Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/usb/net/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/usb/net/if_axe.c |
/*- * Copyright (c) 1997, 1998, 1999, 2000-2003 * Bill Paul <wpaul@windriver.com>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/usb/net/if_axe.c 235000 2012-05-04 15:05:30Z hselasky $"); /* * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver. * Used in the LinkSys USB200M and various other adapters. * * Manuals available from: * http://www.asix.com.tw/datasheet/mac/Ax88172.PDF * Note: you need the manual for the AX88170 chip (USB 1.x ethernet * controller) to find the definitions for the RX control register. * http://www.asix.com.tw/datasheet/mac/Ax88170.PDF * * Written by Bill Paul <wpaul@windriver.com> * Senior Engineer * Wind River Systems */ /* * The AX88172 provides USB ethernet supports at 10 and 100Mbps. * It uses an external PHY (reference designs use a RealTek chip), * and has a 64-bit multicast hash filter. There is some information * missing from the manual which one needs to know in order to make * the chip function: * * - You must set bit 7 in the RX control register, otherwise the * chip won't receive any packets. * - You must initialize all 3 IPG registers, or you won't be able * to send any packets. * * Note that this device appears to only support loading the station * address via autload from the EEPROM (i.e. there's no way to manaully * set it). * * (Adam Weinberger wanted me to name this driver if_gir.c.) */ /* * Ax88178 and Ax88772 support backported from the OpenBSD driver. * 2007/02/12, J.R. Oldroyd, fbsd@opal.com * * Manual here: * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf */ #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/condvar.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <sys/sx.h> #include <net/if.h> #include <net/ethernet.h> #include <net/if_types.h> #include <net/if_media.h> #include <net/if_vlan_var.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdi_util.h> #include "usbdevs.h" #define USB_DEBUG_VAR axe_debug #include <dev/usb/usb_debug.h> #include <dev/usb/usb_process.h> #include <dev/usb/net/usb_ethernet.h> #include <dev/usb/net/if_axereg.h> /* * AXE_178_MAX_FRAME_BURST * max frame burst size for Ax88178 and Ax88772 * 0 2048 bytes * 1 4096 bytes * 2 8192 bytes * 3 16384 bytes * use the largest your system can handle without USB stalling. * * NB: 88772 parts appear to generate lots of input errors with * a 2K rx buffer and 8K is only slightly faster than 4K on an * EHCI port on a T42 so change at your own risk. */ #define AXE_178_MAX_FRAME_BURST 1 #define AXE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) #ifdef USB_DEBUG static int axe_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, axe, CTLFLAG_RW, 0, "USB axe"); SYSCTL_INT(_hw_usb_axe, OID_AUTO, debug, CTLFLAG_RW, &axe_debug, 0, "Debug level"); #endif /* * Various supported device vendors/products. */ static const STRUCT_USB_HOST_ID axe_devs[] = { #define AXE_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) } AXE_DEV(ABOCOM, UF200, 0), AXE_DEV(ACERCM, EP1427X2, 0), AXE_DEV(APPLE, ETHERNET, AXE_FLAG_772), AXE_DEV(ASIX, AX88172, 0), AXE_DEV(ASIX, AX88178, AXE_FLAG_178), AXE_DEV(ASIX, AX88772, AXE_FLAG_772), AXE_DEV(ASIX, AX88772A, AXE_FLAG_772A), AXE_DEV(ASIX, AX88772B, AXE_FLAG_772B), AXE_DEV(ASIX, AX88772B_1, AXE_FLAG_772B), AXE_DEV(ATEN, UC210T, 0), AXE_DEV(BELKIN, F5D5055, AXE_FLAG_178), AXE_DEV(BILLIONTON, USB2AR, 0), AXE_DEV(CISCOLINKSYS, USB200MV2, AXE_FLAG_772A), AXE_DEV(COREGA, FETHER_USB2_TX, 0), AXE_DEV(DLINK, DUBE100, 0), AXE_DEV(DLINK, DUBE100B1, AXE_FLAG_772), AXE_DEV(GOODWAY, GWUSB2E, 0), AXE_DEV(IODATA, ETGUS2, AXE_FLAG_178), AXE_DEV(JVC, MP_PRX1, 0), AXE_DEV(LINKSYS2, USB200M, 0), AXE_DEV(LINKSYS4, USB1000, AXE_FLAG_178), AXE_DEV(LOGITEC, LAN_GTJU2A, AXE_FLAG_178), AXE_DEV(MELCO, LUAU2KTX, 0), AXE_DEV(MELCO, LUA3U2AGT, AXE_FLAG_178), AXE_DEV(NETGEAR, FA120, 0), AXE_DEV(OQO, ETHER01PLUS, AXE_FLAG_772), AXE_DEV(PLANEX3, GU1000T, AXE_FLAG_178), AXE_DEV(SITECOM, LN029, 0), AXE_DEV(SITECOMEU, LN028, AXE_FLAG_178), AXE_DEV(SYSTEMTALKS, SGCX2UL, 0), #undef AXE_DEV }; static device_probe_t axe_probe; static device_attach_t axe_attach; static device_detach_t axe_detach; static usb_callback_t axe_bulk_read_callback; static usb_callback_t axe_bulk_write_callback; static miibus_readreg_t axe_miibus_readreg; static miibus_writereg_t axe_miibus_writereg; static miibus_statchg_t axe_miibus_statchg; static uether_fn_t axe_attach_post; static uether_fn_t axe_init; static uether_fn_t axe_stop; static uether_fn_t axe_start; static uether_fn_t axe_tick; static uether_fn_t axe_setmulti; static uether_fn_t axe_setpromisc; static int axe_attach_post_sub(struct usb_ether *); static int axe_ifmedia_upd(struct ifnet *); static void axe_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int axe_cmd(struct axe_softc *, int, int, int, void *); static void axe_ax88178_init(struct axe_softc *); static void axe_ax88772_init(struct axe_softc *); static void axe_ax88772_phywake(struct axe_softc *); static void axe_ax88772a_init(struct axe_softc *); static void axe_ax88772b_init(struct axe_softc *); static int axe_get_phyno(struct axe_softc *, int); static int axe_ioctl(struct ifnet *, u_long, caddr_t); static int axe_rx_frame(struct usb_ether *, struct usb_page_cache *, int); static int axe_rxeof(struct usb_ether *, struct usb_page_cache *, unsigned int offset, unsigned int, struct axe_csum_hdr *); static void axe_csum_cfg(struct usb_ether *); static const struct usb_config axe_config[AXE_N_TRANSFER] = { [AXE_BULK_DT_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .frames = 16, .bufsize = 16 * MCLBYTES, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = axe_bulk_write_callback, .timeout = 10000, /* 10 seconds */ }, [AXE_BULK_DT_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = 16384, /* bytes */ .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = axe_bulk_read_callback, .timeout = 0, /* no timeout */ }, }; static const struct ax88772b_mfb ax88772b_mfb_table[] = { { 0x8000, 0x8001, 2048 }, { 0x8100, 0x8147, 4096}, { 0x8200, 0x81EB, 6144}, { 0x8300, 0x83D7, 8192}, { 0x8400, 0x851E, 16384}, { 0x8500, 0x8666, 20480}, { 0x8600, 0x87AE, 24576}, { 0x8700, 0x8A3D, 32768} }; static device_method_t axe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, axe_probe), DEVMETHOD(device_attach, axe_attach), DEVMETHOD(device_detach, axe_detach), /* MII interface */ DEVMETHOD(miibus_readreg, axe_miibus_readreg), DEVMETHOD(miibus_writereg, axe_miibus_writereg), DEVMETHOD(miibus_statchg, axe_miibus_statchg), DEVMETHOD_END }; static driver_t axe_driver = { .name = "axe", .methods = axe_methods, .size = sizeof(struct axe_softc), }; static devclass_t axe_devclass; DRIVER_MODULE(axe, uhub, axe_driver, axe_devclass, NULL, 0); DRIVER_MODULE(miibus, axe, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(axe, uether, 1, 1, 1); MODULE_DEPEND(axe, usb, 1, 1, 1); MODULE_DEPEND(axe, ether, 1, 1, 1); MODULE_DEPEND(axe, miibus, 1, 1, 1); MODULE_VERSION(axe, 1); static const struct usb_ether_methods axe_ue_methods = { .ue_attach_post = axe_attach_post, .ue_attach_post_sub = axe_attach_post_sub, .ue_start = axe_start, .ue_init = axe_init, .ue_stop = axe_stop, .ue_tick = axe_tick, .ue_setmulti = axe_setmulti, .ue_setpromisc = axe_setpromisc, .ue_mii_upd = axe_ifmedia_upd, .ue_mii_sts = axe_ifmedia_sts, }; static int axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf) { struct usb_device_request req; usb_error_t err; AXE_LOCK_ASSERT(sc, MA_OWNED); req.bmRequestType = (AXE_CMD_IS_WRITE(cmd) ? UT_WRITE_VENDOR_DEVICE : UT_READ_VENDOR_DEVICE); req.bRequest = AXE_CMD_CMD(cmd); USETW(req.wValue, val); USETW(req.wIndex, index); USETW(req.wLength, AXE_CMD_LEN(cmd)); err = uether_do_request(&sc->sc_ue, &req, buf, 1000); return (err); } static int axe_miibus_readreg(device_t dev, int phy, int reg) { struct axe_softc *sc = device_get_softc(dev); uint16_t val; int locked; locked = mtx_owned(&sc->sc_mtx); if (!locked) AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); val = le16toh(val); if (AXE_IS_772(sc) && reg == MII_BMSR) { /* * BMSR of AX88772 indicates that it supports extended * capability but the extended status register is * revered for embedded ethernet PHY. So clear the * extended capability bit of BMSR. */ val &= ~BMSR_EXTCAP; } if (!locked) AXE_UNLOCK(sc); return (val); } static int axe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct axe_softc *sc = device_get_softc(dev); int locked; val = htole32(val); locked = mtx_owned(&sc->sc_mtx); if (!locked) AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); if (!locked) AXE_UNLOCK(sc); return (0); } static void axe_miibus_statchg(device_t dev) { struct axe_softc *sc = device_get_softc(dev); struct mii_data *mii = GET_MII(sc); struct ifnet *ifp; uint16_t val; int err, locked; locked = mtx_owned(&sc->sc_mtx); if (!locked) AXE_LOCK(sc); ifp = uether_getifp(&sc->sc_ue); if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; sc->sc_flags &= ~AXE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= AXE_FLAG_LINK; break; case IFM_1000_T: if ((sc->sc_flags & AXE_FLAG_178) == 0) break; sc->sc_flags |= AXE_FLAG_LINK; break; default: break; } } /* Lost link, do nothing. */ if ((sc->sc_flags & AXE_FLAG_LINK) == 0) goto done; val = 0; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { val |= AXE_MEDIA_FULL_DUPLEX; if (AXE_IS_178_FAMILY(sc)) { if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN; } } if (AXE_IS_178_FAMILY(sc)) { val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC; if ((sc->sc_flags & AXE_FLAG_178) != 0) val |= AXE_178_MEDIA_ENCK; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK; break; case IFM_100_TX: val |= AXE_178_MEDIA_100TX; break; case IFM_10_T: /* doesn't need to be handled */ break; } } err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL); if (err) device_printf(dev, "media change failed, error %d\n", err); done: if (!locked) AXE_UNLOCK(sc); } /* * Set media options. */ static int axe_ifmedia_upd(struct ifnet *ifp) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); struct mii_softc *miisc; int error; AXE_LOCK_ASSERT(sc, MA_OWNED); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); return (error); } /* * Report current media status. */ static void axe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); AXE_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; AXE_UNLOCK(sc); } static void axe_setmulti(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); struct ifmultiaddr *ifma; uint32_t h = 0; uint16_t rxmode; uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; AXE_LOCK_ASSERT(sc, MA_OWNED); axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode); rxmode = le16toh(rxmode); if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { rxmode |= AXE_RXCMD_ALLMULTI; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); return; } rxmode &= ~AXE_RXCMD_ALLMULTI; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; hashtbl[h / 8] |= 1 << (h % 8); } if_maddr_runlock(ifp); axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, (void *)&hashtbl); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); } static int axe_get_phyno(struct axe_softc *sc, int sel) { int phyno; switch (AXE_PHY_TYPE(sc->sc_phyaddrs[sel])) { case PHY_TYPE_100_HOME: case PHY_TYPE_GIG: phyno = AXE_PHY_NO(sc->sc_phyaddrs[sel]); break; case PHY_TYPE_SPECIAL: /* FALLTHROUGH */ case PHY_TYPE_RSVD: /* FALLTHROUGH */ case PHY_TYPE_NON_SUP: /* FALLTHROUGH */ default: phyno = -1; break; } return (phyno); } #define AXE_GPIO_WRITE(x, y) do { \ axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \ uether_pause(ue, (y)); \ } while (0) static void axe_ax88178_init(struct axe_softc *sc) { struct usb_ether *ue; int gpio0, ledmode, phymode; uint16_t eeprom, val; ue = &sc->sc_ue; axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL); /* XXX magic */ axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom); eeprom = le16toh(eeprom); axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL); /* if EEPROM is invalid we have to use to GPIO0 */ if (eeprom == 0xffff) { phymode = AXE_PHY_MODE_MARVELL; gpio0 = 1; ledmode = 0; } else { phymode = eeprom & 0x7f; gpio0 = (eeprom & 0x80) ? 0 : 1; ledmode = eeprom >> 8; } if (bootverbose) device_printf(sc->sc_ue.ue_dev, "EEPROM data : 0x%04x, phymode : 0x%02x\n", eeprom, phymode); /* Program GPIOs depending on PHY hardware. */ switch (phymode) { case AXE_PHY_MODE_MARVELL: if (gpio0 == 1) { AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN, hz / 32); AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4); AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); } else { AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 | AXE_GPIO1_EN, hz / 3); if (ledmode == 1) { AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3); AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN, hz / 3); } else { AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4); AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); } } break; case AXE_PHY_MODE_CICADA: case AXE_PHY_MODE_CICADA_V2: case AXE_PHY_MODE_CICADA_V2_ASIX: if (gpio0 == 1) AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 | AXE_GPIO0_EN, hz / 32); else AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 | AXE_GPIO1_EN, hz / 32); break; case AXE_PHY_MODE_AGERE: AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 | AXE_GPIO1_EN, hz / 32); AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4); AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); break; case AXE_PHY_MODE_REALTEK_8211CL: case AXE_PHY_MODE_REALTEK_8211BN: case AXE_PHY_MODE_REALTEK_8251CL: val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN : AXE_GPIO1 | AXE_GPIO1_EN; AXE_GPIO_WRITE(val, hz / 32); AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4); AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32); if (phymode == AXE_PHY_MODE_REALTEK_8211CL) { axe_miibus_writereg(ue->ue_dev, sc->sc_phyno, 0x1F, 0x0005); axe_miibus_writereg(ue->ue_dev, sc->sc_phyno, 0x0C, 0x0000); val = axe_miibus_readreg(ue->ue_dev, sc->sc_phyno, 0x0001); axe_miibus_writereg(ue->ue_dev, sc->sc_phyno, 0x01, val | 0x0080); axe_miibus_writereg(ue->ue_dev, sc->sc_phyno, 0x1F, 0x0000); } break; default: /* Unknown PHY model or no need to program GPIOs. */ break; } /* soft reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); uether_pause(ue, hz / 4); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL); uether_pause(ue, hz / 4); /* Enable MII/GMII/RGMII interface to work with external PHY. */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL); uether_pause(ue, hz / 4); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static void axe_ax88772_init(struct axe_softc *sc) { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL); uether_pause(&sc->sc_ue, hz / 16); if (sc->sc_phyno == AXE_772_PHY_NO_EPHY) { /* ask for the embedded PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x01, NULL); uether_pause(&sc->sc_ue, hz / 64); /* power down and reset state, pin reset state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); uether_pause(&sc->sc_ue, hz / 16); /* power down/reset state, pin operating state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); uether_pause(&sc->sc_ue, hz / 4); /* power up, reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL); /* power up, operating */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL); } else { /* ask for external PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x00, NULL); uether_pause(&sc->sc_ue, hz / 64); /* power down internal PHY */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); } uether_pause(&sc->sc_ue, hz / 4); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static void axe_ax88772_phywake(struct axe_softc *sc) { struct usb_ether *ue; ue = &sc->sc_ue; if (sc->sc_phyno == AXE_772_PHY_NO_EPHY) { /* Manually select internal(embedded) PHY - MAC mode. */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB | AXE_SW_PHY_SELECT_EMBEDDED | AXE_SW_PHY_SELECT_SS_MII, NULL); uether_pause(&sc->sc_ue, hz / 32); } else { /* * Manually select external PHY - MAC mode. * Reverse MII/RMII is for AX88772A PHY mode. */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB | AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL); uether_pause(&sc->sc_ue, hz / 32); } /* Take PHY out of power down. */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_IPRL, NULL); uether_pause(&sc->sc_ue, hz / 4); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL); uether_pause(&sc->sc_ue, hz); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); uether_pause(&sc->sc_ue, hz / 32); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL); uether_pause(&sc->sc_ue, hz / 32); } static void axe_ax88772a_init(struct axe_softc *sc) { struct usb_ether *ue; ue = &sc->sc_ue; /* Reload EEPROM. */ AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32); axe_ax88772_phywake(sc); /* Stop MAC. */ axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static void axe_ax88772b_init(struct axe_softc *sc) { struct usb_ether *ue; uint16_t eeprom; uint8_t *eaddr; int i; ue = &sc->sc_ue; /* Reload EEPROM. */ AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32); /* * Save PHY power saving configuration(high byte) and * clear EEPROM checksum value(low byte). */ axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG, &eeprom); sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00; /* * Auto-loaded default station address from internal ROM is * 00:00:00:00:00:00 such that an explicit access to EEPROM * is required to get real station address. */ eaddr = ue->ue_eaddr; for (i = 0; i < ETHER_ADDR_LEN / 2; i++) { axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_NODE_ID + i, &eeprom); eeprom = le16toh(eeprom); *eaddr++ = (uint8_t)(eeprom & 0xFF); *eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF); } /* Wakeup PHY. */ axe_ax88772_phywake(sc); /* Stop MAC. */ axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } #undef AXE_GPIO_WRITE static void axe_reset(struct axe_softc *sc) { struct usb_config_descriptor *cd; usb_error_t err; cd = usbd_get_config_descriptor(sc->sc_ue.ue_udev); err = usbd_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx, cd->bConfigurationValue); if (err) DPRINTF("reset failed (ignored)\n"); /* Wait a little while for the chip to get its brains in order. */ uether_pause(&sc->sc_ue, hz / 100); /* Reinitialize controller to achieve full reset. */ if (sc->sc_flags & AXE_FLAG_178) axe_ax88178_init(sc); else if (sc->sc_flags & AXE_FLAG_772) axe_ax88772_init(sc); else if (sc->sc_flags & AXE_FLAG_772A) axe_ax88772a_init(sc); else if (sc->sc_flags & AXE_FLAG_772B) axe_ax88772b_init(sc); } static void axe_attach_post(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); /* * Load PHY indexes first. Needed by axe_xxx_init(). */ axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, sc->sc_phyaddrs); if (bootverbose) device_printf(sc->sc_ue.ue_dev, "PHYADDR 0x%02x:0x%02x\n", sc->sc_phyaddrs[0], sc->sc_phyaddrs[1]); sc->sc_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI); if (sc->sc_phyno == -1) sc->sc_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC); if (sc->sc_phyno == -1) { device_printf(sc->sc_ue.ue_dev, "no valid PHY address found, assuming PHY address 0\n"); sc->sc_phyno = 0; } /* Initialize controller and get station address. */ if (sc->sc_flags & AXE_FLAG_178) { axe_ax88178_init(sc); sc->sc_tx_bufsz = 16 * 1024; axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, ue->ue_eaddr); } else if (sc->sc_flags & AXE_FLAG_772) { axe_ax88772_init(sc); sc->sc_tx_bufsz = 8 * 1024; axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, ue->ue_eaddr); } else if (sc->sc_flags & AXE_FLAG_772A) { axe_ax88772a_init(sc); sc->sc_tx_bufsz = 8 * 1024; axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, ue->ue_eaddr); } else if (sc->sc_flags & AXE_FLAG_772B) { axe_ax88772b_init(sc); sc->sc_tx_bufsz = 8 * 1024; } else axe_cmd(sc, AXE_172_CMD_READ_NODEID, 0, 0, ue->ue_eaddr); /* * Fetch IPG values. */ if (sc->sc_flags & (AXE_FLAG_772A | AXE_FLAG_772B)) { /* Set IPG values. */ sc->sc_ipgs[0] = 0x15; sc->sc_ipgs[1] = 0x16; sc->sc_ipgs[2] = 0x1A; } else axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->sc_ipgs); } static int axe_attach_post_sub(struct usb_ether *ue) { struct axe_softc *sc; struct ifnet *ifp; u_int adv_pause; int error; sc = uether_getsc(ue); ifp = ue->ue_ifp; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = uether_start; ifp->if_ioctl = axe_ioctl; ifp->if_init = uether_init; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); if (AXE_IS_178_FAMILY(sc)) ifp->if_capabilities |= IFCAP_VLAN_MTU; if (sc->sc_flags & AXE_FLAG_772B) { ifp->if_capabilities |= IFCAP_TXCSUM | IFCAP_RXCSUM; ifp->if_hwassist = AXE_CSUM_FEATURES; /* * Checksum offloading of AX88772B also works with VLAN * tagged frames but there is no way to take advantage * of the feature because vlan(4) assumes * IFCAP_VLAN_HWTAGGING is prerequisite condition to * support checksum offloading with VLAN. VLAN hardware * tagging support of AX88772B is very limited so it's * not possible to announce IFCAP_VLAN_HWTAGGING. */ } ifp->if_capenable = ifp->if_capabilities; if (sc->sc_flags & (AXE_FLAG_772A | AXE_FLAG_772B | AXE_FLAG_178)) adv_pause = MIIF_DOPAUSE; else adv_pause = 0; mtx_lock(&Giant); error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp, uether_ifmedia_upd, ue->ue_methods->ue_mii_sts, BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, adv_pause); mtx_unlock(&Giant); return (error); } /* * Probe for a AX88172 chip. */ static int axe_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != AXE_CONFIG_IDX) return (ENXIO); if (uaa->info.bIfaceIndex != AXE_IFACE_IDX) return (ENXIO); return (usbd_lookup_id_by_uaa(axe_devs, sizeof(axe_devs), uaa)); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int axe_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct axe_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; uint8_t iface_index; int error; sc->sc_flags = USB_GET_DRIVER_INFO(uaa); device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF); iface_index = AXE_IFACE_IDX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, axe_config, AXE_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(dev, "allocating USB transfers failed\n"); goto detach; } ue->ue_sc = sc; ue->ue_dev = dev; ue->ue_udev = uaa->device; ue->ue_mtx = &sc->sc_mtx; ue->ue_methods = &axe_ue_methods; error = uether_ifattach(ue); if (error) { device_printf(dev, "could not attach interface\n"); goto detach; } return (0); /* success */ detach: axe_detach(dev); return (ENXIO); /* failure */ } static int axe_detach(device_t dev) { struct axe_softc *sc = device_get_softc(dev); struct usb_ether *ue = &sc->sc_ue; usbd_transfer_unsetup(sc->sc_xfer, AXE_N_TRANSFER); uether_ifdetach(ue); mtx_destroy(&sc->sc_mtx); return (0); } #if (AXE_BULK_BUF_SIZE >= 0x10000) #error "Please update axe_bulk_read_callback()!" #endif static void axe_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct axe_softc *sc = usbd_xfer_softc(xfer); struct usb_ether *ue = &sc->sc_ue; struct usb_page_cache *pc; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: pc = usbd_xfer_get_frame(xfer, 0); axe_rx_frame(ue, pc, actlen); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); uether_rxflush(ue); return; default: /* Error */ DPRINTF("bulk read error, %s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static int axe_rx_frame(struct usb_ether *ue, struct usb_page_cache *pc, int actlen) { struct axe_softc *sc; struct axe_sframe_hdr hdr; struct axe_csum_hdr csum_hdr; int error, len, pos; sc = uether_getsc(ue); pos = 0; len = 0; error = 0; if ((sc->sc_flags & AXE_FLAG_STD_FRAME) != 0) { while (pos < actlen) { if ((int)(pos + sizeof(hdr)) > actlen) { /* too little data */ error = EINVAL; break; } usbd_copy_out(pc, pos, &hdr, sizeof(hdr)); if ((hdr.len ^ hdr.ilen) != sc->sc_lenmask) { /* we lost sync */ error = EINVAL; break; } pos += sizeof(hdr); len = le16toh(hdr.len); if (pos + len > actlen) { /* invalid length */ error = EINVAL; break; } axe_rxeof(ue, pc, pos, len, NULL); pos += len + (len % 2); } } else if ((sc->sc_flags & AXE_FLAG_CSUM_FRAME) != 0) { while (pos < actlen) { if ((int)(pos + sizeof(csum_hdr)) > actlen) { /* too little data */ error = EINVAL; break; } usbd_copy_out(pc, pos, &csum_hdr, sizeof(csum_hdr)); csum_hdr.len = le16toh(csum_hdr.len); csum_hdr.ilen = le16toh(csum_hdr.ilen); csum_hdr.cstatus = le16toh(csum_hdr.cstatus); if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^ AXE_CSUM_RXBYTES(csum_hdr.ilen)) != sc->sc_lenmask) { /* we lost sync */ error = EINVAL; break; } /* * Get total transferred frame length including * checksum header. The length should be multiple * of 4. */ len = sizeof(csum_hdr) + AXE_CSUM_RXBYTES(csum_hdr.len); len = (len + 3) & ~3; if (pos + len > actlen) { /* invalid length */ error = EINVAL; break; } axe_rxeof(ue, pc, pos + sizeof(csum_hdr), AXE_CSUM_RXBYTES(csum_hdr.len), &csum_hdr); pos += len; } } else axe_rxeof(ue, pc, 0, actlen, NULL); if (error != 0) ue->ue_ifp->if_ierrors++; return (error); } static int axe_rxeof(struct usb_ether *ue, struct usb_page_cache *pc, unsigned int offset, unsigned int len, struct axe_csum_hdr *csum_hdr) { struct ifnet *ifp = ue->ue_ifp; struct mbuf *m; if (len < ETHER_HDR_LEN || len > MCLBYTES - ETHER_ALIGN) { ifp->if_ierrors++; return (EINVAL); } m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { ifp->if_iqdrops++; return (ENOMEM); } m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); usbd_copy_out(pc, offset, mtod(m, uint8_t *), len); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; if (csum_hdr != NULL && csum_hdr->cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) { if ((csum_hdr->cstatus & (AXE_CSUM_HDR_L4_CSUM_ERR | AXE_CSUM_HDR_L3_CSUM_ERR)) == 0) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; if ((csum_hdr->cstatus & AXE_CSUM_HDR_L4_TYPE_MASK) == AXE_CSUM_HDR_L4_TYPE_TCP || (csum_hdr->cstatus & AXE_CSUM_HDR_L4_TYPE_MASK) == AXE_CSUM_HDR_L4_TYPE_UDP) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } } _IF_ENQUEUE(&ue->ue_rxq, m); return (0); } #if ((AXE_BULK_BUF_SIZE >= 0x10000) || (AXE_BULK_BUF_SIZE < (MCLBYTES+4))) #error "Please update axe_bulk_write_callback()!" #endif static void axe_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct axe_softc *sc = usbd_xfer_softc(xfer); struct axe_sframe_hdr hdr; struct ifnet *ifp = uether_getifp(&sc->sc_ue); struct usb_page_cache *pc; struct mbuf *m; int nframes, pos; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete\n"); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: if ((sc->sc_flags & AXE_FLAG_LINK) == 0 || (ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) { /* * Don't send anything if there is no link or * controller is busy. */ return; } for (nframes = 0; nframes < 16 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd); nframes++) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; usbd_xfer_set_frame_offset(xfer, nframes * MCLBYTES, nframes); pos = 0; pc = usbd_xfer_get_frame(xfer, nframes); if (AXE_IS_178_FAMILY(sc)) { hdr.len = htole16(m->m_pkthdr.len); hdr.ilen = ~hdr.len; /* * If upper stack computed checksum, driver * should tell controller not to insert * computed checksum for checksum offloading * enabled controller. */ if (ifp->if_capabilities & IFCAP_TXCSUM) { if ((m->m_pkthdr.csum_flags & AXE_CSUM_FEATURES) != 0) hdr.len |= htole16( AXE_TX_CSUM_PSEUDO_HDR); else hdr.len |= htole16( AXE_TX_CSUM_DIS); } usbd_copy_in(pc, pos, &hdr, sizeof(hdr)); pos += sizeof(hdr); usbd_m_copy_in(pc, pos, m, 0, m->m_pkthdr.len); pos += m->m_pkthdr.len; if ((pos % 512) == 0) { hdr.len = 0; hdr.ilen = 0xffff; usbd_copy_in(pc, pos, &hdr, sizeof(hdr)); pos += sizeof(hdr); } } else { usbd_m_copy_in(pc, pos, m, 0, m->m_pkthdr.len); pos += m->m_pkthdr.len; } /* * XXX * Update TX packet counter here. This is not * correct way but it seems that there is no way * to know how many packets are sent at the end * of transfer because controller combines * multiple writes into single one if there is * room in TX buffer of controller. */ ifp->if_opackets++; /* * if there's a BPF listener, bounce a copy * of this frame to him: */ BPF_MTAP(ifp, m); m_freem(m); /* Set frame length. */ usbd_xfer_set_frame_len(xfer, nframes, pos); } if (nframes != 0) { usbd_xfer_set_frames(xfer, nframes); usbd_transfer_submit(xfer); ifp->if_drv_flags |= IFF_DRV_OACTIVE; } return; /* NOTREACHED */ default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static void axe_tick(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); struct mii_data *mii = GET_MII(sc); AXE_LOCK_ASSERT(sc, MA_OWNED); mii_tick(mii); if ((sc->sc_flags & AXE_FLAG_LINK) == 0) { axe_miibus_statchg(ue->ue_dev); if ((sc->sc_flags & AXE_FLAG_LINK) != 0) axe_start(ue); } } static void axe_start(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); /* * start the USB transfers, if not already started: */ usbd_transfer_start(sc->sc_xfer[AXE_BULK_DT_RD]); usbd_transfer_start(sc->sc_xfer[AXE_BULK_DT_WR]); } static void axe_csum_cfg(struct usb_ether *ue) { struct axe_softc *sc; struct ifnet *ifp; uint16_t csum1, csum2; sc = uether_getsc(ue); AXE_LOCK_ASSERT(sc, MA_OWNED); if ((sc->sc_flags & AXE_FLAG_772B) != 0) { ifp = uether_getifp(ue); csum1 = 0; csum2 = 0; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) csum1 |= AXE_TXCSUM_IP | AXE_TXCSUM_TCP | AXE_TXCSUM_UDP; axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL); csum1 = 0; csum2 = 0; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) csum1 |= AXE_RXCSUM_IP | AXE_RXCSUM_IPVE | AXE_RXCSUM_TCP | AXE_RXCSUM_UDP | AXE_RXCSUM_ICMP | AXE_RXCSUM_IGMP; axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL); } } static void axe_init(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint16_t rxmode; AXE_LOCK_ASSERT(sc, MA_OWNED); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* Cancel pending I/O */ axe_stop(ue); axe_reset(sc); /* Set MAC address and transmitter IPG values. */ if (AXE_IS_178_FAMILY(sc)) { axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, IF_LLADDR(ifp)); axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->sc_ipgs[2], (sc->sc_ipgs[1] << 8) | (sc->sc_ipgs[0]), NULL); } else { axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, IF_LLADDR(ifp)); axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->sc_ipgs[0], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->sc_ipgs[1], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->sc_ipgs[2], NULL); } if (AXE_IS_178_FAMILY(sc)) { sc->sc_flags &= ~(AXE_FLAG_STD_FRAME | AXE_FLAG_CSUM_FRAME); if ((sc->sc_flags & AXE_FLAG_772B) != 0) sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK; else sc->sc_lenmask = AXE_HDR_LEN_MASK; if ((sc->sc_flags & AXE_FLAG_772B) != 0 && (ifp->if_capenable & IFCAP_RXCSUM) != 0) sc->sc_flags |= AXE_FLAG_CSUM_FRAME; else sc->sc_flags |= AXE_FLAG_STD_FRAME; } /* Configure TX/RX checksum offloading. */ axe_csum_cfg(ue); if (sc->sc_flags & AXE_FLAG_772B) { /* AX88772B uses different maximum frame burst configuration. */ axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG, ax88772b_mfb_table[AX88772B_MFB_16K].threshold, ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL); } /* Enable receiver, set RX mode. */ rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE); if (AXE_IS_178_FAMILY(sc)) { if (sc->sc_flags & AXE_FLAG_772B) { /* * Select RX header format type 1. Aligning IP * header on 4 byte boundary is not needed when * checksum offloading feature is not used * because we always copy the received frame in * RX handler. When RX checksum offloading is * active, aligning IP header is required to * reflect actual frame length including RX * header size. */ rxmode |= AXE_772B_RXCMD_HDR_TYPE_1; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN; } else { /* * Default Rx buffer size is too small to get * maximum performance. */ rxmode |= AXE_178_RXCMD_MFB_16384; } } else { rxmode |= AXE_172_RXCMD_UNICAST; } /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxmode |= AXE_RXCMD_PROMISC; if (ifp->if_flags & IFF_BROADCAST) rxmode |= AXE_RXCMD_BROADCAST; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); /* Load the multicast filter. */ axe_setmulti(ue); usbd_xfer_set_stall(sc->sc_xfer[AXE_BULK_DT_WR]); ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Switch to selected media. */ axe_ifmedia_upd(ifp); } static void axe_setpromisc(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); uint16_t rxmode; axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode); rxmode = le16toh(rxmode); if (ifp->if_flags & IFF_PROMISC) { rxmode |= AXE_RXCMD_PROMISC; } else { rxmode &= ~AXE_RXCMD_PROMISC; } axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); axe_setmulti(ue); } static void axe_stop(struct usb_ether *ue) { struct axe_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); AXE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~AXE_FLAG_LINK; /* * stop all the transfers, if not already stopped: */ usbd_transfer_stop(sc->sc_xfer[AXE_BULK_DT_WR]); usbd_transfer_stop(sc->sc_xfer[AXE_BULK_DT_RD]); } static int axe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct usb_ether *ue = ifp->if_softc; struct axe_softc *sc; struct ifreq *ifr; int error, mask, reinit; sc = uether_getsc(ue); ifr = (struct ifreq *)data; error = 0; reinit = 0; if (cmd == SIOCSIFCAP) { AXE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= AXE_CSUM_FEATURES; else ifp->if_hwassist &= ~AXE_CSUM_FEATURES; reinit++; } if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM; reinit++; } if (reinit > 0 && ifp->if_drv_flags & IFF_DRV_RUNNING) ifp->if_drv_flags &= ~IFF_DRV_RUNNING; else reinit = 0; AXE_UNLOCK(sc); if (reinit > 0) uether_init(ue); } else error = uether_ioctl(ifp, cmd, data); return (error); }