Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/mii/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/mii/e1000phy.c |
/*- * Principal Author: Parag Patel * Copyright (c) 2001 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Additional Copyright (c) 2001 by Traakan Software under same licence. * Secondary Author: Matthew Jacob */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/mii/e1000phy.c 229093 2011-12-31 14:12:12Z hselasky $"); /* * driver for the Marvell 88E1000 series external 1000/100/10-BT PHY. */ /* * Support added for the Marvell 88E1011 (Alaska) 1000/100/10baseTX and * 1000baseSX PHY. * Nathan Binkert <nate@openbsd.org> * Jung-uk Kim <jkim@niksun.com> */ #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/socket.h> #include <sys/bus.h> #include <net/if.h> #include <net/if_media.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include "miidevs.h" #include <dev/mii/e1000phyreg.h> #include "miibus_if.h" static int e1000phy_probe(device_t); static int e1000phy_attach(device_t); static device_method_t e1000phy_methods[] = { /* device interface */ DEVMETHOD(device_probe, e1000phy_probe), DEVMETHOD(device_attach, e1000phy_attach), DEVMETHOD(device_detach, mii_phy_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD_END }; static devclass_t e1000phy_devclass; static driver_t e1000phy_driver = { "e1000phy", e1000phy_methods, sizeof(struct mii_softc) }; DRIVER_MODULE(e1000phy, miibus, e1000phy_driver, e1000phy_devclass, 0, 0); static int e1000phy_service(struct mii_softc *, struct mii_data *, int); static void e1000phy_status(struct mii_softc *); static void e1000phy_reset(struct mii_softc *); static int e1000phy_mii_phy_auto(struct mii_softc *, int); static const struct mii_phydesc e1000phys[] = { MII_PHY_DESC(MARVELL, E1000), MII_PHY_DESC(MARVELL, E1011), MII_PHY_DESC(MARVELL, E1000_3), MII_PHY_DESC(MARVELL, E1000_5), MII_PHY_DESC(MARVELL, E1111), MII_PHY_DESC(xxMARVELL, E1000), MII_PHY_DESC(xxMARVELL, E1011), MII_PHY_DESC(xxMARVELL, E1000_3), MII_PHY_DESC(xxMARVELL, E1000S), MII_PHY_DESC(xxMARVELL, E1000_5), MII_PHY_DESC(xxMARVELL, E1101), MII_PHY_DESC(xxMARVELL, E3082), MII_PHY_DESC(xxMARVELL, E1112), MII_PHY_DESC(xxMARVELL, E1149), MII_PHY_DESC(xxMARVELL, E1111), MII_PHY_DESC(xxMARVELL, E1116), MII_PHY_DESC(xxMARVELL, E1116R), MII_PHY_DESC(xxMARVELL, E1118), MII_PHY_DESC(xxMARVELL, E1149R), MII_PHY_DESC(xxMARVELL, E3016), MII_PHY_DESC(xxMARVELL, PHYG65G), MII_PHY_END }; static const struct mii_phy_funcs e1000phy_funcs = { e1000phy_service, e1000phy_status, e1000phy_reset }; static int e1000phy_probe(device_t dev) { return (mii_phy_dev_probe(dev, e1000phys, BUS_PROBE_DEFAULT)); } static int e1000phy_attach(device_t dev) { struct mii_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); mii_phy_dev_attach(dev, MIIF_NOMANPAUSE, &e1000phy_funcs, 0); ifp = sc->mii_pdata->mii_ifp; if (strcmp(ifp->if_dname, "msk") == 0 && (sc->mii_flags & MIIF_MACPRIV0) != 0) sc->mii_flags |= MIIF_PHYPRIV0; switch (sc->mii_mpd_model) { case MII_MODEL_xxMARVELL_E1011: case MII_MODEL_xxMARVELL_E1112: if (PHY_READ(sc, E1000_ESSR) & E1000_ESSR_FIBER_LINK) sc->mii_flags |= MIIF_HAVEFIBER; break; case MII_MODEL_xxMARVELL_E1149: case MII_MODEL_xxMARVELL_E1149R: /* * Some 88E1149 PHY's page select is initialized to * point to other bank instead of copper/fiber bank * which in turn resulted in wrong registers were * accessed during PHY operation. It is believed that * page 0 should be used for copper PHY so reinitialize * E1000_EADR to select default copper PHY. If parent * device know the type of PHY(either copper or fiber), * that information should be used to select default * type of PHY. */ PHY_WRITE(sc, E1000_EADR, 0); break; } PHY_RESET(sc); sc->mii_capabilities = PHY_READ(sc, MII_BMSR) & sc->mii_capmask; if (sc->mii_capabilities & BMSR_EXTSTAT) sc->mii_extcapabilities = PHY_READ(sc, MII_EXTSR); device_printf(dev, " "); mii_phy_add_media(sc); printf("\n"); MIIBUS_MEDIAINIT(sc->mii_dev); return (0); } static void e1000phy_reset(struct mii_softc *sc) { uint16_t reg, page; reg = PHY_READ(sc, E1000_SCR); if ((sc->mii_flags & MIIF_HAVEFIBER) != 0) { reg &= ~E1000_SCR_AUTO_X_MODE; PHY_WRITE(sc, E1000_SCR, reg); if (sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1112) { /* Select 1000BASE-X only mode. */ page = PHY_READ(sc, E1000_EADR); PHY_WRITE(sc, E1000_EADR, 2); reg = PHY_READ(sc, E1000_SCR); reg &= ~E1000_SCR_MODE_MASK; reg |= E1000_SCR_MODE_1000BX; PHY_WRITE(sc, E1000_SCR, reg); if ((sc->mii_flags & MIIF_PHYPRIV0) != 0) { /* Set SIGDET polarity low for SFP module. */ PHY_WRITE(sc, E1000_EADR, 1); reg = PHY_READ(sc, E1000_SCR); reg |= E1000_SCR_FIB_SIGDET_POLARITY; PHY_WRITE(sc, E1000_SCR, reg); } PHY_WRITE(sc, E1000_EADR, page); } } else { switch (sc->mii_mpd_model) { case MII_MODEL_xxMARVELL_E1111: case MII_MODEL_xxMARVELL_E1112: case MII_MODEL_xxMARVELL_E1116: case MII_MODEL_xxMARVELL_E1118: case MII_MODEL_xxMARVELL_E1149: case MII_MODEL_xxMARVELL_E1149R: case MII_MODEL_xxMARVELL_PHYG65G: /* Disable energy detect mode. */ reg &= ~E1000_SCR_EN_DETECT_MASK; reg |= E1000_SCR_AUTO_X_MODE; if (sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1116) reg &= ~E1000_SCR_POWER_DOWN; reg |= E1000_SCR_ASSERT_CRS_ON_TX; break; case MII_MODEL_xxMARVELL_E3082: reg |= (E1000_SCR_AUTO_X_MODE >> 1); reg |= E1000_SCR_ASSERT_CRS_ON_TX; break; case MII_MODEL_xxMARVELL_E3016: reg |= E1000_SCR_AUTO_MDIX; reg &= ~(E1000_SCR_EN_DETECT | E1000_SCR_SCRAMBLER_DISABLE); reg |= E1000_SCR_LPNP; /* XXX Enable class A driver for Yukon FE+ A0. */ PHY_WRITE(sc, 0x1C, PHY_READ(sc, 0x1C) | 0x0001); break; default: reg &= ~E1000_SCR_AUTO_X_MODE; reg |= E1000_SCR_ASSERT_CRS_ON_TX; break; } if (sc->mii_mpd_model != MII_MODEL_xxMARVELL_E3016) { /* Auto correction for reversed cable polarity. */ reg &= ~E1000_SCR_POLARITY_REVERSAL; } PHY_WRITE(sc, E1000_SCR, reg); if (sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1116 || sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1149 || sc->mii_mpd_model == MII_MODEL_xxMARVELL_E1149R) { PHY_WRITE(sc, E1000_EADR, 2); reg = PHY_READ(sc, E1000_SCR); reg |= E1000_SCR_RGMII_POWER_UP; PHY_WRITE(sc, E1000_SCR, reg); PHY_WRITE(sc, E1000_EADR, 0); } } switch (sc->mii_mpd_model) { case MII_MODEL_xxMARVELL_E3082: case MII_MODEL_xxMARVELL_E1112: case MII_MODEL_xxMARVELL_E1118: break; case MII_MODEL_xxMARVELL_E1116: page = PHY_READ(sc, E1000_EADR); /* Select page 3, LED control register. */ PHY_WRITE(sc, E1000_EADR, 3); PHY_WRITE(sc, E1000_SCR, E1000_SCR_LED_LOS(1) | /* Link/Act */ E1000_SCR_LED_INIT(8) | /* 10Mbps */ E1000_SCR_LED_STAT1(7) | /* 100Mbps */ E1000_SCR_LED_STAT0(7)); /* 1000Mbps */ /* Set blink rate. */ PHY_WRITE(sc, E1000_IER, E1000_PULSE_DUR(E1000_PULSE_170MS) | E1000_BLINK_RATE(E1000_BLINK_84MS)); PHY_WRITE(sc, E1000_EADR, page); break; case MII_MODEL_xxMARVELL_E3016: /* LED2 -> ACT, LED1 -> LINK, LED0 -> SPEED. */ PHY_WRITE(sc, 0x16, 0x0B << 8 | 0x05 << 4 | 0x04); /* Integrated register calibration workaround. */ PHY_WRITE(sc, 0x1D, 17); PHY_WRITE(sc, 0x1E, 0x3F60); break; default: /* Force TX_CLK to 25MHz clock. */ reg = PHY_READ(sc, E1000_ESCR); reg |= E1000_ESCR_TX_CLK_25; PHY_WRITE(sc, E1000_ESCR, reg); break; } /* Reset the PHY so all changes take effect. */ reg = PHY_READ(sc, E1000_CR); reg |= E1000_CR_RESET; PHY_WRITE(sc, E1000_CR, reg); } static int e1000phy_service(struct mii_softc *sc, struct mii_data *mii, int cmd) { struct ifmedia_entry *ife = mii->mii_media.ifm_cur; uint16_t speed, gig; int reg; switch (cmd) { case MII_POLLSTAT: break; case MII_MEDIACHG: /* * If the interface is not up, don't do anything. */ if ((mii->mii_ifp->if_flags & IFF_UP) == 0) break; if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { e1000phy_mii_phy_auto(sc, ife->ifm_media); break; } speed = 0; switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_1000_T: if ((sc->mii_extcapabilities & (EXTSR_1000TFDX | EXTSR_1000THDX)) == 0) return (EINVAL); speed = E1000_CR_SPEED_1000; break; case IFM_1000_SX: if ((sc->mii_extcapabilities & (EXTSR_1000XFDX | EXTSR_1000XHDX)) == 0) return (EINVAL); speed = E1000_CR_SPEED_1000; break; case IFM_100_TX: speed = E1000_CR_SPEED_100; break; case IFM_10_T: speed = E1000_CR_SPEED_10; break; case IFM_NONE: reg = PHY_READ(sc, E1000_CR); PHY_WRITE(sc, E1000_CR, reg | E1000_CR_ISOLATE | E1000_CR_POWER_DOWN); goto done; default: return (EINVAL); } if ((ife->ifm_media & IFM_FDX) != 0) { speed |= E1000_CR_FULL_DUPLEX; gig = E1000_1GCR_1000T_FD; } else gig = E1000_1GCR_1000T; reg = PHY_READ(sc, E1000_CR); reg &= ~E1000_CR_AUTO_NEG_ENABLE; PHY_WRITE(sc, E1000_CR, reg | E1000_CR_RESET); if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T) { gig |= E1000_1GCR_MS_ENABLE; if ((ife->ifm_media & IFM_ETH_MASTER) != 0) gig |= E1000_1GCR_MS_VALUE; } else if ((sc->mii_extcapabilities & (EXTSR_1000TFDX | EXTSR_1000THDX)) != 0) gig = 0; PHY_WRITE(sc, E1000_1GCR, gig); PHY_WRITE(sc, E1000_AR, E1000_AR_SELECTOR_FIELD); PHY_WRITE(sc, E1000_CR, speed | E1000_CR_RESET); done: break; case MII_TICK: /* * Is the interface even up? */ if ((mii->mii_ifp->if_flags & IFF_UP) == 0) return (0); /* * Only used for autonegotiation. */ if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) { sc->mii_ticks = 0; break; } /* * check for link. * Read the status register twice; BMSR_LINK is latch-low. */ reg = PHY_READ(sc, MII_BMSR) | PHY_READ(sc, MII_BMSR); if (reg & BMSR_LINK) { sc->mii_ticks = 0; break; } /* Announce link loss right after it happens. */ if (sc->mii_ticks++ == 0) break; if (sc->mii_ticks <= sc->mii_anegticks) break; sc->mii_ticks = 0; PHY_RESET(sc); e1000phy_mii_phy_auto(sc, ife->ifm_media); break; } /* Update the media status. */ PHY_STATUS(sc); /* Callback if something changed. */ mii_phy_update(sc, cmd); return (0); } static void e1000phy_status(struct mii_softc *sc) { struct mii_data *mii = sc->mii_pdata; int bmcr, bmsr, ssr; mii->mii_media_status = IFM_AVALID; mii->mii_media_active = IFM_ETHER; bmsr = PHY_READ(sc, E1000_SR) | PHY_READ(sc, E1000_SR); bmcr = PHY_READ(sc, E1000_CR); ssr = PHY_READ(sc, E1000_SSR); if (bmsr & E1000_SR_LINK_STATUS) mii->mii_media_status |= IFM_ACTIVE; if (bmcr & E1000_CR_LOOPBACK) mii->mii_media_active |= IFM_LOOP; if ((bmcr & E1000_CR_AUTO_NEG_ENABLE) != 0 && (ssr & E1000_SSR_SPD_DPLX_RESOLVED) == 0) { /* Erg, still trying, I guess... */ mii->mii_media_active |= IFM_NONE; return; } if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) { switch (ssr & E1000_SSR_SPEED) { case E1000_SSR_1000MBS: mii->mii_media_active |= IFM_1000_T; break; case E1000_SSR_100MBS: mii->mii_media_active |= IFM_100_TX; break; case E1000_SSR_10MBS: mii->mii_media_active |= IFM_10_T; break; default: mii->mii_media_active |= IFM_NONE; return; } } else { /* * Some fiber PHY(88E1112) does not seem to set resolved * speed so always assume we've got IFM_1000_SX. */ mii->mii_media_active |= IFM_1000_SX; } if (ssr & E1000_SSR_DUPLEX) { mii->mii_media_active |= IFM_FDX; if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) mii->mii_media_active |= mii_phy_flowstatus(sc); } else mii->mii_media_active |= IFM_HDX; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { if (((PHY_READ(sc, E1000_1GSR) | PHY_READ(sc, E1000_1GSR)) & E1000_1GSR_MS_CONFIG_RES) != 0) mii->mii_media_active |= IFM_ETH_MASTER; } } static int e1000phy_mii_phy_auto(struct mii_softc *sc, int media) { uint16_t reg; if ((sc->mii_flags & MIIF_HAVEFIBER) == 0) { reg = PHY_READ(sc, E1000_AR); reg &= ~(E1000_AR_PAUSE | E1000_AR_ASM_DIR); reg |= E1000_AR_10T | E1000_AR_10T_FD | E1000_AR_100TX | E1000_AR_100TX_FD; if ((media & IFM_FLOW) != 0 || (sc->mii_flags & MIIF_FORCEPAUSE) != 0) reg |= E1000_AR_PAUSE | E1000_AR_ASM_DIR; PHY_WRITE(sc, E1000_AR, reg | E1000_AR_SELECTOR_FIELD); } else PHY_WRITE(sc, E1000_AR, E1000_FA_1000X_FD | E1000_FA_1000X); if ((sc->mii_extcapabilities & (EXTSR_1000TFDX | EXTSR_1000THDX)) != 0) PHY_WRITE(sc, E1000_1GCR, E1000_1GCR_1000T_FD | E1000_1GCR_1000T); PHY_WRITE(sc, E1000_CR, E1000_CR_AUTO_NEG_ENABLE | E1000_CR_RESTART_AUTO_NEG); return (EJUSTRETURN); }