Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/dc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/dc/if_dc.c |
/*- * Copyright (c) 1997, 1998, 1999 * Bill Paul <wpaul@ee.columbia.edu>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/dc/if_dc.c 235422 2012-05-14 03:11:07Z marius $"); /* * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 * series chips and several workalikes including the following: * * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com) * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) * Lite-On 82c168/82c169 PNIC (www.litecom.com) * ASIX Electronics AX88140A (www.asix.com.tw) * ASIX Electronics AX88141 (www.asix.com.tw) * ADMtek AL981 (www.admtek.com.tw) * ADMtek AN983 (www.admtek.com.tw) * ADMtek CardBus AN985 (www.admtek.com.tw) * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com) * Accton EN1217 (www.accton.com) * Xircom X3201 (www.xircom.com) * Abocom FE2500 * Conexant LANfinity (www.conexant.com) * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com) * * Datasheets for the 21143 are available at developer.intel.com. * Datasheets for the clone parts can be found at their respective sites. * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) * The PNIC II is essentially a Macronix 98715A chip; the only difference * worth noting is that its multicast hash table is only 128 bits wide * instead of 512. * * Written by Bill Paul <wpaul@ee.columbia.edu> * Electrical Engineering Department * Columbia University, New York City */ /* * The Intel 21143 is the successor to the DEC 21140. It is basically * the same as the 21140 but with a few new features. The 21143 supports * three kinds of media attachments: * * o MII port, for 10Mbps and 100Mbps support and NWAY * autonegotiation provided by an external PHY. * o SYM port, for symbol mode 100Mbps support. * o 10baseT port. * o AUI/BNC port. * * The 100Mbps SYM port and 10baseT port can be used together in * combination with the internal NWAY support to create a 10/100 * autosensing configuration. * * Note that not all tulip workalikes are handled in this driver: we only * deal with those which are relatively well behaved. The Winbond is * handled separately due to its different register offsets and the * special handling needed for its various bugs. The PNIC is handled * here, but I'm not thrilled about it. * * All of the workalike chips use some form of MII transceiver support * with the exception of the Macronix chips, which also have a SYM port. * The ASIX AX88140A is also documented to have a SYM port, but all * the cards I've seen use an MII transceiver, probably because the * AX88140A doesn't support internal NWAY. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include <sys/param.h> #include <sys/endian.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/socket.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <net/bpf.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <dev/mii/mii.h> #include <dev/mii/mii_bitbang.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #define DC_USEIOSPACE #include <dev/dc/if_dcreg.h> #ifdef __sparc64__ #include <dev/ofw/openfirm.h> #include <machine/ofw_machdep.h> #endif MODULE_DEPEND(dc, pci, 1, 1, 1); MODULE_DEPEND(dc, ether, 1, 1, 1); MODULE_DEPEND(dc, miibus, 1, 1, 1); /* * "device miibus" is required in kernel config. See GENERIC if you get * errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. */ static const struct dc_type const dc_devs[] = { { DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0, "Intel 21143 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0, "Davicom DM9009 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0, "Davicom DM9100 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A, "Davicom DM9102A 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0, "Davicom DM9102 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0, "ADMtek AL981 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0, "ADMtek AN983 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0, "ADMtek AN985 CardBus 10/100BaseTX or clone" }, { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0, "ADMtek ADM9511 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0, "ADMtek ADM9513 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141, "ASIX AX88141 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0, "ASIX AX88140A 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A, "Macronix 98713A 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0, "Macronix 98713 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A, "Compex RL100-TX 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0, "Compex RL100-TX 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725, "Macronix 98725 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C, "Macronix 98715AEC-C 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0, "Macronix 98715/98715A 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0, "Macronix 98727/98732 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0, "LC82C115 PNIC II 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169, "82c169 PNIC 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0, "82c168 PNIC 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0, "Accton EN1217 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0, "Accton EN2242 MiniPCI 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0, "Xircom X3201 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0, "Neteasy DRP-32TXD Cardbus 10/100" }, { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0, "Abocom FE2500 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0, "Abocom FE2500MX 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0, "Conexant LANfinity MiniPCI 10/100BaseTX" }, { DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0, "Hawking CB102 CardBus 10/100" }, { DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0, "PlaneX FNW-3602-T CardBus 10/100" }, { DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0, "3Com OfficeConnect 10/100B" }, { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0, "Microsoft MN-120 CardBus 10/100" }, { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0, "Microsoft MN-130 10/100" }, { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0, "Linksys PCMPC200 CardBus 10/100" }, { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0, "Linksys PCMPC200 CardBus 10/100" }, { DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0, "ULi M5261 FastEthernet" }, { DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0, "ULi M5263 FastEthernet" }, { 0, 0, NULL } }; static int dc_probe(device_t); static int dc_attach(device_t); static int dc_detach(device_t); static int dc_suspend(device_t); static int dc_resume(device_t); static const struct dc_type *dc_devtype(device_t); static void dc_discard_rxbuf(struct dc_softc *, int); static int dc_newbuf(struct dc_softc *, int); static int dc_encap(struct dc_softc *, struct mbuf **); static void dc_pnic_rx_bug_war(struct dc_softc *, int); static int dc_rx_resync(struct dc_softc *); static int dc_rxeof(struct dc_softc *); static void dc_txeof(struct dc_softc *); static void dc_tick(void *); static void dc_tx_underrun(struct dc_softc *); static void dc_intr(void *); static void dc_start(struct ifnet *); static void dc_start_locked(struct ifnet *); static int dc_ioctl(struct ifnet *, u_long, caddr_t); static void dc_init(void *); static void dc_init_locked(struct dc_softc *); static void dc_stop(struct dc_softc *); static void dc_watchdog(void *); static int dc_shutdown(device_t); static int dc_ifmedia_upd(struct ifnet *); static int dc_ifmedia_upd_locked(struct dc_softc *); static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int dc_dma_alloc(struct dc_softc *); static void dc_dma_free(struct dc_softc *); static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int); static void dc_delay(struct dc_softc *); static void dc_eeprom_idle(struct dc_softc *); static void dc_eeprom_putbyte(struct dc_softc *, int); static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *); static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *); static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *); static void dc_eeprom_width(struct dc_softc *); static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int); static int dc_miibus_readreg(device_t, int, int); static int dc_miibus_writereg(device_t, int, int, int); static void dc_miibus_statchg(device_t); static void dc_miibus_mediainit(device_t); static void dc_setcfg(struct dc_softc *, int); static void dc_netcfg_wait(struct dc_softc *); static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *); static uint32_t dc_mchash_be(const uint8_t *); static void dc_setfilt_21143(struct dc_softc *); static void dc_setfilt_asix(struct dc_softc *); static void dc_setfilt_admtek(struct dc_softc *); static void dc_setfilt_uli(struct dc_softc *); static void dc_setfilt_xircom(struct dc_softc *); static void dc_setfilt(struct dc_softc *); static void dc_reset(struct dc_softc *); static int dc_list_rx_init(struct dc_softc *); static int dc_list_tx_init(struct dc_softc *); static int dc_read_srom(struct dc_softc *, int); static int dc_parse_21143_srom(struct dc_softc *); static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *); static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *); static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *); static void dc_apply_fixup(struct dc_softc *, int); static int dc_check_multiport(struct dc_softc *); /* * MII bit-bang glue */ static uint32_t dc_mii_bitbang_read(device_t); static void dc_mii_bitbang_write(device_t, uint32_t); static const struct mii_bitbang_ops dc_mii_bitbang_ops = { dc_mii_bitbang_read, dc_mii_bitbang_write, { DC_SIO_MII_DATAOUT, /* MII_BIT_MDO */ DC_SIO_MII_DATAIN, /* MII_BIT_MDI */ DC_SIO_MII_CLK, /* MII_BIT_MDC */ 0, /* MII_BIT_DIR_HOST_PHY */ DC_SIO_MII_DIR, /* MII_BIT_DIR_PHY_HOST */ } }; #ifdef DC_USEIOSPACE #define DC_RES SYS_RES_IOPORT #define DC_RID DC_PCI_CFBIO #else #define DC_RES SYS_RES_MEMORY #define DC_RID DC_PCI_CFBMA #endif static device_method_t dc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, dc_probe), DEVMETHOD(device_attach, dc_attach), DEVMETHOD(device_detach, dc_detach), DEVMETHOD(device_suspend, dc_suspend), DEVMETHOD(device_resume, dc_resume), DEVMETHOD(device_shutdown, dc_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, dc_miibus_readreg), DEVMETHOD(miibus_writereg, dc_miibus_writereg), DEVMETHOD(miibus_statchg, dc_miibus_statchg), DEVMETHOD(miibus_mediainit, dc_miibus_mediainit), DEVMETHOD_END }; static driver_t dc_driver = { "dc", dc_methods, sizeof(struct dc_softc) }; static devclass_t dc_devclass; DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL, SI_ORDER_ANY); DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL); #define DC_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define DC_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) static void dc_delay(struct dc_softc *sc) { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, DC_BUSCTL); } static void dc_eeprom_width(struct dc_softc *sc) { int i; /* Force EEPROM to idle state. */ dc_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); for (i = 3; i--;) { if (6 & (1 << i)) DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); else DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } for (i = 1; i <= 12; i++) { DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); break; } DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); if (i < 4 || i > 12) sc->dc_romwidth = 6; else sc->dc_romwidth = i; /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); } static void dc_eeprom_idle(struct dc_softc *sc) { int i; CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); for (i = 0; i < 25; i++) { DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); CSR_WRITE_4(sc, DC_SIO, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ static void dc_eeprom_putbyte(struct dc_softc *sc, int addr) { int d, i; d = DC_EECMD_READ >> 6; for (i = 3; i--; ) { if (d & (1 << i)) DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); else DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } /* * Feed in each bit and strobe the clock. */ for (i = sc->dc_romwidth; i--;) { if (addr & (1 << i)) { SIO_SET(DC_SIO_EE_DATAIN); } else { SIO_CLR(DC_SIO_EE_DATAIN); } dc_delay(sc); SIO_SET(DC_SIO_EE_CLK); dc_delay(sc); SIO_CLR(DC_SIO_EE_CLK); dc_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' * The PNIC 82c168/82c169 has its own non-standard way to read * the EEPROM. */ static void dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest) { int i; uint32_t r; CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); r = CSR_READ_4(sc, DC_SIO); if (!(r & DC_PN_SIOCTL_BUSY)) { *dest = (uint16_t)(r & 0xFFFF); return; } } } /* * Read a word of data stored in the EEPROM at address 'addr.' * The Xircom X3201 has its own non-standard way to read * the EEPROM, too. */ static void dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest) { SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); addr *= 2; CSR_WRITE_4(sc, DC_ROM, addr | 0x160); *dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff; addr += 1; CSR_WRITE_4(sc, DC_ROM, addr | 0x160); *dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8; SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ); } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest) { int i; uint16_t word = 0; /* Force EEPROM to idle state. */ dc_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); /* * Send address of word we want to read. */ dc_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(DC_SIO_EE_CLK); dc_delay(sc); if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) word |= i; dc_delay(sc); SIO_CLR(DC_SIO_EE_CLK); dc_delay(sc); } /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { if (DC_IS_PNIC(sc)) dc_eeprom_getword_pnic(sc, off + i, &word); else if (DC_IS_XIRCOM(sc)) dc_eeprom_getword_xircom(sc, off + i, &word); else dc_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); if (be) *ptr = be16toh(word); else *ptr = le16toh(word); } } /* * Write the MII serial port for the MII bit-bang module. */ static void dc_mii_bitbang_write(device_t dev, uint32_t val) { struct dc_softc *sc; sc = device_get_softc(dev); CSR_WRITE_4(sc, DC_SIO, val); CSR_BARRIER_4(sc, DC_SIO, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); } /* * Read the MII serial port for the MII bit-bang module. */ static uint32_t dc_mii_bitbang_read(device_t dev) { struct dc_softc *sc; uint32_t val; sc = device_get_softc(dev); val = CSR_READ_4(sc, DC_SIO); CSR_BARRIER_4(sc, DC_SIO, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return (val); } static int dc_miibus_readreg(device_t dev, int phy, int reg) { struct dc_softc *sc; int i, rval, phy_reg = 0; sc = device_get_softc(dev); if (sc->dc_pmode != DC_PMODE_MII) { if (phy == (MII_NPHY - 1)) { switch (reg) { case MII_BMSR: /* * Fake something to make the probe * code think there's a PHY here. */ return (BMSR_MEDIAMASK); break; case MII_PHYIDR1: if (DC_IS_PNIC(sc)) return (DC_VENDORID_LO); return (DC_VENDORID_DEC); break; case MII_PHYIDR2: if (DC_IS_PNIC(sc)) return (DC_DEVICEID_82C168); return (DC_DEVICEID_21143); break; default: return (0); break; } } else return (0); } if (DC_IS_PNIC(sc)) { CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | (phy << 23) | (reg << 18)); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); rval = CSR_READ_4(sc, DC_PN_MII); if (!(rval & DC_PN_MII_BUSY)) { rval &= 0xFFFF; return (rval == 0xFFFF ? 0 : rval); } } return (0); } if (sc->dc_type == DC_TYPE_ULI_M5263) { CSR_WRITE_4(sc, DC_ROM, ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) | ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) | DC_ULI_PHY_OP_READ); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); rval = CSR_READ_4(sc, DC_ROM); if ((rval & DC_ULI_PHY_OP_DONE) != 0) { return (rval & DC_ULI_PHY_DATA_MASK); } } if (i == DC_TIMEOUT) device_printf(dev, "phy read timed out\n"); return (0); } if (DC_IS_COMET(sc)) { switch (reg) { case MII_BMCR: phy_reg = DC_AL_BMCR; break; case MII_BMSR: phy_reg = DC_AL_BMSR; break; case MII_PHYIDR1: phy_reg = DC_AL_VENID; break; case MII_PHYIDR2: phy_reg = DC_AL_DEVID; break; case MII_ANAR: phy_reg = DC_AL_ANAR; break; case MII_ANLPAR: phy_reg = DC_AL_LPAR; break; case MII_ANER: phy_reg = DC_AL_ANER; break; default: device_printf(dev, "phy_read: bad phy register %x\n", reg); return (0); break; } rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; if (rval == 0xFFFF) return (0); return (rval); } if (sc->dc_type == DC_TYPE_98713) { phy_reg = CSR_READ_4(sc, DC_NETCFG); CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); } rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg); if (sc->dc_type == DC_TYPE_98713) CSR_WRITE_4(sc, DC_NETCFG, phy_reg); return (rval); } static int dc_miibus_writereg(device_t dev, int phy, int reg, int data) { struct dc_softc *sc; int i, phy_reg = 0; sc = device_get_softc(dev); if (DC_IS_PNIC(sc)) { CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | (phy << 23) | (reg << 10) | data); for (i = 0; i < DC_TIMEOUT; i++) { if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) break; } return (0); } if (sc->dc_type == DC_TYPE_ULI_M5263) { CSR_WRITE_4(sc, DC_ROM, ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) | ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) | ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) | DC_ULI_PHY_OP_WRITE); DELAY(1); return (0); } if (DC_IS_COMET(sc)) { switch (reg) { case MII_BMCR: phy_reg = DC_AL_BMCR; break; case MII_BMSR: phy_reg = DC_AL_BMSR; break; case MII_PHYIDR1: phy_reg = DC_AL_VENID; break; case MII_PHYIDR2: phy_reg = DC_AL_DEVID; break; case MII_ANAR: phy_reg = DC_AL_ANAR; break; case MII_ANLPAR: phy_reg = DC_AL_LPAR; break; case MII_ANER: phy_reg = DC_AL_ANER; break; default: device_printf(dev, "phy_write: bad phy register %x\n", reg); return (0); break; } CSR_WRITE_4(sc, phy_reg, data); return (0); } if (sc->dc_type == DC_TYPE_98713) { phy_reg = CSR_READ_4(sc, DC_NETCFG); CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); } mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data); if (sc->dc_type == DC_TYPE_98713) CSR_WRITE_4(sc, DC_NETCFG, phy_reg); return (0); } static void dc_miibus_statchg(device_t dev) { struct dc_softc *sc; struct ifnet *ifp; struct mii_data *mii; struct ifmedia *ifm; sc = device_get_softc(dev); mii = device_get_softc(sc->dc_miibus); ifp = sc->dc_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { dc_setcfg(sc, ifm->ifm_media); return; } else if (!DC_IS_ADMTEK(sc)) dc_setcfg(sc, mii->mii_media_active); sc->dc_link = 0; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->dc_link = 1; break; } } } /* * Special support for DM9102A cards with HomePNA PHYs. Note: * with the Davicom DM9102A/DM9801 eval board that I have, it seems * to be impossible to talk to the management interface of the DM9801 * PHY (its MDIO pin is not connected to anything). Consequently, * the driver has to just 'know' about the additional mode and deal * with it itself. *sigh* */ static void dc_miibus_mediainit(device_t dev) { struct dc_softc *sc; struct mii_data *mii; struct ifmedia *ifm; int rev; rev = pci_get_revid(dev); sc = device_get_softc(dev); mii = device_get_softc(sc->dc_miibus); ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A) ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL); } #define DC_BITS_512 9 #define DC_BITS_128 7 #define DC_BITS_64 6 static uint32_t dc_mchash_le(struct dc_softc *sc, const uint8_t *addr) { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_le(addr, ETHER_ADDR_LEN); /* * The hash table on the PNIC II and the MX98715AEC-C/D/E * chips is only 128 bits wide. */ if (sc->dc_flags & DC_128BIT_HASH) return (crc & ((1 << DC_BITS_128) - 1)); /* The hash table on the MX98715BEC is only 64 bits wide. */ if (sc->dc_flags & DC_64BIT_HASH) return (crc & ((1 << DC_BITS_64) - 1)); /* Xircom's hash filtering table is different (read: weird) */ /* Xircom uses the LEAST significant bits */ if (DC_IS_XIRCOM(sc)) { if ((crc & 0x180) == 0x180) return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4)); else return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4)); } return (crc & ((1 << DC_BITS_512) - 1)); } /* * Calculate CRC of a multicast group address, return the lower 6 bits. */ static uint32_t dc_mchash_be(const uint8_t *addr) { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_be(addr, ETHER_ADDR_LEN); /* Return the filter bit position. */ return ((crc >> 26) & 0x0000003F); } /* * 21143-style RX filter setup routine. Filter programming is done by * downloading a special setup frame into the TX engine. 21143, Macronix, * PNIC, PNIC II and Davicom chips are programmed this way. * * We always program the chip using 'hash perfect' mode, i.e. one perfect * address (our node address) and a 512-bit hash filter for multicast * frames. We also sneak the broadcast address into the hash filter since * we need that too. */ static void dc_setfilt_21143(struct dc_softc *sc) { uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; struct dc_desc *sframe; uint32_t h, *sp; struct ifmultiaddr *ifma; struct ifnet *ifp; int i; ifp = sc->dc_ifp; i = sc->dc_cdata.dc_tx_prod; DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); sc->dc_cdata.dc_tx_cnt++; sframe = &sc->dc_ldata.dc_tx_list[i]; sp = sc->dc_cdata.dc_sbuf; bzero(sp, DC_SFRAME_LEN); sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr)); sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = dc_mchash_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); sp[h >> 4] |= htole32(1 << (h & 0xF)); } if_maddr_runlock(ifp); if (ifp->if_flags & IFF_BROADCAST) { h = dc_mchash_le(sc, ifp->if_broadcastaddr); sp[h >> 4] |= htole32(1 << (h & 0xF)); } /* Set our MAC address. */ bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); sp[39] = DC_SP_MAC(eaddr[0]); sp[40] = DC_SP_MAC(eaddr[1]); sp[41] = DC_SP_MAC(eaddr[2]); sframe->dc_status = htole32(DC_TXSTAT_OWN); bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * The PNIC takes an exceedingly long time to process its * setup frame; wait 10ms after posting the setup frame * before proceeding, just so it has time to swallow its * medicine. */ DELAY(10000); sc->dc_wdog_timer = 5; } static void dc_setfilt_admtek(struct dc_softc *sc) { uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; struct ifmultiaddr *ifma; int h = 0; uint32_t hashes[2] = { 0, 0 }; ifp = sc->dc_ifp; /* Init our MAC address. */ bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* First, zot all the existing hash bits. */ CSR_WRITE_4(sc, DC_AL_MAR0, 0); CSR_WRITE_4(sc, DC_AL_MAR1, 0); /* * If we're already in promisc or allmulti mode, we * don't have to bother programming the multicast filter. */ if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) return; /* Now program new ones. */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (DC_IS_CENTAUR(sc)) h = dc_mchash_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); else h = dc_mchash_be( LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } if_maddr_runlock(ifp); CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]); CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]); } static void dc_setfilt_asix(struct dc_softc *sc) { uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; struct ifnet *ifp; struct ifmultiaddr *ifma; int h = 0; uint32_t hashes[2] = { 0, 0 }; ifp = sc->dc_ifp; /* Init our MAC address. */ bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* * The ASIX chip has a special bit to enable reception * of broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); else DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); /* * If we're already in promisc or allmulti mode, we * don't have to bother programming the multicast filter. */ if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) return; /* now program new ones */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } if_maddr_runlock(ifp); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); } static void dc_setfilt_uli(struct dc_softc *sc) { uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; struct ifmultiaddr *ifma; struct dc_desc *sframe; uint32_t filter, *sp; uint8_t *ma; int i, mcnt; ifp = sc->dc_ifp; i = sc->dc_cdata.dc_tx_prod; DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); sc->dc_cdata.dc_tx_cnt++; sframe = &sc->dc_ldata.dc_tx_list[i]; sp = sc->dc_cdata.dc_sbuf; bzero(sp, DC_SFRAME_LEN); sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr)); sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT); sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; /* Set station address. */ bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); *sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]); *sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]); *sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]); /* Set broadcast address. */ *sp++ = DC_SP_MAC(0xFFFF); *sp++ = DC_SP_MAC(0xFFFF); *sp++ = DC_SP_MAC(0xFFFF); /* Extract current filter configuration. */ filter = CSR_READ_4(sc, DC_NETCFG); filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI); /* Now build perfect filters. */ mcnt = 0; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (mcnt >= DC_ULI_FILTER_NPERF) { filter |= DC_NETCFG_RX_ALLMULTI; break; } ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); *sp++ = DC_SP_MAC(ma[1] << 8 | ma[0]); *sp++ = DC_SP_MAC(ma[3] << 8 | ma[2]); *sp++ = DC_SP_MAC(ma[5] << 8 | ma[4]); mcnt++; } if_maddr_runlock(ifp); for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) { *sp++ = DC_SP_MAC(0xFFFF); *sp++ = DC_SP_MAC(0xFFFF); *sp++ = DC_SP_MAC(0xFFFF); } if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) CSR_WRITE_4(sc, DC_NETCFG, filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); if (ifp->if_flags & IFF_PROMISC) filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI; if (ifp->if_flags & IFF_ALLMULTI) filter |= DC_NETCFG_RX_ALLMULTI; CSR_WRITE_4(sc, DC_NETCFG, filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) CSR_WRITE_4(sc, DC_NETCFG, filter); sframe->dc_status = htole32(DC_TXSTAT_OWN); bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * Wait some time... */ DELAY(1000); sc->dc_wdog_timer = 5; } static void dc_setfilt_xircom(struct dc_softc *sc) { uint16_t eaddr[(ETHER_ADDR_LEN+1)/2]; struct ifnet *ifp; struct ifmultiaddr *ifma; struct dc_desc *sframe; uint32_t h, *sp; int i; ifp = sc->dc_ifp; DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); i = sc->dc_cdata.dc_tx_prod; DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); sc->dc_cdata.dc_tx_cnt++; sframe = &sc->dc_ldata.dc_tx_list[i]; sp = sc->dc_cdata.dc_sbuf; bzero(sp, DC_SFRAME_LEN); sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr)); sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = dc_mchash_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); sp[h >> 4] |= htole32(1 << (h & 0xF)); } if_maddr_runlock(ifp); if (ifp->if_flags & IFF_BROADCAST) { h = dc_mchash_le(sc, ifp->if_broadcastaddr); sp[h >> 4] |= htole32(1 << (h & 0xF)); } /* Set our MAC address. */ bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN); sp[0] = DC_SP_MAC(eaddr[0]); sp[1] = DC_SP_MAC(eaddr[1]); sp[2] = DC_SP_MAC(eaddr[2]); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); sframe->dc_status = htole32(DC_TXSTAT_OWN); bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * Wait some time... */ DELAY(1000); sc->dc_wdog_timer = 5; } static void dc_setfilt(struct dc_softc *sc) { if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc)) dc_setfilt_21143(sc); if (DC_IS_ASIX(sc)) dc_setfilt_asix(sc); if (DC_IS_ADMTEK(sc)) dc_setfilt_admtek(sc); if (DC_IS_ULI(sc)) dc_setfilt_uli(sc); if (DC_IS_XIRCOM(sc)) dc_setfilt_xircom(sc); } static void dc_netcfg_wait(struct dc_softc *sc) { uint32_t isr; int i; for (i = 0; i < DC_TIMEOUT; i++) { isr = CSR_READ_4(sc, DC_ISR); if (isr & DC_ISR_TX_IDLE && ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT)) break; DELAY(10); } if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) { if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc)) device_printf(sc->dc_dev, "%s: failed to force tx to idle state\n", __func__); if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) && !DC_HAS_BROKEN_RXSTATE(sc)) device_printf(sc->dc_dev, "%s: failed to force rx to idle state\n", __func__); } } /* * In order to fiddle with the 'full-duplex' and '100Mbps' bits in * the netconfig register, we first have to put the transmit and/or * receive logic in the idle state. */ static void dc_setcfg(struct dc_softc *sc, int media) { int restart = 0, watchdogreg; if (IFM_SUBTYPE(media) == IFM_NONE) return; if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) { restart = 1; DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)); dc_netcfg_wait(sc); } if (IFM_SUBTYPE(media) == IFM_100_TX) { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); if (sc->dc_pmode == DC_PMODE_MII) { if (DC_IS_INTEL(sc)) { /* There's a write enable bit here that reads as 1. */ watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); watchdogreg &= ~DC_WDOG_CTLWREN; watchdogreg |= DC_WDOG_JABBERDIS; CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); } else { DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); } DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER)); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | DC_NETCFG_SCRAMBLER)); if (!DC_IS_DAVICOM(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); } else { if (DC_IS_PNIC(sc)) { DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); } DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); } } if (IFM_SUBTYPE(media) == IFM_10_T) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); if (sc->dc_pmode == DC_PMODE_MII) { /* There's a write enable bit here that reads as 1. */ if (DC_IS_INTEL(sc)) { watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); watchdogreg &= ~DC_WDOG_CTLWREN; watchdogreg |= DC_WDOG_JABBERDIS; CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); } else { DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); } DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS | DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER)); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); if (!DC_IS_DAVICOM(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); } else { if (DC_IS_PNIC(sc)) { DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); } DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); if (DC_IS_INTEL(sc)) { DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); if ((media & IFM_GMASK) == IFM_FDX) DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D); else DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F); DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); DC_CLRBIT(sc, DC_10BTCTRL, DC_TCTL_AUTONEGENBL); DELAY(20000); } } } /* * If this is a Davicom DM9102A card with a DM9801 HomePNA * PHY and we want HomePNA mode, set the portsel bit to turn * on the external MII port. */ if (DC_IS_DAVICOM(sc)) { if (IFM_SUBTYPE(media) == IFM_HPNA_1) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); sc->dc_link = 1; } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); } } if ((media & IFM_GMASK) == IFM_FDX) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); } if (restart) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON); } static void dc_reset(struct dc_softc *sc) { int i; DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) break; } if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) || DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) { DELAY(10000); DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); i = 0; } if (i == DC_TIMEOUT) device_printf(sc->dc_dev, "reset never completed!\n"); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); CSR_WRITE_4(sc, DC_IMR, 0x00000000); CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); /* * Bring the SIA out of reset. In some cases, it looks * like failing to unreset the SIA soon enough gets it * into a state where it will never come out of reset * until we reset the whole chip again. */ if (DC_IS_INTEL(sc)) { DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF); CSR_WRITE_4(sc, DC_WATCHDOG, 0); } } static const struct dc_type * dc_devtype(device_t dev) { const struct dc_type *t; uint32_t devid; uint8_t rev; t = dc_devs; devid = pci_get_devid(dev); rev = pci_get_revid(dev); while (t->dc_name != NULL) { if (devid == t->dc_devid && rev >= t->dc_minrev) return (t); t++; } return (NULL); } /* * Probe for a 21143 or clone chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. * We do a little bit of extra work to identify the exact type of * chip. The MX98713 and MX98713A have the same PCI vendor/device ID, * but different revision IDs. The same is true for 98715/98715A * chips and the 98725, as well as the ASIX and ADMtek chips. In some * cases, the exact chip revision affects driver behavior. */ static int dc_probe(device_t dev) { const struct dc_type *t; t = dc_devtype(dev); if (t != NULL) { device_set_desc(dev, t->dc_name); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static void dc_apply_fixup(struct dc_softc *sc, int media) { struct dc_mediainfo *m; uint8_t *p; int i; uint32_t reg; m = sc->dc_mi; while (m != NULL) { if (m->dc_media == media) break; m = m->dc_next; } if (m == NULL) return; for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) { reg = (p[0] | (p[1] << 8)) << 16; CSR_WRITE_4(sc, DC_WATCHDOG, reg); } for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) { reg = (p[0] | (p[1] << 8)) << 16; CSR_WRITE_4(sc, DC_WATCHDOG, reg); } } static int dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l) { struct dc_mediainfo *m; m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); if (m == NULL) { device_printf(sc->dc_dev, "Could not allocate mediainfo\n"); return (ENOMEM); } switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) { case DC_SIA_CODE_10BT: m->dc_media = IFM_10_T; break; case DC_SIA_CODE_10BT_FDX: m->dc_media = IFM_10_T | IFM_FDX; break; case DC_SIA_CODE_10B2: m->dc_media = IFM_10_2; break; case DC_SIA_CODE_10B5: m->dc_media = IFM_10_5; break; default: break; } /* * We need to ignore CSR13, CSR14, CSR15 for SIA mode. * Things apparently already work for cards that do * supply Media Specific Data. */ if (l->dc_sia_code & DC_SIA_CODE_EXT) { m->dc_gp_len = 2; m->dc_gp_ptr = (uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl; } else { m->dc_gp_len = 2; m->dc_gp_ptr = (uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl; } m->dc_next = sc->dc_mi; sc->dc_mi = m; sc->dc_pmode = DC_PMODE_SIA; return (0); } static int dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l) { struct dc_mediainfo *m; m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); if (m == NULL) { device_printf(sc->dc_dev, "Could not allocate mediainfo\n"); return (ENOMEM); } if (l->dc_sym_code == DC_SYM_CODE_100BT) m->dc_media = IFM_100_TX; if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX) m->dc_media = IFM_100_TX | IFM_FDX; m->dc_gp_len = 2; m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl; m->dc_next = sc->dc_mi; sc->dc_mi = m; sc->dc_pmode = DC_PMODE_SYM; return (0); } static int dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l) { struct dc_mediainfo *m; uint8_t *p; m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO); if (m == NULL) { device_printf(sc->dc_dev, "Could not allocate mediainfo\n"); return (ENOMEM); } /* We abuse IFM_AUTO to represent MII. */ m->dc_media = IFM_AUTO; m->dc_gp_len = l->dc_gpr_len; p = (uint8_t *)l; p += sizeof(struct dc_eblock_mii); m->dc_gp_ptr = p; p += 2 * l->dc_gpr_len; m->dc_reset_len = *p; p++; m->dc_reset_ptr = p; m->dc_next = sc->dc_mi; sc->dc_mi = m; return (0); } static int dc_read_srom(struct dc_softc *sc, int bits) { int size; size = DC_ROM_SIZE(bits); sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->dc_srom == NULL) { device_printf(sc->dc_dev, "Could not allocate SROM buffer\n"); return (ENOMEM); } dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0); return (0); } static int dc_parse_21143_srom(struct dc_softc *sc) { struct dc_leaf_hdr *lhdr; struct dc_eblock_hdr *hdr; int error, have_mii, i, loff; char *ptr; have_mii = 0; loff = sc->dc_srom[27]; lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]); ptr = (char *)lhdr; ptr += sizeof(struct dc_leaf_hdr) - 1; /* * Look if we got a MII media block. */ for (i = 0; i < lhdr->dc_mcnt; i++) { hdr = (struct dc_eblock_hdr *)ptr; if (hdr->dc_type == DC_EBLOCK_MII) have_mii++; ptr += (hdr->dc_len & 0x7F); ptr++; } /* * Do the same thing again. Only use SIA and SYM media * blocks if no MII media block is available. */ ptr = (char *)lhdr; ptr += sizeof(struct dc_leaf_hdr) - 1; error = 0; for (i = 0; i < lhdr->dc_mcnt; i++) { hdr = (struct dc_eblock_hdr *)ptr; switch (hdr->dc_type) { case DC_EBLOCK_MII: error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr); break; case DC_EBLOCK_SIA: if (! have_mii) error = dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr); break; case DC_EBLOCK_SYM: if (! have_mii) error = dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr); break; default: /* Don't care. Yet. */ break; } ptr += (hdr->dc_len & 0x7F); ptr++; } return (error); } static void dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *paddr; KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__, nseg)); paddr = arg; *paddr = segs->ds_addr; } static int dc_dma_alloc(struct dc_softc *sc) { int error, i; error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->dc_ptag); if (error) { device_printf(sc->dc_dev, "failed to allocate parent DMA tag\n"); goto fail; } /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1, DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag); if (error) { device_printf(sc->dc_dev, "failed to create RX list DMA tag\n"); goto fail; } error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1, DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag); if (error) { device_printf(sc->dc_dev, "failed to create TX list DMA tag\n"); goto fail; } /* RX descriptor list. */ error = bus_dmamem_alloc(sc->dc_rx_ltag, (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap); if (error) { device_printf(sc->dc_dev, "failed to allocate DMA'able memory for RX list\n"); goto fail; } error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap, sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr, &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->dc_dev, "failed to load DMA'able memory for RX list\n"); goto fail; } /* TX descriptor list. */ error = bus_dmamem_alloc(sc->dc_tx_ltag, (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap); if (error) { device_printf(sc->dc_dev, "failed to allocate DMA'able memory for TX list\n"); goto fail; } error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap, sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr, &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->dc_dev, "cannot load DMA'able memory for TX list\n"); goto fail; } /* * Allocate a busdma tag and DMA safe memory for the multicast * setup frame. */ error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag); if (error) { device_printf(sc->dc_dev, "failed to create DMA tag for setup frame\n"); goto fail; } error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf, BUS_DMA_NOWAIT, &sc->dc_smap); if (error) { device_printf(sc->dc_dev, "failed to allocate DMA'able memory for setup frame\n"); goto fail; } error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf, DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->dc_dev, "cannot load DMA'able memory for setup frame\n"); goto fail; } /* Allocate a busdma tag for RX mbufs. */ error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag); if (error) { device_printf(sc->dc_dev, "failed to create RX mbuf tag\n"); goto fail; } /* Allocate a busdma tag for TX mbufs. */ error = bus_dma_tag_create(sc->dc_ptag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES, 0, NULL, NULL, &sc->dc_tx_mtag); if (error) { device_printf(sc->dc_dev, "failed to create TX mbuf tag\n"); goto fail; } /* Create the TX/RX busdma maps. */ for (i = 0; i < DC_TX_LIST_CNT; i++) { error = bus_dmamap_create(sc->dc_tx_mtag, 0, &sc->dc_cdata.dc_tx_map[i]); if (error) { device_printf(sc->dc_dev, "failed to create TX mbuf dmamap\n"); goto fail; } } for (i = 0; i < DC_RX_LIST_CNT; i++) { error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_cdata.dc_rx_map[i]); if (error) { device_printf(sc->dc_dev, "failed to create RX mbuf dmamap\n"); goto fail; } } error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap); if (error) { device_printf(sc->dc_dev, "failed to create spare RX mbuf dmamap\n"); goto fail; } fail: return (error); } static void dc_dma_free(struct dc_softc *sc) { int i; /* RX buffers. */ if (sc->dc_rx_mtag != NULL) { for (i = 0; i < DC_RX_LIST_CNT; i++) { if (sc->dc_cdata.dc_rx_map[i] != NULL) bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]); } if (sc->dc_sparemap != NULL) bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap); bus_dma_tag_destroy(sc->dc_rx_mtag); } /* TX buffers. */ if (sc->dc_rx_mtag != NULL) { for (i = 0; i < DC_TX_LIST_CNT; i++) { if (sc->dc_cdata.dc_tx_map[i] != NULL) bus_dmamap_destroy(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[i]); } bus_dma_tag_destroy(sc->dc_tx_mtag); } /* RX descriptor list. */ if (sc->dc_rx_ltag) { if (sc->dc_rx_lmap != NULL) bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap); if (sc->dc_rx_lmap != NULL && sc->dc_ldata.dc_rx_list != NULL) bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list, sc->dc_rx_lmap); bus_dma_tag_destroy(sc->dc_rx_ltag); } /* TX descriptor list. */ if (sc->dc_tx_ltag) { if (sc->dc_tx_lmap != NULL) bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap); if (sc->dc_tx_lmap != NULL && sc->dc_ldata.dc_tx_list != NULL) bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list, sc->dc_tx_lmap); bus_dma_tag_destroy(sc->dc_tx_ltag); } /* multicast setup frame. */ if (sc->dc_stag) { if (sc->dc_smap != NULL) bus_dmamap_unload(sc->dc_stag, sc->dc_smap); if (sc->dc_smap != NULL && sc->dc_cdata.dc_sbuf != NULL) bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap); bus_dma_tag_destroy(sc->dc_stag); } } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int dc_attach(device_t dev) { uint32_t eaddr[(ETHER_ADDR_LEN+3)/4]; uint32_t command; struct dc_softc *sc; struct ifnet *ifp; struct dc_mediainfo *m; uint32_t reg, revision; uint16_t *srom; int error, mac_offset, n, phy, rid, tmp; uint8_t *mac; sc = device_get_softc(dev); sc->dc_dev = dev; mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = DC_RID; sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE); if (sc->dc_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } sc->dc_btag = rman_get_bustag(sc->dc_res); sc->dc_bhandle = rman_get_bushandle(sc->dc_res); /* Allocate interrupt. */ rid = 0; sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->dc_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Need this info to decide on a chip type. */ sc->dc_info = dc_devtype(dev); revision = pci_get_revid(dev); error = 0; /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */ if (sc->dc_info->dc_devid != DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) && sc->dc_info->dc_devid != DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201)) dc_eeprom_width(sc); switch (sc->dc_info->dc_devid) { case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143): sc->dc_type = DC_TYPE_21143; sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; sc->dc_flags |= DC_REDUCED_MII_POLL; /* Save EEPROM contents so we can parse them later. */ error = dc_read_srom(sc, sc->dc_romwidth); if (error != 0) goto fail; break; case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009): case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100): case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102): sc->dc_type = DC_TYPE_DM9102; sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS; sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD; sc->dc_flags |= DC_TX_ALIGN; sc->dc_pmode = DC_PMODE_MII; /* Increase the latency timer value. */ pci_write_config(dev, PCIR_LATTIMER, 0x80, 1); break; case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981): sc->dc_type = DC_TYPE_AL981; sc->dc_flags |= DC_TX_USE_TX_INTR; sc->dc_flags |= DC_TX_ADMTEK_WAR; sc->dc_pmode = DC_PMODE_MII; error = dc_read_srom(sc, sc->dc_romwidth); if (error != 0) goto fail; break; case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983): case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985): case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511): case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513): case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD): case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500): case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX): case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242): case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX): case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T): case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB): case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120): case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130): case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08): case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09): sc->dc_type = DC_TYPE_AN983; sc->dc_flags |= DC_64BIT_HASH; sc->dc_flags |= DC_TX_USE_TX_INTR; sc->dc_flags |= DC_TX_ADMTEK_WAR; sc->dc_pmode = DC_PMODE_MII; /* Don't read SROM for - auto-loaded on reset */ break; case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713): case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP): if (revision < DC_REVISION_98713A) { sc->dc_type = DC_TYPE_98713; } if (revision >= DC_REVISION_98713A) { sc->dc_type = DC_TYPE_98713A; sc->dc_flags |= DC_21143_NWAY; } sc->dc_flags |= DC_REDUCED_MII_POLL; sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; break; case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5): case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217): /* * Macronix MX98715AEC-C/D/E parts have only a * 128-bit hash table. We need to deal with these * in the same manner as the PNIC II so that we * get the right number of bits out of the * CRC routine. */ if (revision >= DC_REVISION_98715AEC_C && revision < DC_REVISION_98725) sc->dc_flags |= DC_128BIT_HASH; sc->dc_type = DC_TYPE_987x5; sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; break; case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727): sc->dc_type = DC_TYPE_987x5; sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR; sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; break; case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115): sc->dc_type = DC_TYPE_PNICII; sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH; sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY; break; case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168): sc->dc_type = DC_TYPE_PNIC; sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS; sc->dc_flags |= DC_PNIC_RX_BUG_WAR; sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT); if (sc->dc_pnic_rx_buf == NULL) { device_printf(sc->dc_dev, "Could not allocate PNIC RX buffer\n"); error = ENOMEM; goto fail; } if (revision < DC_REVISION_82C169) sc->dc_pmode = DC_PMODE_SYM; break; case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A): sc->dc_type = DC_TYPE_ASIX; sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG; sc->dc_flags |= DC_REDUCED_MII_POLL; sc->dc_pmode = DC_PMODE_MII; break; case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201): sc->dc_type = DC_TYPE_XIRCOM; sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | DC_TX_ALIGN; /* * We don't actually need to coalesce, but we're doing * it to obtain a double word aligned buffer. * The DC_TX_COALESCE flag is required. */ sc->dc_pmode = DC_PMODE_MII; break; case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112): sc->dc_type = DC_TYPE_CONEXANT; sc->dc_flags |= DC_TX_INTR_ALWAYS; sc->dc_flags |= DC_REDUCED_MII_POLL; sc->dc_pmode = DC_PMODE_MII; error = dc_read_srom(sc, sc->dc_romwidth); if (error != 0) goto fail; break; case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261): case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263): if (sc->dc_info->dc_devid == DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261)) sc->dc_type = DC_TYPE_ULI_M5261; else sc->dc_type = DC_TYPE_ULI_M5263; /* TX buffers should be aligned on 4 byte boundary. */ sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE | DC_TX_ALIGN; sc->dc_pmode = DC_PMODE_MII; error = dc_read_srom(sc, sc->dc_romwidth); if (error != 0) goto fail; break; default: device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_devid); break; } /* Save the cache line size. */ if (DC_IS_DAVICOM(sc)) sc->dc_cachesize = 0; else sc->dc_cachesize = pci_get_cachelnsz(dev); /* Reset the adapter. */ dc_reset(sc); /* Take 21143 out of snooze mode */ if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) { command = pci_read_config(dev, DC_PCI_CFDD, 4); command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE); pci_write_config(dev, DC_PCI_CFDD, command, 4); } /* * Try to learn something about the supported media. * We know that ASIX and ADMtek and Davicom devices * will *always* be using MII media, so that's a no-brainer. * The tricky ones are the Macronix/PNIC II and the * Intel 21143. */ if (DC_IS_INTEL(sc)) { error = dc_parse_21143_srom(sc); if (error != 0) goto fail; } else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { if (sc->dc_type == DC_TYPE_98713) sc->dc_pmode = DC_PMODE_MII; else sc->dc_pmode = DC_PMODE_SYM; } else if (!sc->dc_pmode) sc->dc_pmode = DC_PMODE_MII; /* * Get station address from the EEPROM. */ switch(sc->dc_type) { case DC_TYPE_98713: case DC_TYPE_98713A: case DC_TYPE_987x5: case DC_TYPE_PNICII: dc_read_eeprom(sc, (caddr_t)&mac_offset, (DC_EE_NODEADDR_OFFSET / 2), 1, 0); dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0); break; case DC_TYPE_PNIC: dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1); break; case DC_TYPE_DM9102: dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); #ifdef __sparc64__ /* * If this is an onboard dc(4) the station address read from * the EEPROM is all zero and we have to get it from the FCode. */ if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0) OF_getetheraddr(dev, (caddr_t)&eaddr); #endif break; case DC_TYPE_21143: case DC_TYPE_ASIX: dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); break; case DC_TYPE_AL981: case DC_TYPE_AN983: reg = CSR_READ_4(sc, DC_AL_PAR0); mac = (uint8_t *)&eaddr[0]; mac[0] = (reg >> 0) & 0xff; mac[1] = (reg >> 8) & 0xff; mac[2] = (reg >> 16) & 0xff; mac[3] = (reg >> 24) & 0xff; reg = CSR_READ_4(sc, DC_AL_PAR1); mac[4] = (reg >> 0) & 0xff; mac[5] = (reg >> 8) & 0xff; break; case DC_TYPE_CONEXANT: bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, ETHER_ADDR_LEN); break; case DC_TYPE_XIRCOM: /* The MAC comes from the CIS. */ mac = pci_get_ether(dev); if (!mac) { device_printf(dev, "No station address in CIS!\n"); error = ENXIO; goto fail; } bcopy(mac, eaddr, ETHER_ADDR_LEN); break; case DC_TYPE_ULI_M5261: case DC_TYPE_ULI_M5263: srom = (uint16_t *)sc->dc_srom; if (srom == NULL || *srom == 0xFFFF || *srom == 0) { /* * No valid SROM present, read station address * from ID Table. */ device_printf(dev, "Reading station address from ID Table.\n"); CSR_WRITE_4(sc, DC_BUSCTL, 0x10000); CSR_WRITE_4(sc, DC_SIARESET, 0x01C0); CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000); CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010); CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000); CSR_WRITE_4(sc, DC_SIARESET, 0x0000); CSR_WRITE_4(sc, DC_SIARESET, 0x01B0); mac = (uint8_t *)eaddr; for (n = 0; n < ETHER_ADDR_LEN; n++) mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL); CSR_WRITE_4(sc, DC_SIARESET, 0x0000); CSR_WRITE_4(sc, DC_BUSCTL, 0x0000); DELAY(10); } else dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); break; default: dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0); break; } bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr)); /* * If we still have invalid station address, see whether we can * find station address for chip 0. Some multi-port controllers * just store station address for chip 0 if they have a shared * SROM. */ if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) || (sc->dc_eaddr[0] == 0xffffffff && (sc->dc_eaddr[1] & 0xffff) == 0xffff)) { error = dc_check_multiport(sc); if (error == 0) { bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr)); /* Extract media information. */ if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) { while (sc->dc_mi != NULL) { m = sc->dc_mi->dc_next; free(sc->dc_mi, M_DEVBUF); sc->dc_mi = m; } error = dc_parse_21143_srom(sc); if (error != 0) goto fail; } } else if (error == ENOMEM) goto fail; else error = 0; } if ((error = dc_dma_alloc(sc)) != 0) goto fail; ifp = sc->dc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = dc_ioctl; ifp->if_start = dc_start; ifp->if_init = dc_init; IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1); ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1; IFQ_SET_READY(&ifp->if_snd); /* * Do MII setup. If this is a 21143, check for a PHY on the * MII bus after applying any necessary fixups to twiddle the * GPIO bits. If we don't end up finding a PHY, restore the * old selection (SIA only or SIA/SYM) and attach the dcphy * driver instead. */ tmp = 0; if (DC_IS_INTEL(sc)) { dc_apply_fixup(sc, IFM_AUTO); tmp = sc->dc_pmode; sc->dc_pmode = DC_PMODE_MII; } /* * Setup General Purpose port mode and data so the tulip can talk * to the MII. This needs to be done before mii_attach so that * we can actually see them. */ if (DC_IS_XIRCOM(sc)) { CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); } phy = MII_PHY_ANY; /* * Note: both the AL981 and AN983 have internal PHYs, however the * AL981 provides direct access to the PHY registers while the AN983 * uses a serial MII interface. The AN983's MII interface is also * buggy in that you can read from any MII address (0 to 31), but * only address 1 behaves normally. To deal with both cases, we * pretend that the PHY is at MII address 1. */ if (DC_IS_ADMTEK(sc)) phy = DC_ADMTEK_PHYADDR; /* * Note: the ukphy probes of the RS7112 report a PHY at MII address * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the * correct one. */ if (DC_IS_CONEXANT(sc)) phy = DC_CONEXANT_PHYADDR; error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd, dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); if (error && DC_IS_INTEL(sc)) { sc->dc_pmode = tmp; if (sc->dc_pmode != DC_PMODE_SIA) sc->dc_pmode = DC_PMODE_SYM; sc->dc_flags |= DC_21143_NWAY; /* * For non-MII cards, we need to have the 21143 * drive the LEDs. Except there are some systems * like the NEC VersaPro NoteBook PC which have no * LEDs, and twiddling these bits has adverse effects * on them. (I.e. you suddenly can't get a link.) */ if (!(pci_get_subvendor(dev) == 0x1033 && pci_get_subdevice(dev) == 0x8028)) sc->dc_flags |= DC_TULIP_LEDS; error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd, dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); } if (error) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } if (DC_IS_ADMTEK(sc)) { /* * Set automatic TX underrun recovery for the ADMtek chips */ DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR); } /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0); callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0); /* * Call MI attach routine. */ ether_ifattach(ifp, (caddr_t)eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, dc_intr, sc, &sc->dc_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) dc_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int dc_detach(device_t dev) { struct dc_softc *sc; struct ifnet *ifp; struct dc_mediainfo *m; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized")); ifp = sc->dc_ifp; #ifdef DEVICE_POLLING if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { DC_LOCK(sc); dc_stop(sc); DC_UNLOCK(sc); callout_drain(&sc->dc_stat_ch); callout_drain(&sc->dc_wdog_ch); ether_ifdetach(ifp); } if (sc->dc_miibus) device_delete_child(dev, sc->dc_miibus); bus_generic_detach(dev); if (sc->dc_intrhand) bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); if (sc->dc_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); if (sc->dc_res) bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); if (ifp != NULL) if_free(ifp); dc_dma_free(sc); free(sc->dc_pnic_rx_buf, M_DEVBUF); while (sc->dc_mi != NULL) { m = sc->dc_mi->dc_next; free(sc->dc_mi, M_DEVBUF); sc->dc_mi = m; } free(sc->dc_srom, M_DEVBUF); mtx_destroy(&sc->dc_mtx); return (0); } /* * Initialize the transmit descriptors. */ static int dc_list_tx_init(struct dc_softc *sc) { struct dc_chain_data *cd; struct dc_list_data *ld; int i, nexti; cd = &sc->dc_cdata; ld = &sc->dc_ldata; for (i = 0; i < DC_TX_LIST_CNT; i++) { if (i == DC_TX_LIST_CNT - 1) nexti = 0; else nexti = i + 1; ld->dc_tx_list[i].dc_status = 0; ld->dc_tx_list[i].dc_ctl = 0; ld->dc_tx_list[i].dc_data = 0; ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti)); cd->dc_tx_chain[i] = NULL; } cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; cd->dc_tx_pkts = 0; bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int dc_list_rx_init(struct dc_softc *sc) { struct dc_chain_data *cd; struct dc_list_data *ld; int i, nexti; cd = &sc->dc_cdata; ld = &sc->dc_ldata; for (i = 0; i < DC_RX_LIST_CNT; i++) { if (dc_newbuf(sc, i) != 0) return (ENOBUFS); if (i == DC_RX_LIST_CNT - 1) nexti = 0; else nexti = i + 1; ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti)); } cd->dc_rx_prod = 0; bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int dc_newbuf(struct dc_softc *sc, int i) { struct mbuf *m; bus_dmamap_t map; bus_dma_segment_t segs[1]; int error, nseg; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, sizeof(u_int64_t)); /* * If this is a PNIC chip, zero the buffer. This is part * of the workaround for the receive bug in the 82c168 and * 82c169 chips. */ if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) bzero(mtod(m, char *), m->m_len); error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap, m, segs, &nseg, 0); if (error) { m_freem(m); return (error); } KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__, nseg)); if (sc->dc_cdata.dc_rx_chain[i] != NULL) bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]); map = sc->dc_cdata.dc_rx_map[i]; sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap; sc->dc_sparemap = map; sc->dc_cdata.dc_rx_chain[i] = m; bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i], BUS_DMASYNC_PREREAD); sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN); sc->dc_ldata.dc_rx_list[i].dc_data = htole32(DC_ADDR_LO(segs[0].ds_addr)); sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN); bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); return (0); } /* * Grrrrr. * The PNIC chip has a terrible bug in it that manifests itself during * periods of heavy activity. The exact mode of failure if difficult to * pinpoint: sometimes it only happens in promiscuous mode, sometimes it * will happen on slow machines. The bug is that sometimes instead of * uploading one complete frame during reception, it uploads what looks * like the entire contents of its FIFO memory. The frame we want is at * the end of the whole mess, but we never know exactly how much data has * been uploaded, so salvaging the frame is hard. * * There is only one way to do it reliably, and it's disgusting. * Here's what we know: * * - We know there will always be somewhere between one and three extra * descriptors uploaded. * * - We know the desired received frame will always be at the end of the * total data upload. * * - We know the size of the desired received frame because it will be * provided in the length field of the status word in the last descriptor. * * Here's what we do: * * - When we allocate buffers for the receive ring, we bzero() them. * This means that we know that the buffer contents should be all * zeros, except for data uploaded by the chip. * * - We also force the PNIC chip to upload frames that include the * ethernet CRC at the end. * * - We gather all of the bogus frame data into a single buffer. * * - We then position a pointer at the end of this buffer and scan * backwards until we encounter the first non-zero byte of data. * This is the end of the received frame. We know we will encounter * some data at the end of the frame because the CRC will always be * there, so even if the sender transmits a packet of all zeros, * we won't be fooled. * * - We know the size of the actual received frame, so we subtract * that value from the current pointer location. This brings us * to the start of the actual received packet. * * - We copy this into an mbuf and pass it on, along with the actual * frame length. * * The performance hit is tremendous, but it beats dropping frames all * the time. */ #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG) static void dc_pnic_rx_bug_war(struct dc_softc *sc, int idx) { struct dc_desc *cur_rx; struct dc_desc *c = NULL; struct mbuf *m = NULL; unsigned char *ptr; int i, total_len; uint32_t rxstat = 0; i = sc->dc_pnic_rx_bug_save; cur_rx = &sc->dc_ldata.dc_rx_list[idx]; ptr = sc->dc_pnic_rx_buf; bzero(ptr, DC_RXLEN * 5); /* Copy all the bytes from the bogus buffers. */ while (1) { c = &sc->dc_ldata.dc_rx_list[i]; rxstat = le32toh(c->dc_status); m = sc->dc_cdata.dc_rx_chain[i]; bcopy(mtod(m, char *), ptr, DC_RXLEN); ptr += DC_RXLEN; /* If this is the last buffer, break out. */ if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) break; dc_discard_rxbuf(sc, i); DC_INC(i, DC_RX_LIST_CNT); } /* Find the length of the actual receive frame. */ total_len = DC_RXBYTES(rxstat); /* Scan backwards until we hit a non-zero byte. */ while (*ptr == 0x00) ptr--; /* Round off. */ if ((uintptr_t)(ptr) & 0x3) ptr -= 1; /* Now find the start of the frame. */ ptr -= total_len; if (ptr < sc->dc_pnic_rx_buf) ptr = sc->dc_pnic_rx_buf; /* * Now copy the salvaged frame to the last mbuf and fake up * the status word to make it look like a successful * frame reception. */ bcopy(ptr, mtod(m, char *), total_len); cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG); } /* * This routine searches the RX ring for dirty descriptors in the * event that the rxeof routine falls out of sync with the chip's * current descriptor pointer. This may happen sometimes as a result * of a "no RX buffer available" condition that happens when the chip * consumes all of the RX buffers before the driver has a chance to * process the RX ring. This routine may need to be called more than * once to bring the driver back in sync with the chip, however we * should still be getting RX DONE interrupts to drive the search * for new packets in the RX ring, so we should catch up eventually. */ static int dc_rx_resync(struct dc_softc *sc) { struct dc_desc *cur_rx; int i, pos; pos = sc->dc_cdata.dc_rx_prod; for (i = 0; i < DC_RX_LIST_CNT; i++) { cur_rx = &sc->dc_ldata.dc_rx_list[pos]; if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN)) break; DC_INC(pos, DC_RX_LIST_CNT); } /* If the ring really is empty, then just return. */ if (i == DC_RX_LIST_CNT) return (0); /* We've fallen behing the chip: catch it. */ sc->dc_cdata.dc_rx_prod = pos; return (EAGAIN); } static void dc_discard_rxbuf(struct dc_softc *sc, int i) { struct mbuf *m; if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { m = sc->dc_cdata.dc_rx_chain[i]; bzero(mtod(m, char *), m->m_len); } sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN); sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN); bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static int dc_rxeof(struct dc_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct dc_desc *cur_rx; int i, total_len, rx_npkts; uint32_t rxstat; DC_LOCK_ASSERT(sc); ifp = sc->dc_ifp; rx_npkts = 0; bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (i = sc->dc_cdata.dc_rx_prod; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; DC_INC(i, DC_RX_LIST_CNT)) { #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif cur_rx = &sc->dc_ldata.dc_rx_list[i]; rxstat = le32toh(cur_rx->dc_status); if ((rxstat & DC_RXSTAT_OWN) != 0) break; m = sc->dc_cdata.dc_rx_chain[i]; bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i], BUS_DMASYNC_POSTREAD); total_len = DC_RXBYTES(rxstat); rx_npkts++; if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { if (rxstat & DC_RXSTAT_FIRSTFRAG) sc->dc_pnic_rx_bug_save = i; if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) continue; dc_pnic_rx_bug_war(sc, i); rxstat = le32toh(cur_rx->dc_status); total_len = DC_RXBYTES(rxstat); } } /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. However, don't report long * frames as errors since they could be vlans. */ if ((rxstat & DC_RXSTAT_RXERR)) { if (!(rxstat & DC_RXSTAT_GIANT) || (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE | DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN | DC_RXSTAT_RUNT | DC_RXSTAT_DE))) { ifp->if_ierrors++; if (rxstat & DC_RXSTAT_COLLSEEN) ifp->if_collisions++; dc_discard_rxbuf(sc, i); if (rxstat & DC_RXSTAT_CRCERR) continue; else { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); return (rx_npkts); } } } /* No errors; receive the packet. */ total_len -= ETHER_CRC_LEN; #ifdef __NO_STRICT_ALIGNMENT /* * On architectures without alignment problems we try to * allocate a new buffer for the receive ring, and pass up * the one where the packet is already, saving the expensive * copy done in m_devget(). * If we are on an architecture with alignment problems, or * if the allocation fails, then use m_devget and leave the * existing buffer in the receive ring. */ if (dc_newbuf(sc, i) != 0) { dc_discard_rxbuf(sc, i); ifp->if_iqdrops++; continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; #else { struct mbuf *m0; m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp, NULL); dc_discard_rxbuf(sc, i); if (m0 == NULL) { ifp->if_iqdrops++; continue; } m = m0; } #endif ifp->if_ipackets++; DC_UNLOCK(sc); (*ifp->if_input)(ifp, m); DC_LOCK(sc); } sc->dc_cdata.dc_rx_prod = i; return (rx_npkts); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void dc_txeof(struct dc_softc *sc) { struct dc_desc *cur_tx; struct ifnet *ifp; int idx, setup; uint32_t ctl, txstat; if (sc->dc_cdata.dc_tx_cnt == 0) return; ifp = sc->dc_ifp; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); setup = 0; for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod; DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) { cur_tx = &sc->dc_ldata.dc_tx_list[idx]; txstat = le32toh(cur_tx->dc_status); ctl = le32toh(cur_tx->dc_ctl); if (txstat & DC_TXSTAT_OWN) break; if (sc->dc_cdata.dc_tx_chain[idx] == NULL) continue; if (ctl & DC_TXCTL_SETUP) { cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP); setup++; bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_POSTWRITE); /* * Yes, the PNIC is so brain damaged * that it will sometimes generate a TX * underrun error while DMAing the RX * filter setup frame. If we detect this, * we have to send the setup frame again, * or else the filter won't be programmed * correctly. */ if (DC_IS_PNIC(sc)) { if (txstat & DC_TXSTAT_ERRSUM) dc_setfilt(sc); } sc->dc_cdata.dc_tx_chain[idx] = NULL; continue; } if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) { /* * XXX: Why does my Xircom taunt me so? * For some reason it likes setting the CARRLOST flag * even when the carrier is there. wtf?!? * Who knows, but Conexant chips have the * same problem. Maybe they took lessons * from Xircom. */ if (/*sc->dc_type == DC_TYPE_21143 &&*/ sc->dc_pmode == DC_PMODE_MII && ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM | DC_TXSTAT_NOCARRIER))) txstat &= ~DC_TXSTAT_ERRSUM; } else { if (/*sc->dc_type == DC_TYPE_21143 &&*/ sc->dc_pmode == DC_PMODE_MII && ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM | DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST))) txstat &= ~DC_TXSTAT_ERRSUM; } if (txstat & DC_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & DC_TXSTAT_EXCESSCOLL) ifp->if_collisions++; if (txstat & DC_TXSTAT_LATECOLL) ifp->if_collisions++; if (!(txstat & DC_TXSTAT_UNDERRUN)) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); return; } } else ifp->if_opackets++; ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3; bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]); m_freem(sc->dc_cdata.dc_tx_chain[idx]); sc->dc_cdata.dc_tx_chain[idx] = NULL; } sc->dc_cdata.dc_tx_cons = idx; if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (sc->dc_cdata.dc_tx_cnt == 0) sc->dc_wdog_timer = 0; } if (setup > 0) bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void dc_tick(void *xsc) { struct dc_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t r; sc = xsc; DC_LOCK_ASSERT(sc); ifp = sc->dc_ifp; mii = device_get_softc(sc->dc_miibus); /* * Reclaim transmitted frames for controllers that do * not generate TX completion interrupt for every frame. */ if (sc->dc_flags & DC_TX_USE_TX_INTR) dc_txeof(sc); if (sc->dc_flags & DC_REDUCED_MII_POLL) { if (sc->dc_flags & DC_21143_NWAY) { r = CSR_READ_4(sc, DC_10BTSTAT); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX && (r & DC_TSTAT_LS100)) { sc->dc_link = 0; mii_mediachg(mii); } if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && (r & DC_TSTAT_LS10)) { sc->dc_link = 0; mii_mediachg(mii); } if (sc->dc_link == 0) mii_tick(mii); } else { /* * For NICs which never report DC_RXSTATE_WAIT, we * have to bite the bullet... */ if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc, DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) && sc->dc_cdata.dc_tx_cnt == 0) mii_tick(mii); } } else mii_tick(mii); /* * When the init routine completes, we expect to be able to send * packets right away, and in fact the network code will send a * gratuitous ARP the moment the init routine marks the interface * as running. However, even though the MAC may have been initialized, * there may be a delay of a few seconds before the PHY completes * autonegotiation and the link is brought up. Any transmissions * made during that delay will be lost. Dealing with this is tricky: * we can't just pause in the init routine while waiting for the * PHY to come ready since that would bring the whole system to * a screeching halt for several seconds. * * What we do here is prevent the TX start routine from sending * any packets until a link has been established. After the * interface has been initialized, the tick routine will poll * the state of the PHY until the IFM_ACTIVE flag is set. Until * that time, packets will stay in the send queue, and once the * link comes up, they will be flushed out to the wire. */ if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) dc_start_locked(ifp); if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); else callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); } /* * A transmit underrun has occurred. Back off the transmit threshold, * or switch to store and forward mode if we have to. */ static void dc_tx_underrun(struct dc_softc *sc) { uint32_t netcfg, isr; int i, reinit; reinit = 0; netcfg = CSR_READ_4(sc, DC_NETCFG); device_printf(sc->dc_dev, "TX underrun -- "); if ((sc->dc_flags & DC_TX_STORENFWD) == 0) { if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) { printf("using store and forward mode\n"); netcfg |= DC_NETCFG_STORENFWD; } else { printf("increasing TX threshold\n"); sc->dc_txthresh += DC_TXTHRESH_INC; netcfg &= ~DC_NETCFG_TX_THRESH; netcfg |= sc->dc_txthresh; } if (DC_IS_INTEL(sc)) { /* * The real 21143 requires that the transmitter be idle * in order to change the transmit threshold or store * and forward state. */ CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON); for (i = 0; i < DC_TIMEOUT; i++) { isr = CSR_READ_4(sc, DC_ISR); if (isr & DC_ISR_TX_IDLE) break; DELAY(10); } if (i == DC_TIMEOUT) { device_printf(sc->dc_dev, "%s: failed to force tx to idle state\n", __func__); reinit++; } } } else { printf("resetting\n"); reinit++; } if (reinit == 0) { CSR_WRITE_4(sc, DC_NETCFG, netcfg); if (DC_IS_INTEL(sc)) CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON); } else { sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); } } #ifdef DEVICE_POLLING static poll_handler_t dc_poll; static int dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct dc_softc *sc = ifp->if_softc; int rx_npkts = 0; DC_LOCK(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { DC_UNLOCK(sc); return (rx_npkts); } sc->rxcycles = count; rx_npkts = dc_rxeof(sc); dc_txeof(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_drv_flags & IFF_DRV_OACTIVE)) dc_start_locked(ifp); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ uint32_t status; status = CSR_READ_4(sc, DC_ISR); status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF | DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN | DC_ISR_BUS_ERR); if (!status) { DC_UNLOCK(sc); return (rx_npkts); } /* ack what we have */ CSR_WRITE_4(sc, DC_ISR, status); if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) { uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED); ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff); if (dc_rx_resync(sc)) dc_rxeof(sc); } /* restart transmit unit if necessary */ if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt) CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); if (status & DC_ISR_TX_UNDERRUN) dc_tx_underrun(sc); if (status & DC_ISR_BUS_ERR) { if_printf(ifp, "%s: bus error\n", __func__); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); } } DC_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ static void dc_intr(void *arg) { struct dc_softc *sc; struct ifnet *ifp; uint32_t r, status; int n; sc = arg; if (sc->suspended) return; DC_LOCK(sc); status = CSR_READ_4(sc, DC_ISR); if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) { DC_UNLOCK(sc); return; } ifp = sc->dc_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { DC_UNLOCK(sc); return; } #endif /* Disable interrupts. */ CSR_WRITE_4(sc, DC_IMR, 0x00000000); for (n = 16; n > 0; n--) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; /* Ack interrupts. */ CSR_WRITE_4(sc, DC_ISR, status); if (status & DC_ISR_RX_OK) { if (dc_rxeof(sc) == 0) { while (dc_rx_resync(sc)) dc_rxeof(sc); } } if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF)) dc_txeof(sc); if (status & DC_ISR_TX_IDLE) { dc_txeof(sc); if (sc->dc_cdata.dc_tx_cnt) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); } } if (status & DC_ISR_TX_UNDERRUN) dc_tx_underrun(sc); if ((status & DC_ISR_RX_WATDOGTIMEO) || (status & DC_ISR_RX_NOBUF)) { r = CSR_READ_4(sc, DC_FRAMESDISCARDED); ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff); if (dc_rxeof(sc) == 0) { while (dc_rx_resync(sc)) dc_rxeof(sc); } } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) dc_start_locked(ifp); if (status & DC_ISR_BUS_ERR) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); DC_UNLOCK(sc); return; } status = CSR_READ_4(sc, DC_ISR); if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) break; } /* Re-enable interrupts. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) CSR_WRITE_4(sc, DC_IMR, DC_INTRS); DC_UNLOCK(sc); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int dc_encap(struct dc_softc *sc, struct mbuf **m_head) { bus_dma_segment_t segs[DC_MAXFRAGS]; bus_dmamap_t map; struct dc_desc *f; struct mbuf *m; int cur, defragged, error, first, frag, i, idx, nseg; m = NULL; defragged = 0; if (sc->dc_flags & DC_TX_COALESCE && ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) { m = m_defrag(*m_head, M_DONTWAIT); defragged = 1; } else { /* * Count the number of frags in this chain to see if we * need to m_collapse. Since the descriptor list is shared * by all packets, we'll m_collapse long chains so that they * do not use up the entire list, even if they would fit. */ i = 0; for (m = *m_head; m != NULL; m = m->m_next) i++; if (i > DC_TX_LIST_CNT / 4 || DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD) { m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS); defragged = 1; } } if (defragged != 0) { if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; } idx = sc->dc_cdata.dc_tx_prod; error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0); if (error == EFBIG) { if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS)) == NULL) { m_freem(*m_head); *m_head = NULL; return (defragged != 0 ? error : ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); KASSERT(nseg <= DC_MAXFRAGS, ("%s: wrong number of segments (%d)", __func__, nseg)); if (nseg == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check descriptor overruns. */ if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) { bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]); return (ENOBUFS); } bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx], BUS_DMASYNC_PREWRITE); first = cur = frag = sc->dc_cdata.dc_tx_prod; for (i = 0; i < nseg; i++) { if ((sc->dc_flags & DC_TX_ADMTEK_WAR) && (frag == (DC_TX_LIST_CNT - 1)) && (first != sc->dc_cdata.dc_tx_first)) { bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[first]); m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } f = &sc->dc_ldata.dc_tx_list[frag]; f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len); if (i == 0) { f->dc_status = 0; f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG); } else f->dc_status = htole32(DC_TXSTAT_OWN); f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr)); cur = frag; DC_INC(frag, DC_TX_LIST_CNT); } sc->dc_cdata.dc_tx_prod = frag; sc->dc_cdata.dc_tx_cnt += nseg; sc->dc_cdata.dc_tx_chain[cur] = *m_head; sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG); if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) sc->dc_ldata.dc_tx_list[first].dc_ctl |= htole32(DC_TXCTL_FINT); if (sc->dc_flags & DC_TX_INTR_ALWAYS) sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); if (sc->dc_flags & DC_TX_USE_TX_INTR && ++sc->dc_cdata.dc_tx_pkts >= 8) { sc->dc_cdata.dc_tx_pkts = 0; sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); } sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN); bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Swap the last and the first dmamaps to ensure the map for * this transmission is placed at the last descriptor. */ map = sc->dc_cdata.dc_tx_map[cur]; sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first]; sc->dc_cdata.dc_tx_map[first] = map; return (0); } static void dc_start(struct ifnet *ifp) { struct dc_softc *sc; sc = ifp->if_softc; DC_LOCK(sc); dc_start_locked(ifp); DC_UNLOCK(sc); } /* * Main transmit routine * To avoid having to do mbuf copies, we put pointers to the mbuf data * regions directly in the transmit lists. We also save a copy of the * pointers since the transmit list fragment pointers are physical * addresses. */ static void dc_start_locked(struct ifnet *ifp) { struct dc_softc *sc; struct mbuf *m_head; int queued; sc = ifp->if_softc; DC_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || sc->dc_link == 0) return; sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod; for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { /* * If there's no way we can send any packets, return now. */ if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (dc_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (queued > 0) { /* Transmit */ if (!(sc->dc_flags & DC_TX_POLL)) CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * Set a timeout in case the chip goes out to lunch. */ sc->dc_wdog_timer = 5; } } static void dc_init(void *xsc) { struct dc_softc *sc = xsc; DC_LOCK(sc); dc_init_locked(sc); DC_UNLOCK(sc); } static void dc_init_locked(struct dc_softc *sc) { struct ifnet *ifp = sc->dc_ifp; struct mii_data *mii; struct ifmedia *ifm; DC_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; mii = device_get_softc(sc->dc_miibus); /* * Cancel pending I/O and free all RX/TX buffers. */ dc_stop(sc); dc_reset(sc); if (DC_IS_INTEL(sc)) { ifm = &mii->mii_media; dc_apply_fixup(sc, ifm->ifm_media); } /* * Set cache alignment and burst length. */ if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc)) CSR_WRITE_4(sc, DC_BUSCTL, 0); else CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE); /* * Evenly share the bus between receive and transmit process. */ if (DC_IS_INTEL(sc)) DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION); if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); } else { DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); } if (sc->dc_flags & DC_TX_POLL) DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); switch(sc->dc_cachesize) { case 32: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); break; case 16: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); break; case 8: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); break; case 0: default: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); break; } if (sc->dc_flags & DC_TX_STORENFWD) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); else { if (sc->dc_txthresh > DC_TXTHRESH_MAX) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); } } DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { /* * The app notes for the 98713 and 98715A say that * in order to have the chips operate properly, a magic * number must be written to CSR16. Macronix does not * document the meaning of these bits so there's no way * to know exactly what they do. The 98713 has a magic * number all its own; the rest all use a different one. */ DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); else DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); } if (DC_IS_XIRCOM(sc)) { /* * setup General Purpose Port mode and data so the tulip * can talk to the MII. */ CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); } DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN); /* Init circular RX list. */ if (dc_list_rx_init(sc) == ENOBUFS) { device_printf(sc->dc_dev, "initialization failed: no memory for rx buffers\n"); dc_stop(sc); return; } /* * Init TX descriptors. */ dc_list_tx_init(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0)); CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0)); /* * Enable interrupts. */ #ifdef DEVICE_POLLING /* * ... but only if we are not polling, and make sure they are off in * the case of polling. Some cards (e.g. fxp) turn interrupts on * after a reset. */ if (ifp->if_capenable & IFCAP_POLLING) CSR_WRITE_4(sc, DC_IMR, 0x00000000); else #endif CSR_WRITE_4(sc, DC_IMR, DC_INTRS); CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); /* Initialize TX jabber and RX watchdog timer. */ if (DC_IS_ULI(sc)) CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK | DC_WDOG_HOSTUNJAB); /* Enable transmitter. */ DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); /* * If this is an Intel 21143 and we're not using the * MII port, program the LED control pins so we get * link and activity indications. */ if (sc->dc_flags & DC_TULIP_LEDS) { CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY); CSR_WRITE_4(sc, DC_WATCHDOG, 0); } /* * Load the RX/multicast filter. We do this sort of late * because the filter programming scheme on the 21143 and * some clones requires DMAing a setup frame via the TX * engine, and we need the transmitter enabled for that. */ dc_setfilt(sc); /* Enable receiver. */ DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; dc_ifmedia_upd_locked(sc); /* Clear missed frames and overflow counter. */ CSR_READ_4(sc, DC_FRAMESDISCARDED); /* Don't start the ticker if this is a homePNA link. */ if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1) sc->dc_link = 1; else { if (sc->dc_flags & DC_21143_NWAY) callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc); else callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc); } sc->dc_wdog_timer = 0; callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc); } /* * Set media options. */ static int dc_ifmedia_upd(struct ifnet *ifp) { struct dc_softc *sc; int error; sc = ifp->if_softc; DC_LOCK(sc); error = dc_ifmedia_upd_locked(sc); DC_UNLOCK(sc); return (error); } static int dc_ifmedia_upd_locked(struct dc_softc *sc) { struct mii_data *mii; struct ifmedia *ifm; int error; DC_LOCK_ASSERT(sc); sc->dc_link = 0; mii = device_get_softc(sc->dc_miibus); error = mii_mediachg(mii); if (error == 0) { ifm = &mii->mii_media; if (DC_IS_INTEL(sc)) dc_setcfg(sc, ifm->ifm_media); else if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) dc_setcfg(sc, ifm->ifm_media); } return (error); } /* * Report current media status. */ static void dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct dc_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = ifp->if_softc; mii = device_get_softc(sc->dc_miibus); DC_LOCK(sc); mii_pollstat(mii); ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc)) { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { ifmr->ifm_active = ifm->ifm_media; ifmr->ifm_status = 0; DC_UNLOCK(sc); return; } } ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; DC_UNLOCK(sc); } static int dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct dc_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFFLAGS: DC_LOCK(sc); if (ifp->if_flags & IFF_UP) { int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) & (IFF_PROMISC | IFF_ALLMULTI); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if (need_setfilt) dc_setfilt(sc); } else { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) dc_stop(sc); } sc->dc_if_flags = ifp->if_flags; DC_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: DC_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) dc_setfilt(sc); DC_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->dc_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: #ifdef DEVICE_POLLING if (ifr->ifr_reqcap & IFCAP_POLLING && !(ifp->if_capenable & IFCAP_POLLING)) { error = ether_poll_register(dc_poll, ifp); if (error) return(error); DC_LOCK(sc); /* Disable interrupts */ CSR_WRITE_4(sc, DC_IMR, 0x00000000); ifp->if_capenable |= IFCAP_POLLING; DC_UNLOCK(sc); return (error); } if (!(ifr->ifr_reqcap & IFCAP_POLLING) && ifp->if_capenable & IFCAP_POLLING) { error = ether_poll_deregister(ifp); /* Enable interrupts. */ DC_LOCK(sc); CSR_WRITE_4(sc, DC_IMR, DC_INTRS); ifp->if_capenable &= ~IFCAP_POLLING; DC_UNLOCK(sc); return (error); } #endif /* DEVICE_POLLING */ break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void dc_watchdog(void *xsc) { struct dc_softc *sc = xsc; struct ifnet *ifp; DC_LOCK_ASSERT(sc); if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) { callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc); return; } ifp = sc->dc_ifp; ifp->if_oerrors++; device_printf(sc->dc_dev, "watchdog timeout\n"); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; dc_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) dc_start_locked(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void dc_stop(struct dc_softc *sc) { struct ifnet *ifp; struct dc_list_data *ld; struct dc_chain_data *cd; int i; uint32_t ctl, netcfg; DC_LOCK_ASSERT(sc); ifp = sc->dc_ifp; ld = &sc->dc_ldata; cd = &sc->dc_cdata; callout_stop(&sc->dc_stat_ch); callout_stop(&sc->dc_wdog_ch); sc->dc_wdog_timer = 0; sc->dc_link = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); netcfg = CSR_READ_4(sc, DC_NETCFG); if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)) CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)); CSR_WRITE_4(sc, DC_IMR, 0x00000000); /* Wait the completion of TX/RX SM. */ if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON)) dc_netcfg_wait(sc); CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < DC_RX_LIST_CNT; i++) { if (cd->dc_rx_chain[i] != NULL) { bus_dmamap_sync(sc->dc_rx_mtag, cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->dc_rx_mtag, cd->dc_rx_map[i]); m_freem(cd->dc_rx_chain[i]); cd->dc_rx_chain[i] = NULL; } } bzero(ld->dc_rx_list, DC_RX_LIST_SZ); bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Free the TX list buffers. */ for (i = 0; i < DC_TX_LIST_CNT; i++) { if (cd->dc_tx_chain[i] != NULL) { ctl = le32toh(ld->dc_tx_list[i].dc_ctl); if (ctl & DC_TXCTL_SETUP) { bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_POSTWRITE); } else { bus_dmamap_sync(sc->dc_tx_mtag, cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->dc_tx_mtag, cd->dc_tx_map[i]); m_freem(cd->dc_tx_chain[i]); } cd->dc_tx_chain[i] = NULL; } } bzero(ld->dc_tx_list, DC_TX_LIST_SZ); bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int dc_suspend(device_t dev) { struct dc_softc *sc; sc = device_get_softc(dev); DC_LOCK(sc); dc_stop(sc); sc->suspended = 1; DC_UNLOCK(sc); return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int dc_resume(device_t dev) { struct dc_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->dc_ifp; /* reinitialize interface if necessary */ DC_LOCK(sc); if (ifp->if_flags & IFF_UP) dc_init_locked(sc); sc->suspended = 0; DC_UNLOCK(sc); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int dc_shutdown(device_t dev) { struct dc_softc *sc; sc = device_get_softc(dev); DC_LOCK(sc); dc_stop(sc); DC_UNLOCK(sc); return (0); } static int dc_check_multiport(struct dc_softc *sc) { struct dc_softc *dsc; devclass_t dc; device_t child; uint8_t *eaddr; int unit; dc = devclass_find("dc"); for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { child = devclass_get_device(dc, unit); if (child == NULL) continue; if (child == sc->dc_dev) continue; if (device_get_parent(child) != device_get_parent(sc->dc_dev)) continue; if (unit > device_get_unit(sc->dc_dev)) continue; if (device_is_attached(child) == 0) continue; dsc = device_get_softc(child); device_printf(sc->dc_dev, "Using station address of %s as base\n", device_get_nameunit(child)); bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN); eaddr = (uint8_t *)sc->dc_eaddr; eaddr[5]++; /* Prepare SROM to parse again. */ if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL && sc->dc_romwidth != 0) { free(sc->dc_srom, M_DEVBUF); sc->dc_romwidth = dsc->dc_romwidth; sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth), M_DEVBUF, M_NOWAIT); if (sc->dc_srom == NULL) { device_printf(sc->dc_dev, "Could not allocate SROM buffer\n"); return (ENOMEM); } bcopy(dsc->dc_srom, sc->dc_srom, DC_ROM_SIZE(sc->dc_romwidth)); } return (0); } return (ENOENT); }