OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0); OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0); OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32MHz TSF inc */ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f); OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f); if (IS_2417(ah)) OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a); else if (IS_HB63(ah)) OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32); else OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e); OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c); OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff); OS_REG_WRITE(ah, AR_PHY_REFCLKPD, IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18); OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31); } } /* * If 32KHz clock exists, turn it off and turn back on the 32Mhz */ void ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode) { if (ar5212Use32KHzclock(ah, opmode)) { /* # Set sleep clock rate back to 32 MHz. */ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0); OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0); OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32 MHz TSF incr */ OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31); /* * Restore BB registers to power-on defaults */ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f); OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f); OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e); OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c); OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff); OS_REG_WRITE(ah, AR_PHY_REFCLKPD, IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18); } } /* * Adjust NF based on statistical values for 5GHz frequencies. * Default method: this may be overridden by the rf backend. */ int16_t ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) { static const struct { uint16_t freqLow; int16_t adjust; } adjustDef[] = { { 5790, 11 }, /* NB: ordered high -> low */ { 5730, 10 }, { 5690, 9 }, { 5660, 8 }, { 5610, 7 }, { 5530, 5 }, { 5450, 4 }, { 5379, 2 }, { 5209, 0 }, { 3000, 1 }, { 0, 0 }, }; int i; for (i = 0; c->channel <= adjustDef[i].freqLow; i++) ; return adjustDef[i].adjust; } HAL_STATUS ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t *result) { #define MACVERSION(ah) AH_PRIVATE(ah)->ah_macVersion struct ath_hal_5212 *ahp = AH5212(ah); const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; const struct ar5212AniState *ani; switch (type) { case HAL_CAP_CIPHER: /* cipher handled in hardware */ switch (capability) { case HAL_CIPHER_AES_CCM: return pCap->halCipherAesCcmSupport ? HAL_OK : HAL_ENOTSUPP; case HAL_CIPHER_AES_OCB: case HAL_CIPHER_TKIP: case HAL_CIPHER_WEP: case HAL_CIPHER_MIC: case HAL_CIPHER_CLR: return HAL_OK; default: return HAL_ENOTSUPP; } case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */ switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: return (ahp->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO; } return HAL_EINVAL; case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */ switch (capability) { case 0: /* hardware capability */ return pCap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK; case 1: /* current setting */ return (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK; } return HAL_EINVAL; case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC w/ WMM */ /* XXX move to capability bit */ return MACVERSION(ah) > AR_SREV_VERSION_VENICE || (MACVERSION(ah) == AR_SREV_VERSION_VENICE && AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */ switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: /* current setting */ return ahp->ah_diversity ? HAL_OK : HAL_ENXIO; } return HAL_EINVAL; case HAL_CAP_DIAG: *result = AH_PRIVATE(ah)->ah_diagreg; return HAL_OK; case HAL_CAP_TPC: switch (capability) { case 0: /* hardware capability */ return HAL_OK; case 1: return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO; } return HAL_OK; case HAL_CAP_PHYDIAG: /* radar pulse detection capability */ switch (capability) { case HAL_CAP_RADAR: return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ? HAL_OK: HAL_ENXIO; case HAL_CAP_AR: return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) || ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ? HAL_OK: HAL_ENXIO; } return HAL_ENXIO; case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */ switch (capability) { case 0: /* hardware capability */ return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENXIO; case 1: return (ahp->ah_staId1Defaults & AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO; } return HAL_EINVAL; case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */ switch (capability) { case 0: /* hardware capability */ return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP; case 1: return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ? HAL_OK : HAL_ENXIO; } return HAL_EINVAL; case HAL_CAP_TPC_ACK: *result = MS(ahp->ah_macTPC, AR_TPC_ACK); return HAL_OK; case HAL_CAP_TPC_CTS: *result = MS(ahp->ah_macTPC, AR_TPC_CTS); return HAL_OK; case HAL_CAP_INTMIT: /* interference mitigation */ switch (capability) { case HAL_CAP_INTMIT_PRESENT: /* hardware capability */ return HAL_OK; case HAL_CAP_INTMIT_ENABLE: return (ahp->ah_procPhyErr & HAL_ANI_ENA) ? HAL_OK : HAL_ENXIO; case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL: case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL: case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR: case HAL_CAP_INTMIT_FIRSTEP_LEVEL: case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL: ani = ar5212AniGetCurrentState(ah); if (ani == AH_NULL) return HAL_ENXIO; switch (capability) { case 2: *result = ani->noiseImmunityLevel; break; case 3: *result = !ani->ofdmWeakSigDetectOff; break; case 4: *result = ani->cckWeakSigThreshold; break; case 5: *result = ani->firstepLevel; break; case 6: *result = ani->spurImmunityLevel; break; } return HAL_OK; } return HAL_EINVAL; default: return ath_hal_getcapability(ah, type, capability, result); } #undef MACVERSION } HAL_BOOL ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t setting, HAL_STATUS *status) { #define N(a) (sizeof(a)/sizeof(a[0])) struct ath_hal_5212 *ahp = AH5212(ah); const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; uint32_t v; switch (type) { case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */ if (setting) ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE; else ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE; return AH_TRUE; case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */ if (!pCap->halTkipMicTxRxKeySupport) return AH_FALSE; /* NB: true =>'s use split key cache layout */ if (setting) ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE; else ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE; /* NB: write here so keys can be setup w/o a reset */ OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode); return AH_TRUE; case HAL_CAP_DIVERSITY: if (ahp->ah_phyPowerOn) { v = OS_REG_READ(ah, AR_PHY_CCK_DETECT); if (setting) v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; else v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v); } ahp->ah_diversity = (setting != 0); return AH_TRUE; case HAL_CAP_DIAG: /* hardware diagnostic support */ /* * NB: could split this up into virtual capabilities, * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly * seems worth the additional complexity. */ AH_PRIVATE(ah)->ah_diagreg = setting; OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); return AH_TRUE; case HAL_CAP_TPC: ahp->ah_tpcEnabled = (setting != 0); return AH_TRUE; case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */ if (setting) ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH; else ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH; return AH_TRUE; case HAL_CAP_TPC_ACK: case HAL_CAP_TPC_CTS: setting += ahp->ah_txPowerIndexOffset; if (setting > 63) setting = 63; if (type == HAL_CAP_TPC_ACK) { ahp->ah_macTPC &= AR_TPC_ACK; ahp->ah_macTPC |= MS(setting, AR_TPC_ACK); } else { ahp->ah_macTPC &= AR_TPC_CTS; ahp->ah_macTPC |= MS(setting, AR_TPC_CTS); } OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC); return AH_TRUE; case HAL_CAP_INTMIT: { /* interference mitigation */ /* This maps the public ANI commands to the internal ANI commands */ /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */ static const HAL_ANI_CMD cmds[] = { HAL_ANI_PRESENT, HAL_ANI_MODE, HAL_ANI_NOISE_IMMUNITY_LEVEL, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, HAL_ANI_CCK_WEAK_SIGNAL_THR, HAL_ANI_FIRSTEP_LEVEL, HAL_ANI_SPUR_IMMUNITY_LEVEL, }; return capability < N(cmds) ? AH5212(ah)->ah_aniControl(ah, cmds[capability], setting) : AH_FALSE; } case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */ if (pCap->halTsfAddSupport) { if (setting) ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF; else ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF; return AH_TRUE; } /* fall thru... */ default: return ath_hal_setcapability(ah, type, capability, setting, status); } #undef N } HAL_BOOL ar5212GetDiagState(struct ath_hal *ah, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize) { struct ath_hal_5212 *ahp = AH5212(ah); (void) ahp; if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) return AH_TRUE; switch (request) { case HAL_DIAG_EEPROM: case HAL_DIAG_EEPROM_EXP_11A: case HAL_DIAG_EEPROM_EXP_11B: case HAL_DIAG_EEPROM_EXP_11G: case HAL_DIAG_RFGAIN: return ath_hal_eepromDiag(ah, request, args, argsize, result, resultsize); case HAL_DIAG_RFGAIN_CURSTEP: *result = __DECONST(void *, ahp->ah_gainValues.currStep); *resultsize = (*result == AH_NULL) ? 0 : sizeof(GAIN_OPTIMIZATION_STEP); return AH_TRUE; case HAL_DIAG_PCDAC: *result = ahp->ah_pcdacTable; *resultsize = ahp->ah_pcdacTableSize; return AH_TRUE; case HAL_DIAG_TXRATES: *result = &ahp->ah_ratesArray[0]; *resultsize = sizeof(ahp->ah_ratesArray); return AH_TRUE; case HAL_DIAG_ANI_CURRENT: *result = ar5212AniGetCurrentState(ah); *resultsize = (*result == AH_NULL) ? 0 : sizeof(struct ar5212AniState); return AH_TRUE; case HAL_DIAG_ANI_STATS: *result = ar5212AniGetCurrentStats(ah); *resultsize = (*result == AH_NULL) ? 0 : sizeof(struct ar5212Stats); return AH_TRUE; case HAL_DIAG_ANI_CMD: if (argsize != 2*sizeof(uint32_t)) return AH_FALSE; AH5212(ah)->ah_aniControl(ah, ((const uint32_t *)args)[0], ((const uint32_t *)args)[1]); return AH_TRUE; case HAL_DIAG_ANI_PARAMS: /* * NB: We assume struct ar5212AniParams is identical * to HAL_ANI_PARAMS; if they diverge then we'll need * to handle it here */ if (argsize == 0 && args == AH_NULL) { struct ar5212AniState *aniState = ar5212AniGetCurrentState(ah); if (aniState == AH_NULL) return AH_FALSE; *result = __DECONST(void *, aniState->params); *resultsize = sizeof(struct ar5212AniParams); return AH_TRUE; } else { if (argsize != sizeof(struct ar5212AniParams)) return AH_FALSE; return ar5212AniSetParams(ah, args, args); } } return AH_FALSE; } /* * Check whether there's an in-progress NF completion. * * Returns AH_TRUE if there's a in-progress NF calibration, AH_FALSE * otherwise. */ HAL_BOOL ar5212IsNFCalInProgress(struct ath_hal *ah) { if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) return AH_TRUE; return AH_FALSE; } /* * Wait for an in-progress NF calibration to complete. * * The completion function waits "i" times 10uS. * It returns AH_TRUE if the NF calibration completed (or was never * in progress); AH_FALSE if it was still in progress after "i" checks. */ HAL_BOOL ar5212WaitNFCalComplete(struct ath_hal *ah, int i) { int j; if (i <= 0) i = 1; /* it should run at least once */ for (j = 0; j < i; j++) { if (! ar5212IsNFCalInProgress(ah)) return AH_TRUE; OS_DELAY(10); } return AH_FALSE; } void ar5212EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe) { uint32_t val; val = OS_REG_READ(ah, AR_PHY_RADAR_0); if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_FIRPWR; val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR); } if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_RRSSI; val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI); } if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_HEIGHT; val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT); } if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_PRSSI; val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI); } if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_INBAND; val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND); } OS_REG_WRITE(ah, AR_PHY_RADAR_0, val | AR_PHY_RADAR_0_ENA); } void ar5212GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe) { uint32_t val,temp; val = OS_REG_READ(ah, AR_PHY_RADAR_0); temp = MS(val,AR_PHY_RADAR_0_FIRPWR); temp |= 0xFFFFFF80; pe->pe_firpwr = temp; pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI); pe->pe_height = MS(val, AR_PHY_RADAR_0_HEIGHT); pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI); pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND); pe->pe_relpwr = 0; pe->pe_relstep = 0; pe->pe_maxlen = 0; pe->pe_extchannel = AH_FALSE; } /* * Process the radar phy error and extract the pulse duration. */ HAL_BOOL ar5212ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs, uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event) { uint8_t dur; uint8_t rssi; /* Check whether the given phy error is a radar event */ if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) && (rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT)) return AH_FALSE; /* * The first byte is the pulse width - if there's * no data, simply set the duration to 0 */ if (rxs->rs_datalen >= 1) /* The pulse width is byte 0 of the data */ dur = ((uint8_t) buf[0]) & 0xff; else dur = 0; /* Pulse RSSI is the normal reported RSSI */ rssi = (uint8_t) rxs->rs_rssi; /* 0 duration/rssi is not a valid radar event */ if (dur == 0 && rssi == 0) return AH_FALSE; HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n", __func__, rssi, dur); /* Record the event */ event->re_full_ts = fulltsf; event->re_ts = rxs->rs_tstamp; event->re_rssi = rssi; event->re_dur = dur; event->re_flags = HAL_DFS_EVENT_PRICH; return AH_TRUE; } /* * Return whether 5GHz fast-clock (44MHz) is enabled. * It's always disabled for AR5212 series NICs. */ HAL_BOOL ar5212IsFastClockEnabled(struct ath_hal *ah) { return AH_FALSE; }