Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ar9002/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ath_hal/ar9002/ar9287.c |
/* * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting * Copyright (c) 2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar9002/ar9287.c 222324 2011-05-26 20:22:10Z adrian $ */ #include "opt_ah.h" /* * NB: Merlin and later have a simpler RF backend. */ #include "ah.h" #include "ah_internal.h" #include "ah_eeprom_v14.h" #include "ar9002/ar9287.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" #define N(a) (sizeof(a)/sizeof(a[0])) struct ar9287State { RF_HAL_FUNCS base; /* public state, must be first */ uint16_t pcdacTable[1]; /* XXX */ }; #define AR9287(ah) ((struct ar9287State *) AH5212(ah)->ah_rfHal) static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *, const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow); int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c); static void ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, int writes) { (void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain, freqIndex, writes); } /* * Take the MHz channel value and set the Channel value * * ASSUMES: Writes enabled to analog bus * * Actual Expression, * * For 2GHz channel, * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) * * For 5GHz channel, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) * (freq_ref = 40MHz/(24>>amodeRefSel)) * * For 5GHz channels which are 5MHz spaced, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) */ static HAL_BOOL ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint16_t bMode, fracMode, aModeRefSel = 0; uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; CHAN_CENTERS centers; uint32_t refDivA = 24; OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq); ar5416GetChannelCenters(ah, chan, ¢ers); freq = centers.synth_center; reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL); reg32 &= 0xc0000000; if (freq < 4800) { /* 2 GHz, fractional mode */ uint32_t txctl; int regWrites = 0; bMode = 1; fracMode = 1; aModeRefSel = 0; channelSel = (freq * 0x10000)/15; if (AR_SREV_KIWI_11_OR_LATER(ah)) { if (freq == 2484) { ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_cckFirJapan2484, 1, regWrites); } else { ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_cckFirNormal, 1, regWrites); } } txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } } else { bMode = 0; fracMode = 0; if ((freq % 20) == 0) { aModeRefSel = 3; } else if ((freq % 10) == 0) { aModeRefSel = 2; } else { aModeRefSel = 0; /* * Enable 2G (fractional) mode for channels which * are 5MHz spaced */ fracMode = 1; refDivA = 1; channelSel = (freq * 0x8000)/15; /* RefDivA setting */ OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9, AR_AN_SYNTH9_REFDIVA, refDivA); } if (!fracMode) { ndiv = (freq * (refDivA >> aModeRefSel))/60; channelSel = ndiv & 0x1ff; channelFrac = (ndiv & 0xfffffe00) * 2; channelSel = (channelSel << 17) | channelFrac; } } reg32 = reg32 | (bMode << 29) | (fracMode << 28) | (aModeRefSel << 26) | (channelSel); OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); AH_PRIVATE(ah)->ah_curchan = chan; return AH_TRUE; } /* * Return a reference to the requested RF Bank. */ static uint32_t * ar9287GetRfBank(struct ath_hal *ah, int bank) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", __func__, bank); return AH_NULL; } /* * Reads EEPROM header info from device structure and programs * all rf registers */ static HAL_BOOL ar9287SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t modesIndex, uint16_t *rfXpdGain) { return AH_TRUE; /* nothing to do */ } /* * Read the transmit power levels from the structures taken from EEPROM * Interpolate read transmit power values for this channel * Organize the transmit power values into a table for writing into the hardware */ static HAL_BOOL ar9287SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax, const struct ieee80211_channel *chan, uint16_t *rfXpdGain) { return AH_TRUE; } #if 0 static int16_t ar9287GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data) { int i, minIndex; int16_t minGain,minPwr,minPcdac,retVal; /* Assume NUM_POINTS_XPD0 > 0 */ minGain = data->pDataPerXPD[0].xpd_gain; for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) { if (data->pDataPerXPD[i].xpd_gain < minGain) { minIndex = i; minGain = data->pDataPerXPD[i].xpd_gain; } } minPwr = data->pDataPerXPD[minIndex].pwr_t4[0]; minPcdac = data->pDataPerXPD[minIndex].pcdac[0]; for (i=1; i<NUM_POINTS_XPD0; i++) { if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) { minPwr = data->pDataPerXPD[minIndex].pwr_t4[i]; minPcdac = data->pDataPerXPD[minIndex].pcdac[i]; } } retVal = minPwr - (minPcdac*2); return(retVal); } #endif static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *maxPow, int16_t *minPow) { #if 0 struct ath_hal_5212 *ahp = AH5212(ah); int numChannels=0,i,last; int totalD, totalF,totalMin; EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL; EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL; *maxPow = 0; if (IS_CHAN_A(chan)) { powerArray = ahp->ah_modePowerArray5112; data = powerArray[headerInfo11A].pDataPerChannel; numChannels = powerArray[headerInfo11A].numChannels; } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) { /* XXX - is this correct? Should we also use the same power for turbo G? */ powerArray = ahp->ah_modePowerArray5112; data = powerArray[headerInfo11G].pDataPerChannel; numChannels = powerArray[headerInfo11G].numChannels; } else if (IS_CHAN_B(chan)) { powerArray = ahp->ah_modePowerArray5112; data = powerArray[headerInfo11B].pDataPerChannel; numChannels = powerArray[headerInfo11B].numChannels; } else { return (AH_TRUE); } /* Make sure the channel is in the range of the TP values * (freq piers) */ if ((numChannels < 1) || (chan->channel < data[0].channelValue) || (chan->channel > data[numChannels-1].channelValue)) return(AH_FALSE); /* Linearly interpolate the power value now */ for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); last=i++); totalD = data[i].channelValue - data[last].channelValue; if (totalD > 0) { totalF = data[i].maxPower_t4 - data[last].maxPower_t4; *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD); totalMin = ar9287GetMinPower(ah,&data[i]) - ar9287GetMinPower(ah, &data[last]); *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9287GetMinPower(ah, &data[last])*totalD)/totalD); return (AH_TRUE); } else { if (chan->channel == data[i].channelValue) { *maxPow = data[i].maxPower_t4; *minPow = ar9287GetMinPower(ah, &data[i]); return(AH_TRUE); } else return(AH_FALSE); } #else *maxPow = *minPow = 0; return AH_FALSE; #endif } /* * The ordering of nfarray is thus: * * nfarray[0]: Chain 0 ctl * nfarray[1]: Chain 1 ctl * nfarray[2]: Chain 2 ctl * nfarray[3]: Chain 0 ext * nfarray[4]: Chain 1 ext * nfarray[5]: Chain 2 ext */ static void ar9287GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[]) { int16_t nf; nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ctl] [chain 0] is %d\n", nf); nfarray[0] = nf; nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ctl] [chain 1] is %d\n", nf); nfarray[1] = nf; nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ext] [chain 0] is %d\n", nf); nfarray[3] = nf; nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF calibrated [ext] [chain 1] is %d\n", nf); nfarray[4] = nf; /* Chain 2 - invalid */ nfarray[2] = 0; nfarray[5] = 0; } /* * Adjust NF based on statistical values for 5GHz frequencies. * Stubbed:Not used by Fowl */ int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) { return 0; } /* * Free memory for analog bank scratch buffers */ static void ar9287RfDetach(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); HALASSERT(ahp->ah_rfHal != AH_NULL); ath_hal_free(ahp->ah_rfHal); ahp->ah_rfHal = AH_NULL; } HAL_BOOL ar9287RfAttach(struct ath_hal *ah, HAL_STATUS *status) { struct ath_hal_5212 *ahp = AH5212(ah); struct ar9287State *priv; HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__); HALASSERT(ahp->ah_rfHal == AH_NULL); priv = ath_hal_malloc(sizeof(struct ar9287State)); if (priv == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot allocate private state\n", __func__); *status = HAL_ENOMEM; /* XXX */ return AH_FALSE; } priv->base.rfDetach = ar9287RfDetach; priv->base.writeRegs = ar9287WriteRegs; priv->base.getRfBank = ar9287GetRfBank; priv->base.setChannel = ar9287SetChannel; priv->base.setRfRegs = ar9287SetRfRegs; priv->base.setPowerTable = ar9287SetPowerTable; priv->base.getChannelMaxMinPower = ar9287GetChannelMaxMinPower; priv->base.getNfAdjust = ar9287GetNfAdjust; ahp->ah_pcdacTable = priv->pcdacTable; ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); ahp->ah_rfHal = &priv->base; /* * Set noise floor adjust method; we arrange a * direct call instead of thunking. */ AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust; AH_PRIVATE(ah)->ah_getNoiseFloor = ar9287GetNoiseFloor; return AH_TRUE; }