Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/ath/if_ath_keycache.c |
/*- * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/ath/if_ath_keycache.c 219185 2011-03-02 17:19:54Z adrian $"); /* * Driver for the Atheros Wireless LAN controller. * * This software is derived from work of Atsushi Onoe; his contribution * is greatly appreciated. */ #include "opt_inet.h" #include "opt_ath.h" #include "opt_wlan.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/sysctl.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/kernel.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/errno.h> #include <sys/callout.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kthread.h> #include <sys/taskqueue.h> #include <sys/priv.h> #include <machine/bus.h> #include <net/if.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_llc.h> #include <net80211/ieee80211_var.h> #include <net/bpf.h> #include <dev/ath/if_athvar.h> #include <dev/ath/if_ath_debug.h> #include <dev/ath/if_ath_keycache.h> #ifdef ATH_DEBUG static void ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix, const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) { static const char *ciphers[] = { "WEP", "AES-OCB", "AES-CCM", "CKIP", "TKIP", "CLR", }; int i, n; printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); for (i = 0, n = hk->kv_len; i < n; i++) printf("%02x", hk->kv_val[i]); printf(" mac %s", ether_sprintf(mac)); if (hk->kv_type == HAL_CIPHER_TKIP) { printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic"); for (i = 0; i < sizeof(hk->kv_mic); i++) printf("%02x", hk->kv_mic[i]); if (!sc->sc_splitmic) { printf(" txmic "); for (i = 0; i < sizeof(hk->kv_txmic); i++) printf("%02x", hk->kv_txmic[i]); } } printf("\n"); } #endif /* * Set a TKIP key into the hardware. This handles the * potential distribution of key state to multiple key * cache slots for TKIP. */ static int ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) { #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; struct ath_hal *ah = sc->sc_ah; KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { if (sc->sc_splitmic) { /* * TX key goes at first index, RX key at the rx index. * The hal handles the MIC keys at index+64. */ memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) return 0; memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); KEYPRINTF(sc, k->wk_keyix+32, hk, mac); /* XXX delete tx key on failure? */ return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); } else { /* * Room for both TX+RX MIC keys in one key cache * slot, just set key at the first index; the hal * will handle the rest. */ memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); KEYPRINTF(sc, k->wk_keyix, hk, mac); return ath_hal_keyset(ah, k->wk_keyix, hk, mac); } } else if (k->wk_flags & IEEE80211_KEY_XMIT) { if (sc->sc_splitmic) { /* * NB: must pass MIC key in expected location when * the keycache only holds one MIC key per entry. */ memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); } else memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); KEYPRINTF(sc, k->wk_keyix, hk, mac); return ath_hal_keyset(ah, k->wk_keyix, hk, mac); } else if (k->wk_flags & IEEE80211_KEY_RECV) { memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); KEYPRINTF(sc, k->wk_keyix, hk, mac); return ath_hal_keyset(ah, k->wk_keyix, hk, mac); } return 0; #undef IEEE80211_KEY_XR } /* * Set a net80211 key into the hardware. This handles the * potential distribution of key state to multiple key * cache slots for TKIP with hardware MIC support. */ int ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, struct ieee80211_node *bss) { #define N(a) (sizeof(a)/sizeof(a[0])) static const u_int8_t ciphermap[] = { HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ (u_int8_t) -1, /* 4 is not allocated */ HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ }; struct ath_hal *ah = sc->sc_ah; const struct ieee80211_cipher *cip = k->wk_cipher; u_int8_t gmac[IEEE80211_ADDR_LEN]; const u_int8_t *mac; HAL_KEYVAL hk; memset(&hk, 0, sizeof(hk)); /* * Software crypto uses a "clear key" so non-crypto * state kept in the key cache are maintained and * so that rx frames have an entry to match. */ if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { KASSERT(cip->ic_cipher < N(ciphermap), ("invalid cipher type %u", cip->ic_cipher)); hk.kv_type = ciphermap[cip->ic_cipher]; hk.kv_len = k->wk_keylen; memcpy(hk.kv_val, k->wk_key, k->wk_keylen); } else hk.kv_type = HAL_CIPHER_CLR; if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { /* * Group keys on hardware that supports multicast frame * key search use a MAC that is the sender's address with * the multicast bit set instead of the app-specified address. */ IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); gmac[0] |= 0x01; mac = gmac; } else mac = k->wk_macaddr; if (hk.kv_type == HAL_CIPHER_TKIP && (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { return ath_keyset_tkip(sc, k, &hk, mac); } else { KEYPRINTF(sc, k->wk_keyix, &hk, mac); return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); } #undef N } /* * Allocate tx/rx key slots for TKIP. We allocate two slots for * each key, one for decrypt/encrypt and the other for the MIC. */ static u_int16_t key_alloc_2pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) { #define N(a) (sizeof(a)/sizeof(a[0])) u_int i, keyix; KASSERT(sc->sc_splitmic, ("key cache !split")); /* XXX could optimize */ for (i = 0; i < N(sc->sc_keymap)/4; i++) { u_int8_t b = sc->sc_keymap[i]; if (b != 0xff) { /* * One or more slots in this byte are free. */ keyix = i*NBBY; while (b & 1) { again: keyix++; b >>= 1; } /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ if (isset(sc->sc_keymap, keyix+32) || isset(sc->sc_keymap, keyix+64) || isset(sc->sc_keymap, keyix+32+64)) { /* full pair unavailable */ /* XXX statistic */ if (keyix == (i+1)*NBBY) { /* no slots were appropriate, advance */ continue; } goto again; } setbit(sc->sc_keymap, keyix); setbit(sc->sc_keymap, keyix+64); setbit(sc->sc_keymap, keyix+32); setbit(sc->sc_keymap, keyix+32+64); DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key pair %u,%u %u,%u\n", __func__, keyix, keyix+64, keyix+32, keyix+32+64); *txkeyix = keyix; *rxkeyix = keyix+32; return 1; } } DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); return 0; #undef N } /* * Allocate tx/rx key slots for TKIP. We allocate two slots for * each key, one for decrypt/encrypt and the other for the MIC. */ static u_int16_t key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) { #define N(a) (sizeof(a)/sizeof(a[0])) u_int i, keyix; KASSERT(!sc->sc_splitmic, ("key cache split")); /* XXX could optimize */ for (i = 0; i < N(sc->sc_keymap)/4; i++) { u_int8_t b = sc->sc_keymap[i]; if (b != 0xff) { /* * One or more slots in this byte are free. */ keyix = i*NBBY; while (b & 1) { again: keyix++; b >>= 1; } if (isset(sc->sc_keymap, keyix+64)) { /* full pair unavailable */ /* XXX statistic */ if (keyix == (i+1)*NBBY) { /* no slots were appropriate, advance */ continue; } goto again; } setbit(sc->sc_keymap, keyix); setbit(sc->sc_keymap, keyix+64); DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key pair %u,%u\n", __func__, keyix, keyix+64); *txkeyix = *rxkeyix = keyix; return 1; } } DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); return 0; #undef N } /* * Allocate a single key cache slot. */ static int key_alloc_single(struct ath_softc *sc, ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) { #define N(a) (sizeof(a)/sizeof(a[0])) u_int i, keyix; /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ for (i = 0; i < N(sc->sc_keymap); i++) { u_int8_t b = sc->sc_keymap[i]; if (b != 0xff) { /* * One or more slots are free. */ keyix = i*NBBY; while (b & 1) keyix++, b >>= 1; setbit(sc->sc_keymap, keyix); DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", __func__, keyix); *txkeyix = *rxkeyix = keyix; return 1; } } DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); return 0; #undef N } /* * Allocate one or more key cache slots for a uniacst key. The * key itself is needed only to identify the cipher. For hardware * TKIP with split cipher+MIC keys we allocate two key cache slot * pairs so that we can setup separate TX and RX MIC keys. Note * that the MIC key for a TKIP key at slot i is assumed by the * hardware to be at slot i+64. This limits TKIP keys to the first * 64 entries. */ int ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; /* * Group key allocation must be handled specially for * parts that do not support multicast key cache search * functionality. For those parts the key id must match * the h/w key index so lookups find the right key. On * parts w/ the key search facility we install the sender's * mac address (with the high bit set) and let the hardware * find the key w/o using the key id. This is preferred as * it permits us to support multiple users for adhoc and/or * multi-station operation. */ if (k->wk_keyix != IEEE80211_KEYIX_NONE) { /* * Only global keys should have key index assigned. */ if (!(&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { /* should not happen */ DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: bogus group key\n", __func__); return 0; } if (vap->iv_opmode != IEEE80211_M_HOSTAP || !(k->wk_flags & IEEE80211_KEY_GROUP) || !sc->sc_mcastkey) { /* * XXX we pre-allocate the global keys so * have no way to check if they've already * been allocated. */ *keyix = *rxkeyix = k - vap->iv_nw_keys; return 1; } /* * Group key and device supports multicast key search. */ k->wk_keyix = IEEE80211_KEYIX_NONE; } /* * We allocate two pair for TKIP when using the h/w to do * the MIC. For everything else, including software crypto, * we allocate a single entry. Note that s/w crypto requires * a pass-through slot on the 5211 and 5212. The 5210 does * not support pass-through cache entries and we map all * those requests to slot 0. */ if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { return key_alloc_single(sc, keyix, rxkeyix); } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { if (sc->sc_splitmic) return key_alloc_2pair(sc, keyix, rxkeyix); else return key_alloc_pair(sc, keyix, rxkeyix); } else { return key_alloc_single(sc, keyix, rxkeyix); } } /* * Delete an entry in the key cache allocated by ath_key_alloc. */ int ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; struct ath_hal *ah = sc->sc_ah; const struct ieee80211_cipher *cip = k->wk_cipher; u_int keyix = k->wk_keyix; DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); ath_hal_keyreset(ah, keyix); /* * Handle split tx/rx keying required for TKIP with h/w MIC. */ if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) ath_hal_keyreset(ah, keyix+32); /* RX key */ if (keyix >= IEEE80211_WEP_NKID) { /* * Don't touch keymap entries for global keys so * they are never considered for dynamic allocation. */ clrbit(sc->sc_keymap, keyix); if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ if (sc->sc_splitmic) { /* +32 for RX key, +32+64 for RX key MIC */ clrbit(sc->sc_keymap, keyix+32); clrbit(sc->sc_keymap, keyix+32+64); } } } return 1; } /* * Set the key cache contents for the specified key. Key cache * slot(s) must already have been allocated by ath_key_alloc. */ int ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, const u_int8_t mac[IEEE80211_ADDR_LEN]) { struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; return ath_keyset(sc, k, vap->iv_bss); }