Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/usb/input/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/usb/input/ukbd.c |
#include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/usb/input/ukbd.c 235411 2012-05-13 17:15:30Z avg $"); /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ /* * HID spec: http://www.usb.org/developers/devclass_docs/HID1_11.pdf */ #include "opt_compat.h" #include "opt_kbd.h" #include "opt_ukbd.h" #include <sys/stdint.h> #include <sys/stddef.h> #include <sys/param.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/bus.h> #include <sys/module.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/condvar.h> #include <sys/sysctl.h> #include <sys/sx.h> #include <sys/unistd.h> #include <sys/callout.h> #include <sys/malloc.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/sched.h> #include <sys/kdb.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdi_util.h> #include <dev/usb/usbhid.h> #define USB_DEBUG_VAR ukbd_debug #include <dev/usb/usb_debug.h> #include <dev/usb/quirk/usb_quirk.h> #include <sys/ioccom.h> #include <sys/filio.h> #include <sys/tty.h> #include <sys/kbio.h> #include <dev/kbd/kbdreg.h> /* the initial key map, accent map and fkey strings */ #if defined(UKBD_DFLT_KEYMAP) && !defined(KLD_MODULE) #define KBD_DFLT_KEYMAP #include "ukbdmap.h" #endif /* the following file must be included after "ukbdmap.h" */ #include <dev/kbd/kbdtables.h> #ifdef USB_DEBUG static int ukbd_debug = 0; static int ukbd_no_leds = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, ukbd, CTLFLAG_RW, 0, "USB ukbd"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, debug, CTLFLAG_RW, &ukbd_debug, 0, "Debug level"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, no_leds, CTLFLAG_RW, &ukbd_no_leds, 0, "Disables setting of keyboard leds"); TUNABLE_INT("hw.usb.ukbd.debug", &ukbd_debug); TUNABLE_INT("hw.usb.ukbd.no_leds", &ukbd_no_leds); #endif #define UKBD_EMULATE_ATSCANCODE 1 #define UKBD_DRIVER_NAME "ukbd" #define UKBD_NMOD 8 /* units */ #define UKBD_NKEYCODE 6 /* units */ #define UKBD_IN_BUF_SIZE (2*(UKBD_NMOD + (2*UKBD_NKEYCODE))) /* bytes */ #define UKBD_IN_BUF_FULL (UKBD_IN_BUF_SIZE / 2) /* bytes */ #define UKBD_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */ #define UKBD_BUFFER_SIZE 64 /* bytes */ struct ukbd_data { uint16_t modifiers; #define MOD_CONTROL_L 0x01 #define MOD_CONTROL_R 0x10 #define MOD_SHIFT_L 0x02 #define MOD_SHIFT_R 0x20 #define MOD_ALT_L 0x04 #define MOD_ALT_R 0x40 #define MOD_WIN_L 0x08 #define MOD_WIN_R 0x80 /* internal */ #define MOD_EJECT 0x0100 #define MOD_FN 0x0200 uint8_t keycode[UKBD_NKEYCODE]; }; enum { UKBD_INTR_DT, UKBD_CTRL_LED, UKBD_N_TRANSFER, }; struct ukbd_softc { keyboard_t sc_kbd; keymap_t sc_keymap; accentmap_t sc_accmap; fkeytab_t sc_fkeymap[UKBD_NFKEY]; struct hid_location sc_loc_apple_eject; struct hid_location sc_loc_apple_fn; struct hid_location sc_loc_ctrl_l; struct hid_location sc_loc_ctrl_r; struct hid_location sc_loc_shift_l; struct hid_location sc_loc_shift_r; struct hid_location sc_loc_alt_l; struct hid_location sc_loc_alt_r; struct hid_location sc_loc_win_l; struct hid_location sc_loc_win_r; struct hid_location sc_loc_events; struct hid_location sc_loc_numlock; struct hid_location sc_loc_capslock; struct hid_location sc_loc_scrolllock; struct usb_callout sc_callout; struct ukbd_data sc_ndata; struct ukbd_data sc_odata; struct thread *sc_poll_thread; struct usb_device *sc_udev; struct usb_interface *sc_iface; struct usb_xfer *sc_xfer[UKBD_N_TRANSFER]; uint32_t sc_ntime[UKBD_NKEYCODE]; uint32_t sc_otime[UKBD_NKEYCODE]; uint32_t sc_input[UKBD_IN_BUF_SIZE]; /* input buffer */ uint32_t sc_time_ms; uint32_t sc_composed_char; /* composed char code, if non-zero */ #ifdef UKBD_EMULATE_ATSCANCODE uint32_t sc_buffered_char[2]; #endif uint32_t sc_flags; /* flags */ #define UKBD_FLAG_COMPOSE 0x00000001 #define UKBD_FLAG_POLLING 0x00000002 #define UKBD_FLAG_SET_LEDS 0x00000004 #define UKBD_FLAG_ATTACHED 0x00000010 #define UKBD_FLAG_GONE 0x00000020 #define UKBD_FLAG_HID_MASK 0x003fffc0 #define UKBD_FLAG_APPLE_EJECT 0x00000040 #define UKBD_FLAG_APPLE_FN 0x00000080 #define UKBD_FLAG_APPLE_SWAP 0x00000100 #define UKBD_FLAG_TIMER_RUNNING 0x00000200 #define UKBD_FLAG_CTRL_L 0x00000400 #define UKBD_FLAG_CTRL_R 0x00000800 #define UKBD_FLAG_SHIFT_L 0x00001000 #define UKBD_FLAG_SHIFT_R 0x00002000 #define UKBD_FLAG_ALT_L 0x00004000 #define UKBD_FLAG_ALT_R 0x00008000 #define UKBD_FLAG_WIN_L 0x00010000 #define UKBD_FLAG_WIN_R 0x00020000 #define UKBD_FLAG_EVENTS 0x00040000 #define UKBD_FLAG_NUMLOCK 0x00080000 #define UKBD_FLAG_CAPSLOCK 0x00100000 #define UKBD_FLAG_SCROLLLOCK 0x00200000 int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */ int sc_state; /* shift/lock key state */ int sc_accents; /* accent key index (> 0) */ int sc_led_size; int sc_kbd_size; uint16_t sc_inputs; uint16_t sc_inputhead; uint16_t sc_inputtail; uint16_t sc_modifiers; uint8_t sc_leds; /* store for async led requests */ uint8_t sc_iface_index; uint8_t sc_iface_no; uint8_t sc_id_apple_eject; uint8_t sc_id_apple_fn; uint8_t sc_id_ctrl_l; uint8_t sc_id_ctrl_r; uint8_t sc_id_shift_l; uint8_t sc_id_shift_r; uint8_t sc_id_alt_l; uint8_t sc_id_alt_r; uint8_t sc_id_win_l; uint8_t sc_id_win_r; uint8_t sc_id_event; uint8_t sc_id_numlock; uint8_t sc_id_capslock; uint8_t sc_id_scrolllock; uint8_t sc_id_events; uint8_t sc_kbd_id; uint8_t sc_buffer[UKBD_BUFFER_SIZE]; }; #define KEY_ERROR 0x01 #define KEY_PRESS 0 #define KEY_RELEASE 0x400 #define KEY_INDEX(c) ((c) & 0xFF) #define SCAN_PRESS 0 #define SCAN_RELEASE 0x80 #define SCAN_PREFIX_E0 0x100 #define SCAN_PREFIX_E1 0x200 #define SCAN_PREFIX_CTL 0x400 #define SCAN_PREFIX_SHIFT 0x800 #define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | \ SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT) #define SCAN_CHAR(c) ((c) & 0x7f) #define UKBD_LOCK() mtx_lock(&Giant) #define UKBD_UNLOCK() mtx_unlock(&Giant) #ifdef INVARIANTS /* * Assert that the lock is held in all contexts * where the code can be executed. */ #define UKBD_LOCK_ASSERT() mtx_assert(&Giant, MA_OWNED) /* * Assert that the lock is held in the contexts * where it really has to be so. */ #define UKBD_CTX_LOCK_ASSERT() \ do { \ if (!kdb_active && panicstr == NULL) \ mtx_assert(&Giant, MA_OWNED); \ } while (0) #else #define UKBD_LOCK_ASSERT() (void)0 #define UKBD_CTX_LOCK_ASSERT() (void)0 #endif struct ukbd_mods { uint32_t mask, key; }; static const struct ukbd_mods ukbd_mods[UKBD_NMOD] = { {MOD_CONTROL_L, 0xe0}, {MOD_CONTROL_R, 0xe4}, {MOD_SHIFT_L, 0xe1}, {MOD_SHIFT_R, 0xe5}, {MOD_ALT_L, 0xe2}, {MOD_ALT_R, 0xe6}, {MOD_WIN_L, 0xe3}, {MOD_WIN_R, 0xe7}, }; #define NN 0 /* no translation */ /* * Translate USB keycodes to AT keyboard scancodes. */ /* * FIXME: Mac USB keyboard generates: * 0x53: keypad NumLock/Clear * 0x66: Power * 0x67: keypad = * 0x68: F13 * 0x69: F14 * 0x6a: F15 */ static const uint8_t ukbd_trtab[256] = { 0, 0, 0, 0, 30, 48, 46, 32, /* 00 - 07 */ 18, 33, 34, 35, 23, 36, 37, 38, /* 08 - 0F */ 50, 49, 24, 25, 16, 19, 31, 20, /* 10 - 17 */ 22, 47, 17, 45, 21, 44, 2, 3, /* 18 - 1F */ 4, 5, 6, 7, 8, 9, 10, 11, /* 20 - 27 */ 28, 1, 14, 15, 57, 12, 13, 26, /* 28 - 2F */ 27, 43, 43, 39, 40, 41, 51, 52, /* 30 - 37 */ 53, 58, 59, 60, 61, 62, 63, 64, /* 38 - 3F */ 65, 66, 67, 68, 87, 88, 92, 70, /* 40 - 47 */ 104, 102, 94, 96, 103, 99, 101, 98, /* 48 - 4F */ 97, 100, 95, 69, 91, 55, 74, 78,/* 50 - 57 */ 89, 79, 80, 81, 75, 76, 77, 71, /* 58 - 5F */ 72, 73, 82, 83, 86, 107, 122, NN, /* 60 - 67 */ NN, NN, NN, NN, NN, NN, NN, NN, /* 68 - 6F */ NN, NN, NN, NN, 115, 108, 111, 113, /* 70 - 77 */ 109, 110, 112, 118, 114, 116, 117, 119, /* 78 - 7F */ 121, 120, NN, NN, NN, NN, NN, 123, /* 80 - 87 */ 124, 125, 126, 127, 128, NN, NN, NN, /* 88 - 8F */ NN, NN, NN, NN, NN, NN, NN, NN, /* 90 - 97 */ NN, NN, NN, NN, NN, NN, NN, NN, /* 98 - 9F */ NN, NN, NN, NN, NN, NN, NN, NN, /* A0 - A7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* A8 - AF */ NN, NN, NN, NN, NN, NN, NN, NN, /* B0 - B7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* B8 - BF */ NN, NN, NN, NN, NN, NN, NN, NN, /* C0 - C7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* C8 - CF */ NN, NN, NN, NN, NN, NN, NN, NN, /* D0 - D7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* D8 - DF */ 29, 42, 56, 105, 90, 54, 93, 106, /* E0 - E7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* E8 - EF */ NN, NN, NN, NN, NN, NN, NN, NN, /* F0 - F7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* F8 - FF */ }; static const uint8_t ukbd_boot_desc[] = { 0x05, 0x01, 0x09, 0x06, 0xa1, 0x01, 0x05, 0x07, 0x19, 0xe0, 0x29, 0xe7, 0x15, 0x00, 0x25, 0x01, 0x75, 0x01, 0x95, 0x08, 0x81, 0x02, 0x95, 0x01, 0x75, 0x08, 0x81, 0x01, 0x95, 0x03, 0x75, 0x01, 0x05, 0x08, 0x19, 0x01, 0x29, 0x03, 0x91, 0x02, 0x95, 0x05, 0x75, 0x01, 0x91, 0x01, 0x95, 0x06, 0x75, 0x08, 0x15, 0x00, 0x26, 0xff, 0x00, 0x05, 0x07, 0x19, 0x00, 0x2a, 0xff, 0x00, 0x81, 0x00, 0xc0 }; /* prototypes */ static void ukbd_timeout(void *); static void ukbd_set_leds(struct ukbd_softc *, uint8_t); static int ukbd_set_typematic(keyboard_t *, int); #ifdef UKBD_EMULATE_ATSCANCODE static int ukbd_key2scan(struct ukbd_softc *, int, int, int); #endif static uint32_t ukbd_read_char(keyboard_t *, int); static void ukbd_clear_state(keyboard_t *); static int ukbd_ioctl(keyboard_t *, u_long, caddr_t); static int ukbd_enable(keyboard_t *); static int ukbd_disable(keyboard_t *); static void ukbd_interrupt(struct ukbd_softc *); static void ukbd_event_keyinput(struct ukbd_softc *); static device_probe_t ukbd_probe; static device_attach_t ukbd_attach; static device_detach_t ukbd_detach; static device_resume_t ukbd_resume; static uint8_t ukbd_any_key_pressed(struct ukbd_softc *sc) { uint8_t i; uint8_t j; for (j = i = 0; i < UKBD_NKEYCODE; i++) j |= sc->sc_odata.keycode[i]; return (j ? 1 : 0); } static void ukbd_start_timer(struct ukbd_softc *sc) { sc->sc_flags |= UKBD_FLAG_TIMER_RUNNING; usb_callout_reset(&sc->sc_callout, hz / 40, &ukbd_timeout, sc); } static void ukbd_put_key(struct ukbd_softc *sc, uint32_t key) { UKBD_CTX_LOCK_ASSERT(); DPRINTF("0x%02x (%d) %s\n", key, key, (key & KEY_RELEASE) ? "released" : "pressed"); if (sc->sc_inputs < UKBD_IN_BUF_SIZE) { sc->sc_input[sc->sc_inputtail] = key; ++(sc->sc_inputs); ++(sc->sc_inputtail); if (sc->sc_inputtail >= UKBD_IN_BUF_SIZE) { sc->sc_inputtail = 0; } } else { DPRINTF("input buffer is full\n"); } } static void ukbd_do_poll(struct ukbd_softc *sc, uint8_t wait) { UKBD_CTX_LOCK_ASSERT(); KASSERT((sc->sc_flags & UKBD_FLAG_POLLING) != 0, ("ukbd_do_poll called when not polling\n")); DPRINTFN(2, "polling\n"); if (!kdb_active && !SCHEDULER_STOPPED()) { /* * In this context the kernel is polling for input, * but the USB subsystem works in normal interrupt-driven * mode, so we just wait on the USB threads to do the job. * Note that we currently hold the Giant, but it's also used * as the transfer mtx, so we must release it while waiting. */ while (sc->sc_inputs == 0) { /* * Give USB threads a chance to run. Note that * kern_yield performs DROP_GIANT + PICKUP_GIANT. */ kern_yield(PRI_UNCHANGED); if (!wait) break; } return; } while (sc->sc_inputs == 0) { usbd_transfer_poll(sc->sc_xfer, UKBD_N_TRANSFER); /* Delay-optimised support for repetition of keys */ if (ukbd_any_key_pressed(sc)) { /* a key is pressed - need timekeeping */ DELAY(1000); /* 1 millisecond has passed */ sc->sc_time_ms += 1; } ukbd_interrupt(sc); if (!wait) break; } } static int32_t ukbd_get_key(struct ukbd_softc *sc, uint8_t wait) { int32_t c; UKBD_CTX_LOCK_ASSERT(); KASSERT((!kdb_active && !SCHEDULER_STOPPED()) || (sc->sc_flags & UKBD_FLAG_POLLING) != 0, ("not polling in kdb or panic\n")); if (sc->sc_inputs == 0) { /* start transfer, if not already started */ usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT]); } if (sc->sc_flags & UKBD_FLAG_POLLING) ukbd_do_poll(sc, wait); if (sc->sc_inputs == 0) { c = -1; } else { c = sc->sc_input[sc->sc_inputhead]; --(sc->sc_inputs); ++(sc->sc_inputhead); if (sc->sc_inputhead >= UKBD_IN_BUF_SIZE) { sc->sc_inputhead = 0; } } return (c); } static void ukbd_interrupt(struct ukbd_softc *sc) { uint32_t n_mod; uint32_t o_mod; uint32_t now = sc->sc_time_ms; uint32_t dtime; uint8_t key; uint8_t i; uint8_t j; UKBD_CTX_LOCK_ASSERT(); if (sc->sc_ndata.keycode[0] == KEY_ERROR) return; n_mod = sc->sc_ndata.modifiers; o_mod = sc->sc_odata.modifiers; if (n_mod != o_mod) { for (i = 0; i < UKBD_NMOD; i++) { if ((n_mod & ukbd_mods[i].mask) != (o_mod & ukbd_mods[i].mask)) { ukbd_put_key(sc, ukbd_mods[i].key | ((n_mod & ukbd_mods[i].mask) ? KEY_PRESS : KEY_RELEASE)); } } } /* Check for released keys. */ for (i = 0; i < UKBD_NKEYCODE; i++) { key = sc->sc_odata.keycode[i]; if (key == 0) { continue; } for (j = 0; j < UKBD_NKEYCODE; j++) { if (sc->sc_ndata.keycode[j] == 0) { continue; } if (key == sc->sc_ndata.keycode[j]) { goto rfound; } } ukbd_put_key(sc, key | KEY_RELEASE); rfound: ; } /* Check for pressed keys. */ for (i = 0; i < UKBD_NKEYCODE; i++) { key = sc->sc_ndata.keycode[i]; if (key == 0) { continue; } sc->sc_ntime[i] = now + sc->sc_kbd.kb_delay1; for (j = 0; j < UKBD_NKEYCODE; j++) { if (sc->sc_odata.keycode[j] == 0) { continue; } if (key == sc->sc_odata.keycode[j]) { /* key is still pressed */ sc->sc_ntime[i] = sc->sc_otime[j]; dtime = (sc->sc_otime[j] - now); if (!(dtime & 0x80000000)) { /* time has not elapsed */ goto pfound; } sc->sc_ntime[i] = now + sc->sc_kbd.kb_delay2; break; } } ukbd_put_key(sc, key | KEY_PRESS); /* * If any other key is presently down, force its repeat to be * well in the future (100s). This makes the last key to be * pressed do the autorepeat. */ for (j = 0; j != UKBD_NKEYCODE; j++) { if (j != i) sc->sc_ntime[j] = now + (100 * 1000); } pfound: ; } sc->sc_odata = sc->sc_ndata; memcpy(sc->sc_otime, sc->sc_ntime, sizeof(sc->sc_otime)); ukbd_event_keyinput(sc); } static void ukbd_event_keyinput(struct ukbd_softc *sc) { int c; UKBD_CTX_LOCK_ASSERT(); if ((sc->sc_flags & UKBD_FLAG_POLLING) != 0) return; if (sc->sc_inputs == 0) return; if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { /* let the callback function process the input */ (sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } else { /* read and discard the input, no one is waiting for it */ do { c = ukbd_read_char(&sc->sc_kbd, 0); } while (c != NOKEY); } } static void ukbd_timeout(void *arg) { struct ukbd_softc *sc = arg; UKBD_LOCK_ASSERT(); sc->sc_time_ms += 25; /* milliseconds */ ukbd_interrupt(sc); /* Make sure any leftover key events gets read out */ ukbd_event_keyinput(sc); if (ukbd_any_key_pressed(sc) || (sc->sc_inputs != 0)) { ukbd_start_timer(sc); } else { sc->sc_flags &= ~UKBD_FLAG_TIMER_RUNNING; } } static uint8_t ukbd_apple_fn(uint8_t keycode) { switch (keycode) { case 0x28: return 0x49; /* RETURN -> INSERT */ case 0x2a: return 0x4c; /* BACKSPACE -> DEL */ case 0x50: return 0x4a; /* LEFT ARROW -> HOME */ case 0x4f: return 0x4d; /* RIGHT ARROW -> END */ case 0x52: return 0x4b; /* UP ARROW -> PGUP */ case 0x51: return 0x4e; /* DOWN ARROW -> PGDN */ default: return keycode; } } static uint8_t ukbd_apple_swap(uint8_t keycode) { switch (keycode) { case 0x35: return 0x64; case 0x64: return 0x35; default: return keycode; } } static void ukbd_intr_callback(struct usb_xfer *xfer, usb_error_t error) { struct ukbd_softc *sc = usbd_xfer_softc(xfer); struct usb_page_cache *pc; uint8_t i; uint8_t offset; uint8_t id; int len; UKBD_LOCK_ASSERT(); usbd_xfer_status(xfer, &len, NULL, NULL, NULL); pc = usbd_xfer_get_frame(xfer, 0); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTF("actlen=%d bytes\n", len); if (len == 0) { DPRINTF("zero length data\n"); goto tr_setup; } if (sc->sc_kbd_id != 0) { /* check and remove HID ID byte */ usbd_copy_out(pc, 0, &id, 1); offset = 1; len--; if (len == 0) { DPRINTF("zero length data\n"); goto tr_setup; } } else { offset = 0; id = 0; } if (len > UKBD_BUFFER_SIZE) len = UKBD_BUFFER_SIZE; /* get data */ usbd_copy_out(pc, offset, sc->sc_buffer, len); /* clear temporary storage */ memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); /* scan through HID data */ if ((sc->sc_flags & UKBD_FLAG_APPLE_EJECT) && (id == sc->sc_id_apple_eject)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_eject)) sc->sc_modifiers |= MOD_EJECT; else sc->sc_modifiers &= ~MOD_EJECT; } if ((sc->sc_flags & UKBD_FLAG_APPLE_FN) && (id == sc->sc_id_apple_fn)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_fn)) sc->sc_modifiers |= MOD_FN; else sc->sc_modifiers &= ~MOD_FN; } if ((sc->sc_flags & UKBD_FLAG_CTRL_L) && (id == sc->sc_id_ctrl_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_ctrl_l)) sc-> sc_modifiers |= MOD_CONTROL_L; else sc-> sc_modifiers &= ~MOD_CONTROL_L; } if ((sc->sc_flags & UKBD_FLAG_CTRL_R) && (id == sc->sc_id_ctrl_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_ctrl_r)) sc->sc_modifiers |= MOD_CONTROL_R; else sc->sc_modifiers &= ~MOD_CONTROL_R; } if ((sc->sc_flags & UKBD_FLAG_SHIFT_L) && (id == sc->sc_id_shift_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_shift_l)) sc->sc_modifiers |= MOD_SHIFT_L; else sc->sc_modifiers &= ~MOD_SHIFT_L; } if ((sc->sc_flags & UKBD_FLAG_SHIFT_R) && (id == sc->sc_id_shift_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_shift_r)) sc->sc_modifiers |= MOD_SHIFT_R; else sc->sc_modifiers &= ~MOD_SHIFT_R; } if ((sc->sc_flags & UKBD_FLAG_ALT_L) && (id == sc->sc_id_alt_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_alt_l)) sc->sc_modifiers |= MOD_ALT_L; else sc->sc_modifiers &= ~MOD_ALT_L; } if ((sc->sc_flags & UKBD_FLAG_ALT_R) && (id == sc->sc_id_alt_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_alt_r)) sc->sc_modifiers |= MOD_ALT_R; else sc->sc_modifiers &= ~MOD_ALT_R; } if ((sc->sc_flags & UKBD_FLAG_WIN_L) && (id == sc->sc_id_win_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_win_l)) sc->sc_modifiers |= MOD_WIN_L; else sc->sc_modifiers &= ~MOD_WIN_L; } if ((sc->sc_flags & UKBD_FLAG_WIN_R) && (id == sc->sc_id_win_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_win_r)) sc->sc_modifiers |= MOD_WIN_R; else sc->sc_modifiers &= ~MOD_WIN_R; } sc->sc_ndata.modifiers = sc->sc_modifiers; if ((sc->sc_flags & UKBD_FLAG_EVENTS) && (id == sc->sc_id_events)) { i = sc->sc_loc_events.count; if (i > UKBD_NKEYCODE) i = UKBD_NKEYCODE; if (i > len) i = len; while (i--) { sc->sc_ndata.keycode[i] = hid_get_data(sc->sc_buffer + i, len - i, &sc->sc_loc_events); } } #ifdef USB_DEBUG DPRINTF("modifiers = 0x%04x\n", (int)sc->sc_modifiers); for (i = 0; i < UKBD_NKEYCODE; i++) { if (sc->sc_ndata.keycode[i]) { DPRINTF("[%d] = 0x%02x\n", (int)i, (int)sc->sc_ndata.keycode[i]); } } #endif if (sc->sc_modifiers & MOD_FN) { for (i = 0; i < UKBD_NKEYCODE; i++) { sc->sc_ndata.keycode[i] = ukbd_apple_fn(sc->sc_ndata.keycode[i]); } } if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP) { for (i = 0; i < UKBD_NKEYCODE; i++) { sc->sc_ndata.keycode[i] = ukbd_apple_swap(sc->sc_ndata.keycode[i]); } } ukbd_interrupt(sc); if (!(sc->sc_flags & UKBD_FLAG_TIMER_RUNNING)) { if (ukbd_any_key_pressed(sc)) { ukbd_start_timer(sc); } } case USB_ST_SETUP: tr_setup: if (sc->sc_inputs < UKBD_IN_BUF_FULL) { usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); } else { DPRINTF("input queue is full!\n"); } break; default: /* Error */ DPRINTF("error=%s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void ukbd_set_leds_callback(struct usb_xfer *xfer, usb_error_t error) { struct ukbd_softc *sc = usbd_xfer_softc(xfer); struct usb_device_request req; struct usb_page_cache *pc; uint8_t id; uint8_t any; int len; UKBD_LOCK_ASSERT(); #ifdef USB_DEBUG if (ukbd_no_leds) return; #endif switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: case USB_ST_SETUP: if (!(sc->sc_flags & UKBD_FLAG_SET_LEDS)) break; sc->sc_flags &= ~UKBD_FLAG_SET_LEDS; req.bmRequestType = UT_WRITE_CLASS_INTERFACE; req.bRequest = UR_SET_REPORT; USETW2(req.wValue, UHID_OUTPUT_REPORT, 0); req.wIndex[0] = sc->sc_iface_no; req.wIndex[1] = 0; req.wLength[1] = 0; memset(sc->sc_buffer, 0, UKBD_BUFFER_SIZE); id = 0; any = 0; /* Assumption: All led bits must be in the same ID. */ if (sc->sc_flags & UKBD_FLAG_NUMLOCK) { if (sc->sc_leds & NLKED) { hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_numlock, 1); } id = sc->sc_id_numlock; any = 1; } if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) { if (sc->sc_leds & SLKED) { hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_scrolllock, 1); } id = sc->sc_id_scrolllock; any = 1; } if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) { if (sc->sc_leds & CLKED) { hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_capslock, 1); } id = sc->sc_id_capslock; any = 1; } /* if no leds, nothing to do */ if (!any) break; /* range check output report length */ len = sc->sc_led_size; if (len > (UKBD_BUFFER_SIZE - 1)) len = (UKBD_BUFFER_SIZE - 1); /* check if we need to prefix an ID byte */ sc->sc_buffer[0] = id; pc = usbd_xfer_get_frame(xfer, 1); if (id != 0) { len++; usbd_copy_in(pc, 0, sc->sc_buffer, len); } else { usbd_copy_in(pc, 0, sc->sc_buffer + 1, len); } req.wLength[0] = len; usbd_xfer_set_frame_len(xfer, 1, len); DPRINTF("len=%d, id=%d\n", len, id); /* setup control request last */ pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &req, sizeof(req)); usbd_xfer_set_frame_len(xfer, 0, sizeof(req)); /* start data transfer */ usbd_xfer_set_frames(xfer, 2); usbd_transfer_submit(xfer); break; default: /* Error */ DPRINTFN(1, "error=%s\n", usbd_errstr(error)); break; } } static const struct usb_config ukbd_config[UKBD_N_TRANSFER] = { [UKBD_INTR_DT] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = &ukbd_intr_callback, }, [UKBD_CTRL_LED] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .bufsize = sizeof(struct usb_device_request) + UKBD_BUFFER_SIZE, .callback = &ukbd_set_leds_callback, .timeout = 1000, /* 1 second */ }, }; /* A match on these entries will load ukbd */ static const STRUCT_USB_HOST_ID __used ukbd_devs[] = { {USB_IFACE_CLASS(UICLASS_HID), USB_IFACE_SUBCLASS(UISUBCLASS_BOOT), USB_IFACE_PROTOCOL(UIPROTO_BOOT_KEYBOARD),}, }; static int ukbd_probe(device_t dev) { keyboard_switch_t *sw = kbd_get_switch(UKBD_DRIVER_NAME); struct usb_attach_arg *uaa = device_get_ivars(dev); void *d_ptr; int error; uint16_t d_len; UKBD_LOCK_ASSERT(); DPRINTFN(11, "\n"); if (sw == NULL) { return (ENXIO); } if (uaa->usb_mode != USB_MODE_HOST) { return (ENXIO); } if (uaa->info.bInterfaceClass != UICLASS_HID) return (ENXIO); if ((uaa->info.bInterfaceSubClass == UISUBCLASS_BOOT) && (uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD)) { if (usb_test_quirk(uaa, UQ_KBD_IGNORE)) return (ENXIO); else return (BUS_PROBE_DEFAULT); } error = usbd_req_get_hid_desc(uaa->device, NULL, &d_ptr, &d_len, M_TEMP, uaa->info.bIfaceIndex); if (error) return (ENXIO); /* * NOTE: we currently don't support USB mouse and USB keyboard * on the same USB endpoint. */ if (hid_is_collection(d_ptr, d_len, HID_USAGE2(HUP_GENERIC_DESKTOP, HUG_MOUSE))) { /* most likely a mouse */ error = ENXIO; } else if (hid_is_collection(d_ptr, d_len, HID_USAGE2(HUP_GENERIC_DESKTOP, HUG_KEYBOARD))) { if (usb_test_quirk(uaa, UQ_KBD_IGNORE)) error = ENXIO; else error = BUS_PROBE_DEFAULT; } else error = ENXIO; free(d_ptr, M_TEMP); return (error); } static void ukbd_parse_hid(struct ukbd_softc *sc, const uint8_t *ptr, uint32_t len) { uint32_t flags; /* reset detected bits */ sc->sc_flags &= ~UKBD_FLAG_HID_MASK; /* check if there is an ID byte */ sc->sc_kbd_size = hid_report_size(ptr, len, hid_input, &sc->sc_kbd_id); /* investigate if this is an Apple Keyboard */ if (hid_locate(ptr, len, HID_USAGE2(HUP_CONSUMER, HUG_APPLE_EJECT), hid_input, 0, &sc->sc_loc_apple_eject, &flags, &sc->sc_id_apple_eject)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_APPLE_EJECT | UKBD_FLAG_APPLE_SWAP; DPRINTFN(1, "Found Apple eject-key\n"); } if (hid_locate(ptr, len, HID_USAGE2(0xFFFF, 0x0003), hid_input, 0, &sc->sc_loc_apple_fn, &flags, &sc->sc_id_apple_fn)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_APPLE_FN; DPRINTFN(1, "Found Apple FN-key\n"); } /* figure out some keys */ if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE0), hid_input, 0, &sc->sc_loc_ctrl_l, &flags, &sc->sc_id_ctrl_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CTRL_L; DPRINTFN(1, "Found left control\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE4), hid_input, 0, &sc->sc_loc_ctrl_r, &flags, &sc->sc_id_ctrl_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CTRL_R; DPRINTFN(1, "Found right control\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE1), hid_input, 0, &sc->sc_loc_shift_l, &flags, &sc->sc_id_shift_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SHIFT_L; DPRINTFN(1, "Found left shift\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE5), hid_input, 0, &sc->sc_loc_shift_r, &flags, &sc->sc_id_shift_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SHIFT_R; DPRINTFN(1, "Found right shift\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE2), hid_input, 0, &sc->sc_loc_alt_l, &flags, &sc->sc_id_alt_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_ALT_L; DPRINTFN(1, "Found left alt\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE6), hid_input, 0, &sc->sc_loc_alt_r, &flags, &sc->sc_id_alt_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_ALT_R; DPRINTFN(1, "Found right alt\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE3), hid_input, 0, &sc->sc_loc_win_l, &flags, &sc->sc_id_win_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_WIN_L; DPRINTFN(1, "Found left GUI\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE7), hid_input, 0, &sc->sc_loc_win_r, &flags, &sc->sc_id_win_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_WIN_R; DPRINTFN(1, "Found right GUI\n"); } /* figure out event buffer */ if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0x00), hid_input, 0, &sc->sc_loc_events, &flags, &sc->sc_id_events)) { sc->sc_flags |= UKBD_FLAG_EVENTS; DPRINTFN(1, "Found keyboard events\n"); } /* figure out leds on keyboard */ sc->sc_led_size = hid_report_size(ptr, len, hid_output, NULL); if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x01), hid_output, 0, &sc->sc_loc_numlock, &flags, &sc->sc_id_numlock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_NUMLOCK; DPRINTFN(1, "Found keyboard numlock\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x02), hid_output, 0, &sc->sc_loc_capslock, &flags, &sc->sc_id_capslock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CAPSLOCK; DPRINTFN(1, "Found keyboard capslock\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x03), hid_output, 0, &sc->sc_loc_scrolllock, &flags, &sc->sc_id_scrolllock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SCROLLLOCK; DPRINTFN(1, "Found keyboard scrolllock\n"); } } static int ukbd_attach(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); int32_t unit = device_get_unit(dev); keyboard_t *kbd = &sc->sc_kbd; void *hid_ptr = NULL; usb_error_t err; uint16_t n; uint16_t hid_len; UKBD_LOCK_ASSERT(); kbd_init_struct(kbd, UKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0); kbd->kb_data = (void *)sc; device_set_usb_desc(dev); sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; sc->sc_iface_index = uaa->info.bIfaceIndex; sc->sc_iface_no = uaa->info.bIfaceNum; sc->sc_mode = K_XLATE; usb_callout_init_mtx(&sc->sc_callout, &Giant, 0); err = usbd_transfer_setup(uaa->device, &uaa->info.bIfaceIndex, sc->sc_xfer, ukbd_config, UKBD_N_TRANSFER, sc, &Giant); if (err) { DPRINTF("error=%s\n", usbd_errstr(err)); goto detach; } /* setup default keyboard maps */ sc->sc_keymap = key_map; sc->sc_accmap = accent_map; for (n = 0; n < UKBD_NFKEY; n++) { sc->sc_fkeymap[n] = fkey_tab[n]; } kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap, sc->sc_fkeymap, UKBD_NFKEY); KBD_FOUND_DEVICE(kbd); ukbd_clear_state(kbd); /* * FIXME: set the initial value for lock keys in "sc_state" * according to the BIOS data? */ KBD_PROBE_DONE(kbd); /* get HID descriptor */ err = usbd_req_get_hid_desc(uaa->device, NULL, &hid_ptr, &hid_len, M_TEMP, uaa->info.bIfaceIndex); if (err == 0) { DPRINTF("Parsing HID descriptor of %d bytes\n", (int)hid_len); ukbd_parse_hid(sc, hid_ptr, hid_len); free(hid_ptr, M_TEMP); } /* check if we should use the boot protocol */ if (usb_test_quirk(uaa, UQ_KBD_BOOTPROTO) || (err != 0) || (!(sc->sc_flags & UKBD_FLAG_EVENTS))) { DPRINTF("Forcing boot protocol\n"); err = usbd_req_set_protocol(sc->sc_udev, NULL, sc->sc_iface_index, 0); if (err != 0) { DPRINTF("Set protocol error=%s (ignored)\n", usbd_errstr(err)); } ukbd_parse_hid(sc, ukbd_boot_desc, sizeof(ukbd_boot_desc)); } /* ignore if SETIDLE fails, hence it is not crucial */ usbd_req_set_idle(sc->sc_udev, NULL, sc->sc_iface_index, 0, 0); ukbd_ioctl(kbd, KDSETLED, (caddr_t)&sc->sc_state); KBD_INIT_DONE(kbd); if (kbd_register(kbd) < 0) { goto detach; } KBD_CONFIG_DONE(kbd); ukbd_enable(kbd); #ifdef KBD_INSTALL_CDEV if (kbd_attach(kbd)) { goto detach; } #endif sc->sc_flags |= UKBD_FLAG_ATTACHED; if (bootverbose) { genkbd_diag(kbd, bootverbose); } /* start the keyboard */ usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT]); return (0); /* success */ detach: ukbd_detach(dev); return (ENXIO); /* error */ } static int ukbd_detach(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); int error; UKBD_LOCK_ASSERT(); DPRINTF("\n"); sc->sc_flags |= UKBD_FLAG_GONE; usb_callout_stop(&sc->sc_callout); ukbd_disable(&sc->sc_kbd); #ifdef KBD_INSTALL_CDEV if (sc->sc_flags & UKBD_FLAG_ATTACHED) { error = kbd_detach(&sc->sc_kbd); if (error) { /* usb attach cannot return an error */ device_printf(dev, "WARNING: kbd_detach() " "returned non-zero! (ignored)\n"); } } #endif if (KBD_IS_CONFIGURED(&sc->sc_kbd)) { error = kbd_unregister(&sc->sc_kbd); if (error) { /* usb attach cannot return an error */ device_printf(dev, "WARNING: kbd_unregister() " "returned non-zero! (ignored)\n"); } } sc->sc_kbd.kb_flags = 0; usbd_transfer_unsetup(sc->sc_xfer, UKBD_N_TRANSFER); usb_callout_drain(&sc->sc_callout); DPRINTF("%s: disconnected\n", device_get_nameunit(dev)); return (0); } static int ukbd_resume(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); UKBD_LOCK_ASSERT(); ukbd_clear_state(&sc->sc_kbd); return (0); } /* early keyboard probe, not supported */ static int ukbd_configure(int flags) { return (0); } /* detect a keyboard, not used */ static int ukbd__probe(int unit, void *arg, int flags) { return (ENXIO); } /* reset and initialize the device, not used */ static int ukbd_init(int unit, keyboard_t **kbdp, void *arg, int flags) { return (ENXIO); } /* test the interface to the device, not used */ static int ukbd_test_if(keyboard_t *kbd) { return (0); } /* finish using this keyboard, not used */ static int ukbd_term(keyboard_t *kbd) { return (ENXIO); } /* keyboard interrupt routine, not used */ static int ukbd_intr(keyboard_t *kbd, void *arg) { return (0); } /* lock the access to the keyboard, not used */ static int ukbd_lock(keyboard_t *kbd, int lock) { return (1); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int ukbd_enable(keyboard_t *kbd) { UKBD_LOCK(); KBD_ACTIVATE(kbd); UKBD_UNLOCK(); return (0); } /* disallow the access to the device */ static int ukbd_disable(keyboard_t *kbd) { UKBD_LOCK(); KBD_DEACTIVATE(kbd); UKBD_UNLOCK(); return (0); } /* check if data is waiting */ /* Currently unused. */ static int ukbd_check(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if (sc->sc_flags & UKBD_FLAG_POLLING) ukbd_do_poll(sc, 0); #ifdef UKBD_EMULATE_ATSCANCODE if (sc->sc_buffered_char[0]) { return (1); } #endif if (sc->sc_inputs > 0) { return (1); } return (0); } /* check if char is waiting */ static int ukbd_check_char_locked(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if ((sc->sc_composed_char > 0) && (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) { return (1); } return (ukbd_check(kbd)); } static int ukbd_check_char(keyboard_t *kbd) { int result; UKBD_LOCK(); result = ukbd_check_char_locked(kbd); UKBD_UNLOCK(); return (result); } /* read one byte from the keyboard if it's allowed */ /* Currently unused. */ static int ukbd_read(keyboard_t *kbd, int wait) { struct ukbd_softc *sc = kbd->kb_data; int32_t usbcode; #ifdef UKBD_EMULATE_ATSCANCODE uint32_t keycode; uint32_t scancode; #endif UKBD_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (-1); #ifdef UKBD_EMULATE_ATSCANCODE if (sc->sc_buffered_char[0]) { scancode = sc->sc_buffered_char[0]; if (scancode & SCAN_PREFIX) { sc->sc_buffered_char[0] &= ~SCAN_PREFIX; return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } sc->sc_buffered_char[0] = sc->sc_buffered_char[1]; sc->sc_buffered_char[1] = 0; return (scancode); } #endif /* UKBD_EMULATE_ATSCANCODE */ /* XXX */ usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1); if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1)) return (-1); ++(kbd->kb_count); #ifdef UKBD_EMULATE_ATSCANCODE keycode = ukbd_trtab[KEY_INDEX(usbcode)]; if (keycode == NN) { return -1; } return (ukbd_key2scan(sc, keycode, sc->sc_ndata.modifiers, (usbcode & KEY_RELEASE))); #else /* !UKBD_EMULATE_ATSCANCODE */ return (usbcode); #endif /* UKBD_EMULATE_ATSCANCODE */ } /* read char from the keyboard */ static uint32_t ukbd_read_char_locked(keyboard_t *kbd, int wait) { struct ukbd_softc *sc = kbd->kb_data; uint32_t action; uint32_t keycode; int32_t usbcode; #ifdef UKBD_EMULATE_ATSCANCODE uint32_t scancode; #endif UKBD_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (NOKEY); next_code: /* do we have a composed char to return ? */ if ((sc->sc_composed_char > 0) && (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) { action = sc->sc_composed_char; sc->sc_composed_char = 0; if (action > 0xFF) { goto errkey; } goto done; } #ifdef UKBD_EMULATE_ATSCANCODE /* do we have a pending raw scan code? */ if (sc->sc_mode == K_RAW) { scancode = sc->sc_buffered_char[0]; if (scancode) { if (scancode & SCAN_PREFIX) { sc->sc_buffered_char[0] = (scancode & ~SCAN_PREFIX); return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } sc->sc_buffered_char[0] = sc->sc_buffered_char[1]; sc->sc_buffered_char[1] = 0; return (scancode); } } #endif /* UKBD_EMULATE_ATSCANCODE */ /* see if there is something in the keyboard port */ /* XXX */ usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1); if (usbcode == -1) { return (NOKEY); } ++kbd->kb_count; #ifdef UKBD_EMULATE_ATSCANCODE /* USB key index -> key code -> AT scan code */ keycode = ukbd_trtab[KEY_INDEX(usbcode)]; if (keycode == NN) { return (NOKEY); } /* return an AT scan code for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (ukbd_key2scan(sc, keycode, sc->sc_ndata.modifiers, (usbcode & KEY_RELEASE))); } #else /* !UKBD_EMULATE_ATSCANCODE */ /* return the byte as is for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (usbcode); } /* USB key index -> key code */ keycode = ukbd_trtab[KEY_INDEX(usbcode)]; if (keycode == NN) { return (NOKEY); } #endif /* UKBD_EMULATE_ATSCANCODE */ switch (keycode) { case 0x38: /* left alt (compose key) */ if (usbcode & KEY_RELEASE) { if (sc->sc_flags & UKBD_FLAG_COMPOSE) { sc->sc_flags &= ~UKBD_FLAG_COMPOSE; if (sc->sc_composed_char > 0xFF) { sc->sc_composed_char = 0; } } } else { if (!(sc->sc_flags & UKBD_FLAG_COMPOSE)) { sc->sc_flags |= UKBD_FLAG_COMPOSE; sc->sc_composed_char = 0; } } break; /* XXX: I don't like these... */ case 0x5c: /* print screen */ if (sc->sc_flags & ALTS) { keycode = 0x54; /* sysrq */ } break; case 0x68: /* pause/break */ if (sc->sc_flags & CTLS) { keycode = 0x6c; /* break */ } break; } /* return the key code in the K_CODE mode */ if (usbcode & KEY_RELEASE) { keycode |= SCAN_RELEASE; } if (sc->sc_mode == K_CODE) { return (keycode); } /* compose a character code */ if (sc->sc_flags & UKBD_FLAG_COMPOSE) { switch (keycode) { /* key pressed, process it */ case 0x47: case 0x48: case 0x49: /* keypad 7,8,9 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x40; goto check_composed; case 0x4B: case 0x4C: case 0x4D: /* keypad 4,5,6 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x47; goto check_composed; case 0x4F: case 0x50: case 0x51: /* keypad 1,2,3 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x4E; goto check_composed; case 0x52: /* keypad 0 */ sc->sc_composed_char *= 10; goto check_composed; /* key released, no interest here */ case SCAN_RELEASE | 0x47: case SCAN_RELEASE | 0x48: case SCAN_RELEASE | 0x49: /* keypad 7,8,9 */ case SCAN_RELEASE | 0x4B: case SCAN_RELEASE | 0x4C: case SCAN_RELEASE | 0x4D: /* keypad 4,5,6 */ case SCAN_RELEASE | 0x4F: case SCAN_RELEASE | 0x50: case SCAN_RELEASE | 0x51: /* keypad 1,2,3 */ case SCAN_RELEASE | 0x52: /* keypad 0 */ goto next_code; case 0x38: /* left alt key */ break; default: if (sc->sc_composed_char > 0) { sc->sc_flags &= ~UKBD_FLAG_COMPOSE; sc->sc_composed_char = 0; goto errkey; } break; } } /* keycode to key action */ action = genkbd_keyaction(kbd, SCAN_CHAR(keycode), (keycode & SCAN_RELEASE), &sc->sc_state, &sc->sc_accents); if (action == NOKEY) { goto next_code; } done: return (action); check_composed: if (sc->sc_composed_char <= 0xFF) { goto next_code; } errkey: return (ERRKEY); } /* Currently wait is always false. */ static uint32_t ukbd_read_char(keyboard_t *kbd, int wait) { uint32_t keycode; UKBD_LOCK(); keycode = ukbd_read_char_locked(kbd, wait); UKBD_UNLOCK(); return (keycode); } /* some useful control functions */ static int ukbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg) { struct ukbd_softc *sc = kbd->kb_data; int i; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) int ival; #endif UKBD_LOCK_ASSERT(); switch (cmd) { case KDGKBMODE: /* get keyboard mode */ *(int *)arg = sc->sc_mode; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ switch (*(int *)arg) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)arg) { if ((sc->sc_flags & UKBD_FLAG_POLLING) == 0) ukbd_clear_state(kbd); sc->sc_mode = *(int *)arg; } break; default: return (EINVAL); } break; case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ /* NOTE: lock key state in "sc_state" won't be changed */ if (*(int *)arg & ~LOCK_MASK) return (EINVAL); i = *(int *)arg; /* replace CAPS LED with ALTGR LED for ALTGR keyboards */ if (sc->sc_mode == K_XLATE && kbd->kb_keymap->n_keys > ALTGR_OFFSET) { if (i & ALKED) i |= CLKED; else i &= ~CLKED; } if (KBD_HAS_DEVICE(kbd)) ukbd_set_leds(sc, i); KBD_LED_VAL(kbd) = *(int *)arg; break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = sc->sc_state & LOCK_MASK; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { return (EINVAL); } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)arg; /* set LEDs and quit */ return (ukbd_ioctl(kbd, KDSETLED, arg)); case KDSETREPEAT: /* set keyboard repeat rate (new * interface) */ if (!KBD_HAS_DEVICE(kbd)) { return (0); } if (((int *)arg)[1] < 0) { return (EINVAL); } if (((int *)arg)[0] < 0) { return (EINVAL); } if (((int *)arg)[0] < 200) /* fastest possible value */ kbd->kb_delay1 = 200; else kbd->kb_delay1 = ((int *)arg)[0]; kbd->kb_delay2 = ((int *)arg)[1]; return (0); #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 67): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETRAD: /* set keyboard repeat rate (old * interface) */ return (ukbd_set_typematic(kbd, *(int *)arg)); case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table * (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table * entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ sc->sc_accents = 0; /* FALLTHROUGH */ default: return (genkbd_commonioctl(kbd, cmd, arg)); } return (0); } static int ukbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { int result; /* * XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any * context where printf(9) can be called, which among other things * includes interrupt filters and threads with any kinds of locks * already held. For this reason it would be dangerous to acquire * the Giant here unconditionally. On the other hand we have to * have it to handle the ioctl. * So we make our best effort to auto-detect whether we can grab * the Giant or not. Blame syscons(4) for this. */ switch (cmd) { case KDGKBSTATE: case KDSKBSTATE: case KDSETLED: if (!mtx_owned(&Giant) && !SCHEDULER_STOPPED()) return (EDEADLK); /* best I could come up with */ /* FALLTHROUGH */ default: UKBD_LOCK(); result = ukbd_ioctl_locked(kbd, cmd, arg); UKBD_UNLOCK(); return (result); } } /* clear the internal state of the keyboard */ static void ukbd_clear_state(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_CTX_LOCK_ASSERT(); sc->sc_flags &= ~(UKBD_FLAG_COMPOSE | UKBD_FLAG_POLLING); sc->sc_state &= LOCK_MASK; /* preserve locking key state */ sc->sc_accents = 0; sc->sc_composed_char = 0; #ifdef UKBD_EMULATE_ATSCANCODE sc->sc_buffered_char[0] = 0; sc->sc_buffered_char[1] = 0; #endif memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); memset(&sc->sc_odata, 0, sizeof(sc->sc_odata)); memset(&sc->sc_ntime, 0, sizeof(sc->sc_ntime)); memset(&sc->sc_otime, 0, sizeof(sc->sc_otime)); } /* save the internal state, not used */ static int ukbd_get_state(keyboard_t *kbd, void *buf, size_t len) { return (len == 0) ? 1 : -1; } /* set the internal state, not used */ static int ukbd_set_state(keyboard_t *kbd, void *buf, size_t len) { return (EINVAL); } static int ukbd_poll(keyboard_t *kbd, int on) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK(); if (on) { sc->sc_flags |= UKBD_FLAG_POLLING; sc->sc_poll_thread = curthread; } else { sc->sc_flags &= ~UKBD_FLAG_POLLING; ukbd_start_timer(sc); /* start timer */ } UKBD_UNLOCK(); return (0); } /* local functions */ static void ukbd_set_leds(struct ukbd_softc *sc, uint8_t leds) { UKBD_LOCK_ASSERT(); DPRINTF("leds=0x%02x\n", leds); sc->sc_leds = leds; sc->sc_flags |= UKBD_FLAG_SET_LEDS; /* start transfer, if not already started */ usbd_transfer_start(sc->sc_xfer[UKBD_CTRL_LED]); } static int ukbd_set_typematic(keyboard_t *kbd, int code) { static const int delays[] = {250, 500, 750, 1000}; static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504}; if (code & ~0x7f) { return (EINVAL); } kbd->kb_delay1 = delays[(code >> 5) & 3]; kbd->kb_delay2 = rates[code & 0x1f]; return (0); } #ifdef UKBD_EMULATE_ATSCANCODE static int ukbd_key2scan(struct ukbd_softc *sc, int code, int shift, int up) { static const int scan[] = { /* 89 */ 0x11c, /* Enter */ /* 90-99 */ 0x11d, /* Ctrl-R */ 0x135, /* Divide */ 0x137 | SCAN_PREFIX_SHIFT, /* PrintScreen */ 0x138, /* Alt-R */ 0x147, /* Home */ 0x148, /* Up */ 0x149, /* PageUp */ 0x14b, /* Left */ 0x14d, /* Right */ 0x14f, /* End */ /* 100-109 */ 0x150, /* Down */ 0x151, /* PageDown */ 0x152, /* Insert */ 0x153, /* Delete */ 0x146, /* XXX Pause/Break */ 0x15b, /* Win_L(Super_L) */ 0x15c, /* Win_R(Super_R) */ 0x15d, /* Application(Menu) */ /* SUN TYPE 6 USB KEYBOARD */ 0x168, /* Sun Type 6 Help */ 0x15e, /* Sun Type 6 Stop */ /* 110 - 119 */ 0x15f, /* Sun Type 6 Again */ 0x160, /* Sun Type 6 Props */ 0x161, /* Sun Type 6 Undo */ 0x162, /* Sun Type 6 Front */ 0x163, /* Sun Type 6 Copy */ 0x164, /* Sun Type 6 Open */ 0x165, /* Sun Type 6 Paste */ 0x166, /* Sun Type 6 Find */ 0x167, /* Sun Type 6 Cut */ 0x125, /* Sun Type 6 Mute */ /* 120 - 128 */ 0x11f, /* Sun Type 6 VolumeDown */ 0x11e, /* Sun Type 6 VolumeUp */ 0x120, /* Sun Type 6 PowerDown */ /* Japanese 106/109 keyboard */ 0x73, /* Keyboard Intl' 1 (backslash / underscore) */ 0x70, /* Keyboard Intl' 2 (Katakana / Hiragana) */ 0x7d, /* Keyboard Intl' 3 (Yen sign) (Not using in jp106/109) */ 0x79, /* Keyboard Intl' 4 (Henkan) */ 0x7b, /* Keyboard Intl' 5 (Muhenkan) */ 0x5c, /* Keyboard Intl' 6 (Keypad ,) (For PC-9821 layout) */ }; if ((code >= 89) && (code < (int)(89 + (sizeof(scan) / sizeof(scan[0]))))) { code = scan[code - 89]; } /* Pause/Break */ if ((code == 104) && (!(shift & (MOD_CONTROL_L | MOD_CONTROL_R)))) { code = (0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL); } if (shift & (MOD_SHIFT_L | MOD_SHIFT_R)) { code &= ~SCAN_PREFIX_SHIFT; } code |= (up ? SCAN_RELEASE : SCAN_PRESS); if (code & SCAN_PREFIX) { if (code & SCAN_PREFIX_CTL) { /* Ctrl */ sc->sc_buffered_char[0] = (0x1d | (code & SCAN_RELEASE)); sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX); } else if (code & SCAN_PREFIX_SHIFT) { /* Shift */ sc->sc_buffered_char[0] = (0x2a | (code & SCAN_RELEASE)); sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX_SHIFT); } else { sc->sc_buffered_char[0] = (code & ~SCAN_PREFIX); sc->sc_buffered_char[1] = 0; } return ((code & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } return (code); } #endif /* UKBD_EMULATE_ATSCANCODE */ static keyboard_switch_t ukbdsw = { .probe = &ukbd__probe, .init = &ukbd_init, .term = &ukbd_term, .intr = &ukbd_intr, .test_if = &ukbd_test_if, .enable = &ukbd_enable, .disable = &ukbd_disable, .read = &ukbd_read, .check = &ukbd_check, .read_char = &ukbd_read_char, .check_char = &ukbd_check_char, .ioctl = &ukbd_ioctl, .lock = &ukbd_lock, .clear_state = &ukbd_clear_state, .get_state = &ukbd_get_state, .set_state = &ukbd_set_state, .get_fkeystr = &genkbd_get_fkeystr, .poll = &ukbd_poll, .diag = &genkbd_diag, }; KEYBOARD_DRIVER(ukbd, ukbdsw, ukbd_configure); static int ukbd_driver_load(module_t mod, int what, void *arg) { switch (what) { case MOD_LOAD: kbd_add_driver(&ukbd_kbd_driver); break; case MOD_UNLOAD: kbd_delete_driver(&ukbd_kbd_driver); break; } return (0); } static devclass_t ukbd_devclass; static device_method_t ukbd_methods[] = { DEVMETHOD(device_probe, ukbd_probe), DEVMETHOD(device_attach, ukbd_attach), DEVMETHOD(device_detach, ukbd_detach), DEVMETHOD(device_resume, ukbd_resume), {0, 0} }; static driver_t ukbd_driver = { .name = "ukbd", .methods = ukbd_methods, .size = sizeof(struct ukbd_softc), }; DRIVER_MODULE(ukbd, uhub, ukbd_driver, ukbd_devclass, ukbd_driver_load, 0); MODULE_DEPEND(ukbd, usb, 1, 1, 1); MODULE_VERSION(ukbd, 1);